
Synthesis of Recursive Functions with
Interdependent Parameters

Martin Mühlpfordt and Ute Schmid
�

�
Methods of Artificial Intelligence, Computer Science Department, Sekr. Fr 5–8, Technical University Berlin,

Franklinstr. 28/29, D-10587 Berlin, Germany, Email: schmid@cs.tu-berlin.de

Abstract. We present a methodology for the inductive synthesis of recursive functions based upon the theoretical
framework of context-free tree grammars. The synthesis task is splitted into two parts: First, a small set of positive
input/output examples is transformed into a straight-forward (“initial”) program by means of heuristic search; sec-
ond, the straight-forward program is generalized to a recursive function. In this paper we concentrate on the second
part of the synthesis task. That is, we deal with the problem of infering recurrence relations from straight-forward
programs. We will describe our theoretical framework and propose an induction algorithm. Straight-forward pro-
grams are regarded as elements of some term algebra with unknown elements but with known rules for forming
syntactically correct expressions. The synthesis task than is to fold such a term into a recursive program scheme
(RPS). The algorithm works purely syntactically - without information about number and ordering of parameters of
the desired program. In a cyclic pattern-matching process we identify the structure (“skeleton”) of the program, its
parameters and their substitutions. The skeleton is identified as constant subterm occuring in a regular way; subterms
which change in a regular way are identified as parameters together with a substitution. We present a technique for
detecting substitutions which are interdependent between parameters. Thereby, we can infer a greater class of recur-
sive functions than standard generalization-to-n techniques.

Keywords. inductive program synthesis, grammatical inference, context free tree grammers

1 Introduction

Inductive synthesis of recursive programs from ex-
amples was a major research topic in the seventies
and eighties. Typically, the proposed algorithms had
their background in the domain of functional (LISP)
programming and relied on small sets of positive in-
put/output examples [13, 9, 2]. In the nineties induc-
tive program synthesis has become of interest again
in the context of inductive logic programming (ILP)
[10, 11]. As in the classical approaches, our aim is to
infer functional expressions (i.e. terms and not logi-
cal clauses) from small sets of positive input/output
examples. But, in contrast to both the functional and
ILP approach, our algorithm works independed of the
syntax of some given program language (as LISP or
PROLOG). Instead, our work is based upon term al-
gebras [2] and recursive program schemes [4, 14]. Of
course - by interpreting the symbols of a given term
algebra with respect to some programming language -
concrete programs can be generated.

In [12] we described the basic ideas of our methodol-
ogy. We propose to split the program synthesis task in
two distinct parts: In a first step, we construct straight-
forward (“initial”) programs, that is, non-recursive

terms which transform the input part of an example
into the desired output. In the second step, we gen-
eralize the straight-forward program to a recursive
function. This idea was originally employed by Sum-
mers [13]. His algorithm THESIS workes on ������� -
expressions as input data which are transformed into
the output by rewriting - with respect to a complete
partial order over �	������
�� - using a small set of primi-
tive functions (namely �	�� and �����). In [12] we show
that a wider class of input/output examples can be
handled using a generic planning algorithm for con-
structing straight-forward programs. While some in-
formation about the semantics of the program domain
is needed to construct straight-forward programs, gen-
eralization can be performed purely syntactically.

This second step - infering recurrence relations from
straight-forward programs - is the topic of this pa-
per. We extend the work in [12] in two ways: First,
we present a formalization of our approach based
upon the theoretical background of context-free tree
grammers [5]. Second, we introduce a new tech-
nique for identifying parameters and their substitu-
tions. Thereby, we are not only able to infer a variety
of recursive structures (as tail recursion, linear recur-
sion, tree recursion and combinations [12]) but addi-

tionally, we can deal with parameters which are sub-
stituted interdepended from one another. That is, we
can infer functions like mod(x, y) = if lt(x, y) then x
else mod(minus(x, y), y).

In the following, we will first introduce our terminol-
ogy and define the synthesis task. Then we present
our method in detail. Afterwards we will illustrate the
method and discuss its scope and efficiency. We finish
with relations to other work and a short conclusion.

2 Induction of Recursive Program
Schemes

2.1 Basic Terminology

First, we will introduce some concepts and notations
which are used during the rest of the paper.

Terms and trees. A signature � is a finite set of func-
tion symbols of fixed arity ������������� ����� . With

we denote the set of variables, with !�" � � the set
of terms over � and

, and with ! " the set of all

groundterms (terms without variables) over � . We use
tree and term as synonyms.

A tree in !�" � � will be denoted by # ��$&%���'�'�'(��$*)+� in
order to point out the variables, if unambiguous, we
use the short hand vector notation # ��,$�� . # � # % ��'�'�'(� #) �
denotes the tree obtained by simultaneously substitut-
ing the terms #.- for each occurence of the variables $ -
in # �/$ % ��'�'�'(��$) � , 02143 ��'�'�'��/5 . The short hand vec-
tor notation # � ,# � will be used. To point out which trees
are being substituted for which variables, we will note# � # %�6*$7%���'�'�'�� #)*6+$*)�� resp. # � ,# 68,$9� . We call the terms # -
instantiations of the variables $ - . : ���� # � is the set of
all variables in the term # . We use the standard con-
cepts for substitution and unification.

Subterms. A position in # is defined in the usual way
as a sequence of natural numbers: (a) ; is a position in# ; (b) if #<1 �8� # %=��'�'�'�� #)�� , �?> � , and @ is a position
in #A- , then 0 ' @ is a position in # .
A subterm of # at the postition @ (denoted by # 6 @) is
defined as: (a) # 6 ;B1C# ; (b) if #D1 �&� # %*��'�'�'(� #)*� ,�E> � , and @ is a position in # - (3GFH0�F 5),
then # 6 0 ' @ � 1I# - 6 @ . For a term # and a position @ in# the function ������
+� # � @ � results in a pair �����J��� with# 6 @K1 �&� # % ��'�'�'(� #AL � , #A- some terms from ! " � � , and� 1 ������� .
A prefix of a tree # > !�" � � is a tree 5 >
! " �NM=O % ��'�'�'���O�P(Q�� , with M=O % ��'�'�'��JO�P�Q<R 1BS , and
such there exists subtrees # % ��'�'�'9� # P of # with #D15&� # % 6+O % ��'�'�'(� # P96*O�P(� . We write 5 FT# if 5 is a prefix
of # . We write 5VU # , if 5 and # cannot be unified by
renaming of variables only.

A segment �W> ! " �YX2� of a term 5Z> ! " � �[X\�

(
 R�X 1 S) along the “recursion points” X in

a term # > !�" at occurence] is defined as: (a)� is a segment of 5 in # at occurence ; iff #^15&� ,# $(68,$�� # O+%_6+O+%���'�'�'(� # O P 6*O P � (i.e. 5 F`#) and � 15&� ,# $(68,$9� ; (b) if #a1 58� ,# $968,$8� # O+%J6*O+%���'�'�'(� # O P 6*O P � , and� a segment of 5 in # O - along X at occurence] then �
is a segment of 5 in # along X at occurence 0 '] .

With b �c5&�.Xd� # � we denote the set of all segments of 5
in # along Xe� with f �g5&�.Xd� # � the set of all occurences
of 5 in # along Xd'9�+�] �K� f �c5&�.Xd� # � �Hb �c58�AXe� # � is
the mapping between an occurence] and the corre-
sponding segment.

Tree grammars. A regular tree grammar (RTG) hi1��jk� � ��lm�J��� consists of disjoint signatures j (nonter-
minals, all symbols of j with rank n) and � (termi-
nals), a finite rewrite system l over j [� , and a
distinct constant symbol �o>pj (initial symbol). All
rules in l are of the form qr�E# , where q >sj and# > !utwv " .

A context free tree grammar (CFTG) x 1��jk� � ��lm�J��� consists of disjoint signatures j (non-
terminals with arity ��� q �K> �) and � (terminals), a
finite rewrite system l over j [� , and a distinct
constant symbol �y>Zj , ������� 14n (initial symbol).
All rules in l are of the form q �/$ % ��'�'�'��J$uP9� �z# ,
where q >Zj , ��� q � 1 � , $ % ��'�'�'���$9P are pairwise
different variables, and # > !(twv " �NM=$ % ��'�'�'(��$uP(Q�� . For
rules q{�|# % and q{�|#J} we use the abbreviationqi�~# %<� #J} .
Starting with the initial symbol � , the nonterminals
will be replaced by the right hand side of the ap-
propriate rule whereby all variables are substituted
by the corresponding terms. With

��y� denoting the
reflexive-transitive closure of the rewrite relation �D�
generated by l , the language generated by a grammar� 1 �/jk� � ��lm����� is � � � � 1 M # > ! " � �o��� �� � # Q .
2.2 Definition of Recursive Program Schemes

A recursive program scheme (RPS) on a signature � ,
a set of variables

, and a set of function variables �

is a pair ��b � #���� , where #�� > !�" v�� � � (main program)
and b is a system of � equations (recursive subpro-
grams): b�1B� � - ��$ - % ��'�'�'��J$ -P9� � 1T#A- , 0<1B3 ��'�'�'���� � ,
with

� - > � , $ -� > for each ��1�3 ��'�'�'(��� - , and#A- > ! " v�� ��M=$ - % ��'�'�'��J$ -P9� Q=� for all 0 .
Each RPS is associated with a CFTG x<�Y�+� �/�A��1� � [M���Q�� � [M=��Q��Jl��J��� , �~�> � , � �> � (� as
the bottom element); l is defined by: l 1 M=� �# � ����Q [M � - ��$ - % ��'�'�'(��$ -P9� � ��#A- ����Q with� - > � (cf. [5]).

With the CFTG x��Y�+� � � � we can now unfold a recursive
scheme to terms in ! " v��.��� � � .

3

An interpretation 0 of the unfolded trees of an RPS��b � #J��� is a homomorphism 0 in a � -algebra q , 0 �!("G� q , defined over operation symbols in � and
extended to terms. A valued interpretation is an inter-
pretation together with a valuation ¡ � ��q . ¡
denotes the extension of ¡ to terms. In the following
we will regard untyped structures only.

The initial programs, for which we want to infer an
RPS, are interpreted and valuated terms in an un-
known algebra. Because the algebra q is unknown,
we regard an initial program not as element of q but
as valued term of the term algebra over � and the val-
uation is ¡ � �4!�" (that is, the variables are valu-
ated by groundterms).

With � � x � ¡ � we denote the set of the valued terms of
a grammar x : � � x � ¡ � 1 M ¡ � # ��� # > � � x �_Q .
Example 1 (Unfolding an RPS). Consider the following
RPS ¢�£�¤A¥Y¦�§ (the upper indices specify the arity of the sym-
bol):¨W©pª	« ¦ ¤¬9®�¯�¤A°�±�¯.¤A²�³ « ¯�¤A´¶µ�¤/·�¸�¹ , º ©pª	» ¹ , ¼ ©pª�½ ¯N¹ ,¥¾¦ ©?½�¿Y»9À , £ÂÁ ½�¿Y»9À&© · ¿ ²�³ «�¿Y»9À ¤A°�± ¿Y«*À ¤�´ ¿Y» ¤ ½�¿ ¬ ¿Y»9À�À�À�À .
We can unfold it with the associated CFTG ÃeÄYÅ�Æ ÇÈ�	É ©V¿ ¼KÊª °�¹�¤ ¨ Ê ª�Ë ¹�¤AÌ�¤A° À , Ì ©^ª °?Í ½�¿Y»ÎÀ�Ï�Ë

,
½�¿Y»9À Í· ¿ ²�³ «�¿Y»9À ¤A°�± ¿Y«*À ¤�´ ¿Y» ¤ ½�¿ ¬ ¿Y»9À�À�À�À�Ï�Ë ¹ , and get for instance

the following term:

¥ © · ¿ ²�³ «�¿ »9À ¤Ð°�± ¿Y«*À ¤�´ ¿ » ¤· ¿ ²�³ «�¿ ¬Î® ¿Y»ÎÀ�À ¤�°�± ¿Y«*À ¤�´ ¿ ¬Î® ¿Y»9À ¤· ¿ ²�³ «�¿ ¬Î® ¿ ¬9® ¿Y»9À�À�À ¤ °_± ¿Y«*À ¤A´ ¿ ¬Î® ¿ ¬Î® ¿Y»9À�À ¤ ËaÀ�À�À�À�À�À
This term can be interpreted in the algebra ÑoÒ*¥ of the
natural numbers with the additional sort ÓmÔ�Ô�ÕÈ²�Ò*Ö by ×kÁª	«ÙØÍ Ú+¤È¬Î® ¿Y»ÎÀIØÍ ¬ ¿Y»9ÀT©�Û�Ü.Ý ¬Î®�²	Þ ¿Y»ÎÀ ¤A°�± ¿Y»9ÀrØÍ° ¿Y»9Àß© Û�Ü.Ý °�à+±J± ¿Y»9À ¤�´ ¿Y» ¤�á À\ØÍâ´ßà+ÕY¥ ¿Y» ¤Aá À ¤�²�³ «�¿Y»9À2ØÍ²�³�Ú ¿Y»9À�©�Û�Ü.Ý if

»\© Ú then ¥/®�à+² else ã�Ò�ÕY°�²�¤/· ¿Y» ¤�á+¤ «*À8ØÍ· ¿Y» ¤Aá+¤ «*Àm©�Û�Ü.Ý if
»

then á else
« ¹ . Together with a valu-

ation ä ¿Y»9À<© ° ¿ ° ¿ Ú À�À we obtain the term ¥�åçæ Ç © ä ¿ × ¿ ¥ À�À
with

¥ åçæ Ç ©· ¿ ²�³�Ú ¿ ° ¿ ° ¿ Ú À�À�À ¤?° ¿ Ú À ¤A´ßà+Õè¥ ¿ ° ¿ ° ¿ Ú À�À ¤· ¿ ²�³�Ú ¿ ¬ ¿ ° ¿ ° ¿ Ú À�À�À�À ¤�° ¿ Ú À ¤A´ßà+Õè¥ ¿ ¬ ¿ ° ¿ ° ¿ Ú À�À�À ¤· ¿ ²�³�Ú ¿ ¬ ¿ ¬ ¿ ° ¿ ° ¿ Ú À�À�À�À�À ¤ ° ¿ Ú À ¤J´ßà+Õè¥ ¿ ¬ ¿ ¬ ¿ ° ¿ ° ¿ Ú À�À�À�À ¤ ËéÀ�À�À�À�À�À
which is an example for an initial program.

2.3 Limitations

We set the following restrictions to the final RPS��b � # � � :
1. There is only one recursive subprogram

�
, i.e.� b � 1ê3 .

2. All variables appear in the body # % of the re-
cursive subprogram

�
(i.e. there is no variable

just handed down) and each variable is used in
at least one substitution per recursive call.

3. There is no recursive call in a substitution (like in
the Ackermann function).

4. The term #J� (the main program) consists only of
the recursive subprogram call.

Additionaly, there are some limitations for inference:

5. Variables, which are used as constants (like �
in the exponential function f(n,m) = g(eq0(m),1,
mult(n, f(n, p(m))))) can not be identified as vari-
ables. They occur in the resulting RPS as con-
stant parts in the subprogram body.

6. If the main program calls the subprogram with
substitutions of variables (like #�� = G(succ(x))),
then they can not be separated from the valuation
of the variables.

2.4 Synthesis problem

Given an initial program (like the one given in ex. 1)
we want to infer an appropriate CFTG with the ini-
tial program as element of the language defined by it.
That is, we regard program synthesis as special kind
of grammatical inference.

Now we are ready to specify the synthesis problem:

Definition 1 (Synthesis problem). Let # - P - � be an
initial program. Thenë a signatur � ,ë a set of variables

 1 M�$ % ��'�'�'u�J$uP9ì8Q ,ë a CFTG xm�Y�+� � � �¶1 ��M��*� � Q�� � [M=��Q���lm����� cor-
responding to an RPS ��b � # � � with l 1 M�� �� �/$ % ��'�'�'���$9Puì��í���î� � ��$ % ��'�'�'��J$uP9ì�� �# % �m��Q , # % > ! " v���ï&� � � , and
% 1 5&��,$&�� � # � %�% ��,$�����'�'�'�� # � % P9ìç��,$(�.�A6+O % �

...� � # � P�ð %���,$�����'�'�'�� # � P�ðÎP ìç��,$(�.�A6+O P�ð �
(5k> ! " v��Jï8� � G[Xß�) with X 1 M=O�%���'�'�'��JO P�ð Q
indicating the ��ñ recursion points and whereò 0k1ó3 ��'�'�'9��� ñ � ò �p1C3 ��'�'�'(����ô�� # � - � >! " � ����õ � : ���� # � - � � 1 , andë a valuation ¡ � ��!�"

are to be infered, such that # - P - � > � � x �Y�+� � � � � ¡ � and
the following constraints hold:

Recurrence: for each � 1 3 ��'�'�'9��� ñ : �öM] �] >
f �g5&�.Xd� # - P - � ���]÷1�: ' �+Q9�ùøûú (We need (i)
a root segment as hypothesis for the recursive
structure to be induced, (ii) at least one additional
segment for each recursion point for validating
the hypothesis and for building a hypothesis for
the substitutions, and (iii) at least one further seg-
ment for each recursion point for validating the
substitution hypothesis.)

Simplicity: there exists no RPS ��b�ü � #Aü � � , � b8ü � 1ý3 ,
such that þ �¾ÿ �Y�+� �/�J� ��� þ �¾ÿ �Y���È� � �� � � .

3 Method

The inference process is driven by the syntactical
structure of the initial tree. Given an initial tree and
presupposed, that there exists a CFTG and a valuation
which generates this initial tree, we perform the fol-
lowing steps:

1. We are looking for a set of recursion points in the ini-
tial tree, i.e. a minimal recursive term (section 3.1.1).

2. The minimal recursive term can then be extended to
the subprogram body. Lemma 1 leads to a simple crite-
rion for separating the body and the instantiations (see
section 3.1.2).
Given the validity of this hypothesis for the subpro-
gram body, the remaining unexplained subtrees have
to be instantiations of the variables.

For constructing the substitutions we have to find reg-
ularities between the instantiations (section 3.2).

1. First we have to check, that each instantiation is used
in a regular way in each recursive call, and

2. that each instantiation is partial representable by at
least one of the previous instantiations in a regular way
(lemma 2).

3. Afterwards we search all regular relations between an
instantiation and the previous instantiations and unifiy
them to the final substitution rule.

4. All the variables with the same instantiation in all seg-
ments are assumed as identically (lemma 3).

3.1 Building a prefix generating RTG

Definition 2 (Prefix generating RTG). Let # - P - � be
an initial tree, � the set of all symbols in # - P - � with-
out � , and �ê1 M��*%=��'�'�'���� P ì8Q , X 1 M=O+%���'�'�'��JO P�ð Q
two disjoint set of variables (X indicating the recur-
sion points). An RTG h�1 �NM � ��� Q�� � �Jlm����� withl 1 M=� � � � � ,

� � # %`�W��Q , # % 15&����%���'�'�'(�	� P ìç� � 6+O+%���'�'�'(� � 6*O P�ð � , 5?> !(" � � [X2� ,
and � ��y�T# ü- P - � , # ü- P - � F # - P - � is a prefix generating
RTG to # - P - � . During derivation the variables � - of # %
are renamed, such that all variables in the resulting
term occur at one position only.

(Note, that all generated � ’s in the derived prefix #�ü- P - �
must match an � in # - P - � . This restricts the choice of
the recursion points.)

That is, we have to construct a term 5 with X indicat-
ing the recursion points, which leads to a prefix gen-
erating RTG to # - P - � and therewith to a segmentation
of #A- P - � . Then we have to enlarge 5 to the subprogram
body presupposing lemma 1.

Lemma 1. (Separability of program body and instan-
tiations)
Let ¡ � � !�" be a valuation and x<�Y�+� ���.�
be a CFTG to an RPS ��b � #���� with l 1 M=� �� � # � � %���,$(�	��'�'�'�� # � � P ì���,$��A� , � ��$7%���'�'�'(��$ P � �{# %�Q ,
% 1 5&�m,$,� � # � %J%���,$�����'�'�'�� # � % P ì���,$��A���

...� � # � P�ð %���,$�����'�'�'�� # � P�ð�P ìé��,$9�.�A� ,
� - � > !(" � � for all 0�1Cn ��'�'�'9����ñ and all � 13 ��'�'�'��J� ô . Let
 �1ýS be an index set, so that for
each 0 >
 there exists a prefix 5 - > !(" �YX\���ßX
with 5 - F ¡ � # � � - ��,$��A� and for each � 143 ��'�'�'9����ñ :5 - Fy# � � - .
Then there exists an RPS ��bçü � #Aü � � over

 ü with the as-
sociated CFTG x��Y� � � � �� � and a valuation ¡çü � ü �!(" , such that � � x��Y�+� �/�A� � ¡ � 1H� � xm�¾� � � � �� � � ¡8ü � and
for each 0k1C3 ��'�'�'��J� ü ô there exists no prefix 5 - >! " �¾X ���X with 5 -�F ¡ ü � # � ü � - ��,$ ü �A� and for each � 13 ��'�'�'��J� ñ : 5 -éF?# � ü� - .
(Proof: by constructing the RPS ¢�£��¾¤A¥��¦ § and structural in-
duction.)

If the potential recursion points and thereby a seg-
mentation of the initial tree have been found, then the
following propositions hold: (1) The maximum prefix
over all segments has to be the body of the subpro-
gram. (2) The remaining subtrees should be instantia-
tions of the variables and must be explained by a val-
uation and some substitutions.

That means, the predefinition of the recursion points
determines the subprogram body and the variables.
Hence the overall strategy is backtracking over pos-
sible segmentations of the initial tree.

3.1.1 Building a segmentation The search for the
appropriate recursion points has to be backtrackable.
Foremost we are looking for a first potential recursion
point @ L % (the lower index indicates the number of the
recursion point) in the initial tree, i.e. a position @ L % in# - P - � with @ L % �1i; , ������
+� # - P - � � @ L % � 1 ������
+� # - P - � � ; � .
Then we build a term 5 consisting of all nodes be-
tween the root and the recursion point by applying a
function ���9
��/
 # ��� (defined below) and test it by build-
ing the prefix generating RTG (i.e. the RTG generates
a term #Aü- P - � Fy# - P - �) for which the constraints given in
definition 2 must hold.

Afterwards, we stepwise enlarge 5 by further recur-
sion points @ L- (marked in 5 by pairwise different vari-
ables O - >íX) until the associated prefix generat-
ing RTG generates all � ’s in # - P - � and hold the con-
straints. The skeleton 5ê> ! " � � [X2� is a minimal
prefix to #.- P - � which contains the recursion points.

Definition 3 (Building the skeleton). Let # - P - � be the
initial tree, 5 be a skeleton build over �7ñ recursion
points @ L- , 0&1ê3 ��'�'�'9����ñ , which leads to a prefix gen-
erating RTG to # - P - � , X 1 M=O+%���'�'�'���O P�ð Q the set of
variables in 5 indicating the recursion points, � the
set of all other variables in 5 (initial values: 5 1�� ,X 1BS , � 1BS). Let @ L be a further potential recur-
sion point. Then the new skeleton is build by applying
the function ���9
���
 # ����� # - P - � � @ L �/5&� � �.X¶� , which is de-
fined (in a declarative style):������������ "!$#%��&�'(&�)& *+&�,.-0/1#%23&�*+&�,5476	298�-�&:2<;= ,������������ "!$#%��&�'(&.>�&9*+&�,.-0/1#%23&�*@?A6	>�8�&�,B4�6	2�8�-�&:2C;= ,������������ "!$#%��&�D�E F�&G)& *+&�,.-0/#:H�#I> ¯ &�E�E"EJ&�>	KIL ¯ &�� � &�>�KM&�E�E"EJ&�>�N"L ¯ -�&�* � &:, � - with#:HO&:PQ-0/R!S 	T��Q#%��&�'J->MU pairwise different variables, >MUV;= *W4V,0&:XY/[Z�&"E�E�E�&:P\WZ* � /5*]4�6Q> ¯ &�E"E�EJ&�>�N"L ¯ 8+47* � �#I� � &^* � � &�, � -0/B������������ "!_#I��`	D�E '(&�F�&�)&�*+&�,.-������������ "!$#%��&�D�E F�& ��a"& *+&�,.-0/#:H�#I� ¯ &"E�E�E�&:� �K &"E�E�E�&�� N -M&�* � &:, � - with� a /BH(#%� ¯ &�E"E�ES&���Kb&�E"E�ES&�� N -if ��K = * then #%� �K &�* � &�, � -c/B�"�9�"�d���� �!$#%��`	D�E '�&:F�&)&^*e&�,.-

if ��K�;= * then #%� �K &�* � &�, � -c/B�"�9�"�d���� �!$#%��`	D�E '�&:F�&���Kb&^*e&�,.- .
3.1.2 Building the subprogram body We have
now found a term 5 over � and X [� , such that the as-
sociated prefix generating RTG generates a term #Jü- P - �
with #.ü- P - � F^#A- P - � , #A- P - � 1Ù#Aü- P - � � # % 6J� % ��'�'�'u� # P(6f��P9� ,#A- > ! " , and for each � 1`3 ��'�'�'u�J� ñ (� ñ 1 � Xk�)�öM] �] > f �g5&�.Xd� #A- P - � ���]V1i: ' �+QÎ�+øWú .
As a result of lemma 1 the body of the subprogram
is the maximum prefix 5cgih	j over all segments inb �c58�AXe� #A- P - � � : 5$g�h	j�> ! " � [X2� with 5$gih	j F� ò � > b �g5&�.Xd� #A- P - � � and kml 5 üg�hQjon 5$g�h	j with5 ügih	j F � ò � > b �c58�AXe� # - P - � � .
During the construction of the prefix 50gih	j we pre-
serve the variables in X . Because of our definition of
the segmentation, 5$gih	j leads to a prefix generating
RTG for # - P - � .
3.2 Building the CFTG

The term 5 gih	j with ��ñ recursion points marked by
variables O�%���'�'�'���O P�ð is the hypothesis for the sub-
program body. All the variables in

 1p: ����g5 g�h	j �A�X have to be (not necessary different) variables of
the CFTG (that means in particular, that all the terms#A- with � 1 5$gih	j(� # % 6+$ % ��'�'�'9� # P9ì�6*$uP9ì&� for each�î> b �g5&�.Xd� #A- P - � � have to be instantiations of the vari-
ables).,:3p denotes the instantiations of the variables ,$ in the
segment at occurance] : ,: p 1 � # % ��'�'�'�� # Puì�� with�+�] � 1 5_gih	j�� # % 6*$ % ��'�'�'(� # P9ì�6*$uP9ì�� for each] >
f �c5$g�hQj(�.Xd� #A- P - � � .
We have to check, that all instantiations of an oc-
curence is used in a recurrent way in all subordinated
occurences:

Lemma 2 (Necessary conditions for variables).
Let # - P - � be an initial tree, 5 gih	j be the inferred
subprogram body with X indicating the recursion
points, : ����g5 g�hQj � 1 G[X ,

 RKX 1iS , � ô 1 � � ,��ñ 1 � X � , and ,: p the instantiation of the variables
at occurrence] > f �g5 gih	j �.Xd� # - P - � � .

Usage of all instantiations: It must hold
ò 0 >M 3 ��'�'�'9��� ô Q : ò �E>�M 3 ��'�'�'9����ñaQ l �ó>M 3 ��'�'�'9��� ô Q and l+# > !�" � � [M�$ - Q=� where

t is a minimal prefix, such that
ò] ' � >

f �g5 gih	j �.Xd� # - P - � �m� # � : p- 6+$ - � FD: pq Lr .

Partial generating of all instantiations: The sets of
partial substitutions l b�@cs � # r L of variable $ r in
the � -th recursive call constructed in the follow-
ing way are not empty:

1. Set for each �K>?M 3 ��'�'�'u�J� ô Q and for each�¶>oM 3 ��'�'�'9�J��ñeQml b�@cs � # r L 1WS , � r L 1�S
2. Search for each 0 >GM 3 ��'�'�'9�J� ô Q and for

each �ê>�M 3 ��'�'�'�����ñéQ all � for which a
minimal prefix 5��V> !�" � � [M�$ - Q=� exists
(
 {[� [� r L 1�S and all variables oc-

cure at only one position), with
ò] ' �ê>f �c5 gih	j �.Xd� # - P - � �e��5(�+� :Op- 6*$ - � FW:3pq Lr .

Set l b�@cs � # r L � 1 l b�@cs � # r L [M�5(� Q ,
� r L � 1o� r L [� .

If one of these conditions does not hold, then no ad-
equate CFTG can be built on the basis of the term5_gih	j , i.e. there must be backtracking over the seg-
mentation construction.

(Proof: These are consequences of the restrictions, that each
variable has to occure in the subprogram body and has to be
used in at least one substitution in a recursive call.)

We can now construct the final substitutions by means
of the sets of partial substitutions. Therefore a gen-
eral unifier t r L for each set of partial substitutionsl b�@0s � # r L is built (these unifiers exists, because all
terms in l b�@cs � # r L are prefixes of the same term : Lr).
Variables are renamed only in variables from

. For-

mally for all � >ûM 3 ��'�'�'(��� ô Q and for all �E>M 3 ��'�'�'9�J��ñeQ 5�� - t r L 1 5�� � t r L for all 5(� - �/5(� � >l b�@0s � # r L .
Lemma 3 (Reduction of variables). Contains some
t r % a renaming M=$ -vu $ � Q , $ - �J$ � > , then the
variable $ - in 5 gih	j can be replaced by $ � . The set of
variables can be reduced to

 � 1 ��M=$ - Q .
(Proof: w(xzy|{

¿ ¬_} æ"~ ¤���¤�¥ K��9K Ç À holds: �3�K
©
�3�U (because

of the construction of Ìm£�àf�J°�¥^� N), i.e. the instantiations of» K and
» U are identical in all segments.)

Now we know the number of necessary variables��ô 1 � � and thereby the rank of
�

.

The substitution � r L of the variable $ r in the � -th re-
cursive call can be built by � r L 1 M=$ r u # � r L Q with# � r L 1 5(� r L t r L and 5(� r L some term of l b�@0s � # r L .
The constructed substitutions � r L substitute a vari-
able by a term over some variables. Finally, we have
to check whether a substitution contains a subterm,
which is independent from the variables.

Lemma 4 (Incomplete substitutions). Let the right
hand side # � r L of a substitution � r L 1 M=$ r u # � r L Q
contain some variables � - > � . Let
 be the index set
for these variables (i.e. : ���� # � r L � 1�: ���� # � r L �9R p[M�� - � 0 >
 Q).
Exists for every � - a groundterm #.- > ! " , such thatò] ' �K> f �c5$g�hQj��.Xd� #A- P - � � holds : pq Lr 1T# � r L M=$ % u: p % ��'�'�'��J$uP9ì u : pP ì Q+M=O - u #A- � 0 >
 Q the substitu-
tion � r L can be extended to � r L � 1�� r L M�O - u #A- � 0 >

 Q .
Otherwise no adequate CFTG can be built on the ba-
sis of the term 5$gih	j , i.e. there must be backtracking
over the segmentation building.

Lemma 5 (Valuation). The valuation ¡ � ��!�" is
determined by the instantiations ,:S� 1 � :J� % ��'�'�'�� :f�Puì � :¡ ��$ - � 1�:J�- , 081r3 ��'�'�'9�J��ô .

(Proof: This is a consequence of the limitation, that there
is no distinction between valuation and substitution in the
subprogram call in the main program.)

As result we have now the CFTG x<�Y�+� �/��� 1��M��*� � Q�� � [M���Q���lm�J��� with ,$ 1 ��$ % ��'�'�'9�J$uP9ì�� and

Ì ©?ª ° Í ½�¿��»9À\ÏéË ¤½�¿��»9À Íp¬ ¿��» ¤½�¿ ¥/° ¯�¯
¿Q�»ÎÀ ¤	�	�	�(¤A¥/° ¯ � ì

¿��»9À�À�� á ¯ ¤...½�¿ ¥/° � ð ¯
¿Q�»9À ¤��	�	�9¤A¥/° � ð � ì ¿��»9À�À�� á � ð ÀKÏçË ¹

and the valuation ¡ , such that #J- P - � > � � xm�¾�+� � � � � ¡ � .
The described method guarantees that this is the sim-
plest possible recurrent hypothesis for # - P - � .
4 Illustration and Evaluation of the

Method

4.1 Example

Consider the initial tree # - P - � given in fig. 1. We obtain
the signature �s1 M n ���+��58�J
�� n �	� @ � # �M�(Q .
(1) We find the first and only potential recursion point@ L % 1 � ' ; and thereby the minimal prefix 5 1������%��	� } �JO+%�� . By means of the appropriate prefix gen-
erating RTG the following prefix of the initial tree#Aü- P - � 1 ����� % �	� } �M���������	���������A'�'�'��m��'�'�'�� Fs#A- P - � can be
derived.

0

s

s

s

0

s

s

s

0

s

s

s

0

s

s

s

0

s

s

s

0

s

s

s

0

s

s

0

s

s

0

s

s 0

s

s

0

s

s

0

s

s

0

s

s

0

s

s

0

s

0

s

0

s

0

s

0

s

0

s

0

s

s

g

eq0 g

p

multeq0 g

eq0 g

p

eq0 g

eq0 g

p

multeq0

p

p p

p

p

p

mult

mult

mult mult

mult

mult

mult Ω

Figure 1 Example for an initial tree

(2) This results in the program body 50gih	j 1���/
9� n ��$ % �	�J$ } ��O % � with the following instantiations
� � ¯ � µ' � ¸ #I�9- �	#I�9-Z�E ' �J#:� ¸ #I�9-�- ��FJ�G�M#��Q#%�9-M&�� µ #I�9-�-Z�EGZ�E ' �J#:� ¸ #I�9-�- ��FJ�G�M#�� µ #I�9-M&��	#I�9-�-Z�EGZ�EGZ�E ' � µ #:� ¸ #I�9-�- ��FJ�G�M#%��FJ�G��#:� µ #I�9-�&��Q#%��-�-M&�� µ #I�9-�-Z�EGZ�EGZ�EGZ�E ' � µ #:� ¸ #I�9-�- ��FJ�G�M#�� µ #I�9-M&:��FJ����#�� µ #I�9-�&:�	#I�9-�-�-Z�EGZ�EGZ�EGZ�EGZ�E ' � ¸ #:� ¸ #I�9-�- ��FJ�G�M#%��FJ�G��#:� µ #I�9-�&:��FJ�G��#:� µ #%�9-M&�	#I�9-�-�-M&�� µ #%��-�-

(3) There can be detected no regularity for the first in-
stantiation (the relation found between :�� % and : % q �% is: % q �% 1 5&� :J� % � but : % q % q �% 1 58��� � � n �.�¶�1 5 } ��� � � n �A�). So
another potential recursion point has to be found.

(1’) We find the new recursion point @ L % 1�� ' � ' ; with
the minimal prefix 5 1 ����� % ��� } �M�������������*��O % �.� .
(2’) This results in the program body 5 g�h	j 1���/
9� n ��$7%_�	�J$ } �M���/
9� n �c5&�/$ � �A�	��� @ � # ��$ � �J$0���	�JO+%��A� with
the instantiations given in table 1a.

(3’) We detect the following regularities between the
instantiations : p- and : pq %r :

0 � #3 3 58��$7%_�ú ú � @ � # ����%*��$ } �
� 3 58��$ � �� ú � @ � # ����%*��$ � �� � $0�

(4, 5) We obtain the not empty sets of partial substitu-
tions (representations of : pq %r by : p-) with the unifiers
t r % given in table 1b.

(6) There are the renamings M=$ % u $$�+Q ,M=$ � u $ } Q , so the set of variables can
be reduced to

 1 M=$ } ��$ � ��$0��Q : 5 gih	j 1���/
9� n ��$ � �	�J$ } �M���/
9� n �c5&�/$ � �A�	��� @ � # ��$ } �J$0���	�JO+%��A�
with the following substitutions: �9} % 1 M=$ } u� @ � # �/$ � �J$ } �_Q , � � % 1 M=$$� u 58��$$����Q ,

Table 1 Instantiations (a) and substitutions (b)

(a)

x � ¯ � µ � ¸ ��� ���� ° ¸ ¿ Ú À ° ¿ Ú À ° ¸ ¿ Ú À ° ¿ Ú À ° µ ¿ Ú À � � ¬ ¿ °_¸ ¿ Ú À�À ´2à+ÕY¥ ¿ °�µ ¿ Ú À ¤A° ¿ Ú À�À ¬ ¿ °�¸ ¿ Ú À�À ´ßà+ÕY¥ ¿ °�µ ¿ Ú À ¤A° ¿ Ú À�À °�µ ¿ Ú À � � � ¬�µ ¿ °�¸ ¿ Ú À�À ´2à+ÕY¥ ¿ °�µ ¿ Ú À ¤A´ßà*ÕY¥ ¿ °�µ ¿ Ú À ¤�° ¿ Ú À�À�À ¬�µ ¿ °�¸ ¿ Ú À�À ´ßà+ÕY¥ ¿ °�µ ¿ Ú À ¤A´2à+ÕY¥ ¿ °_µ ¿ Ú À ¤A° ¿ Ú À�À�À °�µ ¿ Ú À

(b)

¡ Ìm£�àf�J°�¥ � ¯ ¢ � ¯ ª ¬ ¿Y» ¯
À ¤È¬ ¿Y» ¸

À ¹ ª�»
¯m£

»
¸ ¹¤ ª ´ßà+ÕY¥ ¿Y» ��¤ « ¯

À ¤A´2à+ÕY¥ ¿Y« µ ¤
»
µ
À ¤A´2à+ÕY¥ ¿Y« ¸ ¤

»
�
À ¹ ª�«

¯ £
»
µ ¤
«
µ £

»
��¤ « ¸ £

»
��¤ » � £

»
µ ¹¥ ª ¬ ¿Y» ¯

À ¤È¬ ¿Y» ¸
À ¹ ª�»

¯m£
»
¸ ¹¦ ª ´ßà+ÕY¥ ¿Y» � ¤ « ¯

À ¤A´2à+ÕY¥ ¿Y« µ ¤
»
µ
À ¤A´2à+ÕY¥ ¿Y« ¸ ¤

»
�
À ¹ ª�«

¯§£
»
µ ¤
«
µi£

»
� ¤ « ¸i£

»
� ¤ » � £

»
µ ¹¨ ª�»

� ¹ ×ÈÞ
� �	% 1 M=$ � u $ � Q . The valuation is thereby ¡ �M=$ }|©� �+� n �	�J$ � ©� � � � n �	�J$0� ©� � } � n ��Q , and finally
we get the CFTG x��Y�+� ���A�ß1 ��M��*� � Q�� � [M���Q���lm�J���
with

Ì ©?ª ° Í ½�¿Y» µ ¤
»
¸ ¤
»
�
À\ÏéË ¤½�¿Y»

µ ¤
»
¸ ¤
»
�
À ÍT· ¿ ²�³�Ú ¿Y» ¸

À ¤ » µ ¤/·
¿ ²�³�Ú ¿ ¬ ¿Y» ¸

À�À ¤´ßà*ÕY¥ ¿Y» µ ¤
»
�
À ¤ ½�¿ ´2à+ÕY¥ ¿Y» � ¤ » µ

À ¤È¬ ¿Y» ¸
À ¤ » � À�À�À\Ï�Ë ¹

4.2 Scope and efficiency of the method

4.2.1 Scope With the method described and illus-
trated above, the synthesis problem given in def. 1 can
be solved within the limitations given in sec. 2.3. That
is, we can deal with all (tail, linear, tree recursive)
structures which can be generated by a single recur-
sive function of arbitrary complexity.

The method can easily be extended to structures start-
ing with a nonrecursive term (i.e. a more complex
calling main program) as shown in [12] (see restric-
tion 4 in sec. 2.3). Currently we are working on an ex-
tension of the method to the detection of sets of recur-
sive functions (see restriction 1 in sec. 2.3). A problem
which is probably beyond the scope of our method
is the detection of indirect recursions (i.e. recursive
functions which mutually call themselves).

We believe that the main advantage of our method
is the technique for determining variables and sub-
stitutions. All parts of the initial program which are
not constant over the different hypothetical recursion
points are regarded as variables. In a second stage of
inference, regularities and interdependences are iden-
tified and thereby a hypothesis about the number of
variables, their valuation and the subsitution rule for
the recursive call is obtained. The current restriction
of our method to variables, which are not only passed
through the recursive calls but have to be changed
(in contrast to the start and goal peg in the Tower of
Hanoi function, see table 2; see restriction 5 in sec.
2.3) can be overcome by a simple extension of our al-
gorithm. The same is true for the restriction that all
variables have to occure in each recursive call (cf. the
recursive call for O 1�n in ackermann, see table 2; see

restriction 2 in sec. 2.3). A problem for which we see
no (simple) solution is the dealing with recursive sub-
stitutions (as in the Ackermann function, see table 2;
see restriction 3 in sec. 2.3).

Table 2 Structures, which cannot be folded
G(n,a,b,c) = ; hanoi
g(eq1(n), move(a,b),

append(G(pred(n),a,c,b), move(a,b),
G(pred(n),c,b,a)))

G(x,y) = ; ackermann
g(eq0(x), succ(y),

g(eq0(y), G(pred(x),1),
G(pred(x), G(x,pred(y)))))

Restriction 6 (see sec. 2.3) is inherent to our method-
ology: We want to fold RPSs from initial trees using
it’s structural characteristics only. Without additional
information about number, sequence and names of pa-
rameters or - alternatively - about constant and opera-
tion symbols in the signature it is not possible to sep-
arate substitutions from valuations of variables.

4.2.2 Efficiency Our induction algorithm is a spe-
cial kind of pattern-matcher for detecting regularities
in labelled trees. The number of cycles for construct-
ing a hypothesis is restricted by the size of the initial
tree. Because we allow not only linear but also tree re-
cursive structures the worst case effort is exponential.

The possible number of recursive calls (� ñ) in the
subprogram is restricted by the number of occurences
of � (� �) in the initial tree (see sec. 4.1.1): � ñ 1PSª$« %- ¬ 3 with 0 as number of segments. That is, 0
has to be a whole-numbered divisor. Because in the
worst case, � �W 3 is equivalent to some ú j , the upper
bound for the number of possible numbers of recur-
sive calls is restricted by � ��ñw� F ����� } ��� �® 3 � . The
recurrence condition (see def. 1) requires for each re-
cursion point at least three segments, i.e. 0 ø � ��ñ and
therefore � ñ F°¯ � � .

The number of valid hypotheses for the skeleton (�A± ;
cf. def. 3) is restricted by the maximum number � of
occurences of the root label along a path in the ini-
tial tree. Each path from the root to an � can be par-
titioned in maximally ����� } � ways; therefore, � ± F

�:�/��� } ���M² P�ª . This is also the maximal number for
searching substitutions. Because we allow for interde-
pendent substitutions the effort for checking all possi-
ble hypothesis is quadratical (see sec. 4.2).

Of course, our goal is to get initial trees with the mini-
mal size for which the construction of a plausible fold-
ing hypothesis is possible as input. To detect the cor-
rect CFTG for an (already known) RPS, it is always
enough to analyze its third unfolding.

5 Relations to Other Work

Generally, there is not much work done in the area of
inductive program synthesis during the last years. Our
work is in the tradition of Summers [13] and its exten-
sion to program schemes by Wysotzki [14]. Summers’
synthesis theorem is restricted (1) to a single input pa-
rameter (a ������� -expression) and (2) to linear recur-
sions. For cases where no unique substitution can be
found he introduces local variables (see also [7]). An
extension of [13, 7] based upon the concept of term-
rewriting was presented by Le Blanc [2]. His work is
restricted to uninstantiated examples while we are us-
ing valuated terms.

In this aspect, our work is similar to some ILP ap-
proaches [10] where instantiated examples are used.
Recently, in ILP the old topics and problems of induc-
tive program synthesis has become rediscovered again
[1, 6]. While these authors also work with small sets
of only positive examples, typically they provide their
system with information about the number and order-
ing of parameters of the desired function.

Finally, by using the framework of context-free tree
grammers, our work has some relations to grammati-
cal inference. To our knowledge there is no reported
work about inductive inference of context-free tree-
grammers. The approaches are typically restricted to
regular grammers [3, 8].

6 Conclusion

We presented a generic method for the induction of
recursive program schemes from interpreted and val-
uated terms. In contrast to classical approaches to in-
ductive program synthesis and to ILP approaches we
do not start with input/output examples but with ini-
tial programs which were constructed by planning.
This separation of constructing non-recursive initial
programs and of generalization has some advantages:
We believe that building initial programs and gener-
alization are based on different (cognitive) processes.
Building initial programs from input/output examples
inherently relies on domain knowledge (about data
structures and operators) while generalization over

terms can be performed purely syntactically by means
of pattern matching. If the aim is to construct synthe-
sis algorithms, which are able to deal with a larger
class of recursive structures than the techniques at
hand, it could also be useful to split the synthesis task
into two problems with less complexity.

References
1. D.W. Aha, C.X. Ling, S. Matwin, and S. Lapointe.

Learning singly-recursive relations from small datasets.
In F. Bergadano, L. De Raedt, S. Matwin, and S. Mug-
gleton, editors, IJCAI93WS, pages 47–58. MK, 1993.

2. G. Le Blanc. BMWk revisited: Generalization and
formalization of an algorithm for detecting recursive
relations in term sequences. In F. Bergadano and
L. de Raedt, editors, Machine Learning, Proc. of
ECML-94, pages 183–197, 1994.

3. H. Boström. Theory-guided induction of logic pro-
grams by inference of regular languages. In ICML,
pages 46–53, 1996.

4. B. Courcelle and M. Nivat. The algebraic semantics
of recursive program schemes. In Winkowski, editor,
Math. Foundations of Computer Science, volume 64 of
LNCS, pages 16–30. Springer, 1978.

5. I. Guessarian. Program transformation and algebraic
semantics. Theoretical Comp. Sci., 9:39–65, 1979.

6. P. Idestam-Almquist. Efficient induction of recursive
definitions by structural analysis of saturations. In
L. De Raedt, editor, Proc. 5th ILP, Leuven, pages 77–
94. Dept. of Computer Science, Leuven, 1995.

7. J. P. Jouannaud and Y. Kodratoff. Characterization of
a class of functions synthesized from examples by a
summers like method using a ‘B.M.W.’ matching tech-
nique. In IJCAI, pages 440–447, 1979.

8. T. Knuutila and M. Steinby. The inference of tree
languages from finite samples: an algebraic approach.
Theoretical Computer Science, 129(2):337–367, 1994.

9. Y. Kodratoff and J.Fargues. A sane algorithm for the
synthesis of lisp functions from example problems: The
boyer and moore algorithm. In Proc. of the AISE Meet-
ing Hambourg, pages 169–175, 1978.

10. S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic Pro-
gramming, Special Issue on 10 Years of Logic Program-
ming, 19-20:629–679, 1994.

11. M. R. K. Krishna Rao. A class of Prolog programs in-
ferable from positive data. In S. Arikawa and A. K.
Sharma, editors, Proc. of the 7th ALT, Sydney, Aus-
tralia, pages 273–284, Berlin, 1996. Springer.

12. U. Schmid and F. Wysotzki. Induction of recursive pro-
gram schemes. In Proceedings of the 10th European
Conference on Machine Learning (ECML-98), pages
228–240. Springer, 1998.

13. P. D. Summers. A methodology for LISP program con-
struction from examples. Journal ACM, 24(1):162–
175, 1977.

14. F. Wysotzki. Representation and induction of infinite
concepts and recursive action sequences. In Proceed-
ings of the 8th IJCAI, Karlsruhe, 1983.

