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Abstract

The present paper introduces a new model for teaching randomized learners.
Our new model, though based on the classical teaching dimension model, allows
to study the influence of various parameters such as the learner’s memory size,
its ability to provide or to not provide feedback, and the influence of the order in
which examples are presented. Furthermore, within the new model it is possible
to investigate new aspects of teaching like teaching from positive data only or
teaching with inconsistent teachers.

Furthermore, we provide characterization theorems for teachability from
positive data for both ordinary teachers and inconsistent teachers with and
without feedback.

1. Introduction

A natural teaching model consists of a teacher giving examples to a set of students

with the goal that all students eventually hypothesize a certain target concept. Typ-

ically the admissible students are deterministic learning algorithms and the teaching

performance is measured with respect to the worst case student. In the present paper

we modify this model by assuming a partly randomized student and by measuring

teaching performance in an average case fashion.

Our model is based on the teaching model introduced independently, and in dif-

ferent forms, by Shinohara and Miyano [22], Goldman et al. [13], Goldman and

Kearns [11] as well as Anthony et al. [6]. Here, a teacher has to give enough ex-

amples to uniquely identify the target concept among all concepts in a given class.

Thus, the students are all deterministic consistent learning algorithms.

By varying the set of admissible learners, the influence of different properties of

the learners on the teaching process can be studied. For example, learners with

limited memory should be harder to teach, whereas learners that show their current

hypothesis to the teacher should ease the teaching process.
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Let us consider the concept class of all Boolean functions over {0, 1}n. To teach a

concept to all consistent learning algorithms, the teacher must present all 2n examples.

Teaching a concept to all consistent learners that can memorize less than 2n examples

is impossible; there is always a learner with a consistent, but wrong hypothesis. So

teaching gets indeed harder, but in a rather abrupt way. Moreover, it does not matter

whether or not the teacher knows the learner’s hypothesis, since there are deterministic

learners choosing their next hypothesis independently of their current one.

It seems that the worst case analysis style makes it impossible to investigate the

influence of memory limitations or learner’s feedback. A common remedy for this is

to perform an average case analysis instead (cf., e.g., [5, 7, 16]). In the present paper,

we propose a rather radical approach, i.e., we replace the set of learners by a single

one that is intended to represent an “average learner.”

We achieve this goal by substituting the set of deterministic learners by a single

randomized one. Basically, such a learner picks a hypothesis at random from all

hypotheses consistent with the known examples. Teaching is successful as soon as

the learner hypothesizes the target concept. For ensuring that the learner maintains

this correct hypothesis, we additionally require the learner to be conservative, i.e.,

it can change its hypotheses only on examples that are inconsistent with its current

hypothesis. The complexity of teaching is measured by the expected teaching time (cf.

Section 2).

Next, we explain why this model should work. Intuitively, since at every round

there is a chance to reach the target, the target will eventually be reached even if,

for instance, the randomized learner can only memorize few examples. Moreover, the

ability of the teacher to observe the learner’s current hypothesis should be advanta-

geous, since it enables the teacher to teach an inconsistent example in every round.

Recall that only these examples can cause a hypothesis change. In Section 3, we show

these intuitions to be valid.

Randomized learners show another phenomenon, too: The complexity of the teach-

ing process now does not only depend on the examples, but also on the order in which

they are given.

The randomized teaching model can be regarded as a Markov Decision Process.

Such processes have been studied for several decades and we will make use of some

results from this theory (cf. Subsection 2.3).

Sections 4 and 5 study teaching with and without feedback, respectively. Here,

we focus on computing the optimal teaching times. In Sections 6 to 8 we study

variations of our model: teaching from positive data, inconsistent teachers and another

restriction on teachers. Theorems characterizing teachability within these model are

shown.

Note that there are also other approaches to teaching. They differ from the one

discussed here, since the learner is not given, but constructed to fit to the teacher.

One such model is learning from good examples (cf. Freivalds et al. [10] and Jain
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et al. [15]). Jackson and Tomkins [14] as well as Goldman and Mathias [12] and

Mathias [18] defined models of teacher/learner pairs. In their models, a kind of

adversary disturbing the teaching process is necessary to avoid collusion between the

teacher and the learner. Angluin and Kriķis’ [3, 4] model prevents collusion by giving

incompatible hypothesis spaces to teacher and learner.

2. Preliminaries

2.1. Notations

Set inclusion and proper set inclusion is denoted by “⊆” and “⊂,” respectively.

For numbers a, b with a < b we write [a, b] to denote the set {a, a + 1, . . . , b} or

{a, a + 1, . . . } if b = ∞.

Let X be a finite instance space and X = X × {0, 1} the corresponding set of

examples. A concept class is a set C ⊆ 2X of concepts c ⊆ X. An example (x, v) is

positive if v = 1 and negative if v = 0. We denote the set of all examples for a concept

c by X (c) = {(x, v) v = 1 ⇐⇒ x ∈ c} ⊂ X . An example (x, v) is called consistent

with c iff (x, v) ∈ X (c).

A teaching set for a concept c ∈ C with respect to C is a set S of examples such

that c is the only concept in C consistent with S. The teaching dimension TD(c) is

the size of the smallest teaching set. We set TD(C) := max{TD(c) c ∈ C}.

For any set S, we denote by S∗ the set of all finite lists of elements from S, by Sm

and S≤m the set of all lists with length m and at most length m, respectively. The

operator ◦µ concatenates a list of length at most µ with a single element resulting

in a list of length at most µ: 〈x1, . . . , x`〉 ◦µ 〈y〉 equals 〈x1, . . . , x`, y〉 if ` < µ and

〈x2, . . . , x`, y〉 if ` = µ. We regard ◦∞ as the usual list concatenation. For a list ~x of

examples, we set C(~x) = {c ∈ C ~x is consistent with c}.

We denote by Mn the concept class of monomials over {0, 1}n. We exclude the

empty concept from Mn and can thus identify each monomial with a string from

{0, 1, ∗}n and vice versa. Dn is the set of all 2n concepts over [1, n]. The singleton

classes are defined as Sn = {{x} x ∈ [1, n]}.

2.2. The Teaching Model

The teaching process is divided into rounds. In each round the teacher gives the

learner an example of a target concept. The learner memorizes this example and

computes a new hypothesis based on its last hypothesis and the known examples.

The Learner. In a sense, consistency is a minimum requirement for a learner. We

thus require our learners to be consistent with all examples they know. However, the

hypothesis is chosen at random from all consistent ones.
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The memory of our learners may be limited to µ ≥ 1 examples. If the memory

is full and a new example arrives, the oldest example is erased. In other words, the

memory works like a queue. Setting µ = ∞ models unlimited memory.

The goal of teaching is making the learner to hypothesize the target and to maintain

it. Consistency alone cannot guarantee this behavior if the memory is too small. In

this case, there is more than one consistent hypothesis at every round and the learner

would oscillate between them rather than maintaining a single one. To avoid this,

conservativeness is required, i.e., the learner can change its hypothesis only when

taught an example inconsistent with its current one.

To study the influence of the learners’ feedback to the teacher, we distinguish

between private and public output of the learner. The private output is the result of

the calculation during a round (i.e., new memory content and hypothesis), the public

output is that part of the private one observable by the teacher. So, if the learner gives

feedback, the teacher can observe in every round the complete hypothesis computed

by the learner. If the learner does not give feedback, the teacher can observe nothing.

The following algorithm describes the behavior of the µ-memory learner with/with-

out feedback (short: L+
µ / L−

µ ) during one round of the teaching process.

Input : memory ~x ∈ X≤µ, hypothesis h ∈ C, example z ∈ X .

Private Output : memory ~x′, hypothesis h′.

Public Output : hypothesis h′ / nothing.

1 ~x′ := ~x ◦µ 〈z〉;

2 if z /∈ X (h) then pick h′ uniformly at random from C(~x′);

3 else h′ := h;

For making our results dependent on C alone, rather than on an arbitrary initial

state of the learner, we stipulate a special initial hypothesis, called init. We assume

every example inconsistent with init. Thus, init is left after the first example and

cannot be reached again. Moreover, the initial memory is empty.

The Teacher. A teacher is an algorithm taking initially a given target concept c∗ as

input. Then, in each round, it receives the public output of the learner (if any) and

outputs an example for c∗.

Definition 1. Let C be a concept class and c∗ ∈ C. Let Lσ
µ be a learner (σ ∈

{+,−}) and T be a teacher and (hi)i∈N be the series of random variables for the

hypothesis at round i. The event “teaching success in round t,” denoted by Gt, is

defined as

ht−1 6= c∗ ∧ ∀t′ ≥ t : ht′ = c∗ .
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The success probability of T is Pr
[⋃

t≥1 Gt

]
. A teaching process is successful iff the

success probability equals 1. A successful teaching process is called finite iff there is a t′

such that Pr
[⋃

1≤t≤t′ Gt

]
= 1, otherwise it is called infinite. For a successful teaching

process we define the expected teaching time as E[T, Lσ
µ, c

∗, C] :=
∑

t≥1 t · Pr[Gt].

Definition 2. Let C be a concept class, c∗ ∈ C and Lσ
µ a learner. We call c∗

teachable to Lσ
µ iff there is a successful teacher T . The optimal teaching time for c∗

is

Eσ
µ(c∗) := inf

T
E[T, Lσ

µ, c
∗, C]

and the optimal teaching time for C is denoted by Eσ
µ(C) := maxc∈C Eσ

µ(c).

2.3. Markov Decision Processes

For an extensive treatment of this topic see Puterman [20] and Bertsekas [8]. A

Markov Decision Process (MDP) is a probabilistic system whose state transitions can

be influenced during the process by actions which incur costs. Formally, an MDP

consists of a finite set S of states, an initial state s0 ∈ S , a finite set A of actions, a

function cost : S ×A → R, and a function p : S ×A×S → [0, 1]; cost(s, a) is the cost

incurred by action a in state s; p(s, a, s′) is the probability for the MDP to change

from state s to s′ under action a.

In the total cost infinite horizon setting, the goal is to choose actions such that the

expected total cost, when the MDP runs forever, is minimal. This makes sense only

if there is a costless absorbing state s∗ ∈ S . In the finite horizon setting the MDP is

only run for finitely many rounds.

The actions chosen at each point in time are described by a policy. This is a

function depending on the observed history of the MDP and the current state. A

basic result says that there is a minimum-cost policy that is stationary, i.e., that

depends only on the current state. A stationary policy π : S → A defines a Markov

chain over S and for all s ∈ S an expected time H(s) to reach s∗ from s. Such a

policy is optimal iff for all s ∈ S :

π(s) ∈ argmin
a∈A

(
cost(s, a) +

∑
s′∈S

p(s, a, s′) ·H(s′)

)
.

Finding optimal policies can be phrased as a linear programming problem and can

thus be done in polynomial time in the representation size of the MDP.

3. Varying Memory Size and Feedback

As a simple example, we calculate the optimal teaching times for Dn. To the

learner L+
µ (1 ≤ µ ≤ n) the teacher can give an example inconsistent with the current

hypothesis in each round. For all such examples, there are 2n−µ hypotheses consis-

tent with the µ examples in the learner’s memory and learner chooses one of them.
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Therefore the probability of choosing the target concept is 2−(n−µ). Thus, considering

that in the first µ− 1 rounds the memory contains less then µ examples, E+
µ (Dn) is,

for constant µ, asymptotically equal to 2n−µ.

Clearly, teaching becomes faster with growing µ. Moreover the teaching speed in-

creases continuously with µ and not abruptly as in the classical deterministic model.

In particular, teaching is possible even with the smallest memory size (µ = 1), al-

though it takes very long (2n−1 rounds).

Teaching is more difficult when feedback is unavailable. In this situation the teacher

can merely guess examples hoping that they are inconsistent with the current hypoth-

esis. Roughly speaking, when teaching Dn, the teacher needs two guesses on average

to find such an example. Hence, the expected teaching time E−
µ is about two times

E+
µ . Thus feedback doubles the teaching speed for Dn.

Fact 1. For all C and µ ∈ [1,∞] all c∗ ∈ C and σ ∈ {+,−}:
(1) E+

µ (c∗) ≤ E−
µ (c∗), (2) Eσ

∞(c∗) ≤ Eσ
µ+1(c

∗) ≤ Eσ
µ(c∗).

Proper inequality holds for the concepts in Dn.

Next, we relate the deterministic model (in terms of the teaching dimension) to the

randomized model (in terms of the expected teaching time). Essentially, the teaching

dimension can be used to lower bound the teaching time.

Lemma 1. Let C be a class and let c∗ ∈ C be a target. For all µ ∈ [1,TD(c∗)],

E−
µ (c∗) ≥ E+

µ (c∗) ≥ µ(µ− 1)

2TD(c∗)
+ TD(c∗) + 1− µ,

and for all µ > TD(c∗), E−
µ (c∗) ≥ E+

µ (c∗) ≥ TD(c∗)/2.

Proof. Let k = TD(c∗) and µ ∈ [1,TD(c∗)]. We show the statement for E+
µ .

Claim: For i examples z0, . . . , zi−1 ∈ X (c∗): |C(z0, . . . , zi−1)| ≥ k + 1− i.

Proof : Suppose |C(z0, . . . , zi−1)| ≤ k − i. Then c∗ can be specified with k − i − 1

examples with respect to C(z0, . . . , zi−1) (each example rules out at least one concept).

Thus, c∗ can be specified with z0, . . . , zi−1 plus k−i−1 other examples, which amounts

to k − 1 examples. This contradicts TD(c∗) = k. (Claim)

Using the claim we upper bound the probabilities for reaching the target in round

i = 0, . . . , µ − 2. After round i the learner knows i + 1 examples and therefore can

choose between at least k− i consistent hypotheses (see Claim). Thus, the probability

for reaching c∗ in round i is at most pi := 1
k−i

. Beginning with round µ−1, the learner

knows µ examples and has in each following round i ≥ µ− 1 a probability of at most

pi = pµ−1 = 1/(k + 1− µ) of reaching c∗.

No teaching process can be faster than one with the probabilities pi described

above. The expectation of such a process is

µ−2∑
i=0

(i + 1) · pi ·
i−1∏
j=0

(1− pj) +
∞∑

i=µ−1

(i + 1) · pi ·
i−1∏
j=0

(1− pj) . (1)
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We start with the second sum in (1). Since
∏µ−2

j=0 (1 − pj) = k−µ+1
k

the product∏i−1
j=0(1− pj) in the this sum equals k−µ+1

k
· (1− pµ−1)

i−µ+1. So, this sum is

∞∑
i=µ−1

(i + 1) · pµ−1 · k−µ+1
k

· (1− pµ−1)
i−µ+1

= k−µ+1
k

·
∞∑
i=0

(µ + i) · pµ−1 · (1− pµ−1)
i

= k−µ+1
k

·

(
µ− 1 +

∞∑
i=0

(i + 1) · pµ−1 · (1− pµ−1)
i

)
.

The sum appearing in the last line is the expectation of the first success in a Bernoulli

experiment with probability pµ−1 and thus equals 1/pµ−1 = k−µ + 1. For the second

sum in (1) we therefore get k−µ+1
k

· (µ− 1 + k − µ + 1) = k − µ + 1 .

Calculating the first sum in (1) yields

µ−2∑
i=0

(i + 1) · 1
k−i

·
i−1∏
j=0

k−j−1
k−j

=

µ−2∑
i=0

(i + 1) · 1
k−i

· k−i
k

=
µ(µ− 1)

2k
.

Putting it together we obtain µ(µ−1)
2k

+ k + 1− µ as the value of (1).

For µ > TD(c∗) the teaching process described above takes at most TD(c∗) rounds.

The lower bound is therefore the same as for µ = TD(c∗).

4. Learners with Feedback

4.1. Learners with 1-Memory

A teaching process involving L+
1 can be modeled as an MDP with S = C ∪ {init},

A = X (c∗), cost(h, z) = 1 for h 6= c∗ and cost(c∗, z) = 0. Furthermore, for h 6=
c∗, p(h, z, h′) = 1/|C(z)| if z ∈ X (h′) \ X (h) and p(h, z, h′) = 0 otherwise; finally

p(c∗, z, c∗) = 1. The initial state is init and the state c∗ is costless and absorbing. The

memory does not need to be part of the state, since the next hypothesis only depends

on the newly given example which is modeled as an action.

An example z ∈ X (h) does not change the learner’s state h and is therefore useless.

An optimal teacher refrains from teaching such examples and thus we can derive the

following criterion by using the results from Subsection 2.3.

Lemma 2. Let C be a class over X and c∗ be a target. A teacher T : C ∪ {init} →
X (c∗) with expectations H : C ∪ {init} → R is optimal iff for all h ∈ C ∪ {init}:

T (h) ∈ argmin
z∈X (c∗)
z /∈X (h)

1 +
1

|C(z)|
∑

h′∈C(z)

H(h′)

 .
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Input : Target c∗ ∈Mn represented by γ1 . . . γn ∈ {0, 1, ∗}n;
Hypothesis h ∈Mn represented by η1 . . . ηn ∈ {0, 1, ∗}n.

Output : Example z ∈ X (c∗).

1 if h ⊃ c∗ output (χ1 . . . χn, 0) with χi =


γi if ηi = γi 6= ∗,
1− γi if i = min{j ηj = ∗ 6= γj},
0 otherwise;

2 else output (x, 1) with arbitrary x ∈ c∗.

Figure 1: Optimal teacher for monomials and the learner L+
1 .

This criterion can be used to prove optimality for teaching algorithms.

To denote subsets of the monomials we use notations like 1k{0, 1}n−k for the set

{1ky y ∈ {0, 1}n−k}.

Fact 2. The teacher in Fig. 1 is an optimal teacher for Mn and the learner L+
1 .

Proof. Let without loss of generality c = 1k∗n−k be the target concept (k ≥ 1).

The definition of T is based on a partition of all hypotheses into two groups. The

first group contains all h ⊃ c, the second group all h 6⊃ c and init . Within a group,

all hypotheses are assigned the example in the same way and have the same expected

teaching time. T (init) := (1n, 1); for h ⊃ c, T (h) := (01n−1, 0); and for h 6⊃ c, let

T (h) be an arbitrary positive example inconsistent with h. For the expected times,

let

E⊃ :=
(3n − 2n)(2n + 2k)− 2n+k−1

3n − 2n + 2k−1

and

E6⊃ :=
(3n − 2n)(2n + 2k)− 2n+k−1 + 2n+1 − 3n

3n − 2n + 2k−1
.

Now set E(h) := E⊃ for all h ⊃ c and E(h) := E6⊃ for all h 6⊃ c including init.

We have to prove two points: (1) E describes the teaching times for teacher T ;

(2) the criterion of Lemma 2 holds. To this end, we shall introduce the notion ⊃-

hypothesis and 6⊃-hypothesis for h ⊃ c and h 6⊃ c respectively.

Claim A: Let (x, 0) be consistent with c, i.e., x /∈ c. Then (1) there are 3n − 2n

hypotheses consistent with (x, 0); (2) x is of the form y{0, 1}n−k with y containing

` ≥ 1 zeros, and (3) the number of ⊃-hypotheses consistent with (x, 0) is exactly

2k − 2k−` − 1.

Proof. Without loss of generality let x = 0`1k−`∗n−k. (1) There are 2n concepts

containing x, hence there are 3n − 2n concepts consistent with (x, 0).

(2) If y would contain no zeros, it would be of the form 1k{0, 1}n−k and therefore

in c.
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(3) A concept d contains c iff d is of the form {1, ∗}k∗n−k. In addition d is consistent

with (x, 0) (x /∈ d) iff d is of the form z{1, ∗}k−`∗n−k with z ∈ {1, ∗}` containing at

least one “1”. There are exactly (2` − 1) · 2k−` = 2k − 2k−` concepts satisfying the

latter condition. Since c does not count as ⊃-hypothesis, the sought number is one

less, as claimed. (Claim A)

Claim B: For every positive example there are 2n consistent hypotheses of which

2k − 1 are ⊃-hypotheses.

Proof. For every instance x ∈ 1k{0, 1}n−k there are exactly 2n concepts contain-

ing x. The concepts that result from substituting 1’s by ∗ in c are the only concepts

containing x and c. There are 2k − 1 such concepts (c itself is not a ⊃-hypothesis).

This proves Claim B. (Claim B)

We now prove point (1). We have to show that for each h the linear equation

relating the teaching times as defined by E actually hold. First, let h ⊃ c. Then T

gives (01n−1, 0). Considering Claim A, h’s expected teaching time is

E(h) = 1 +
2k−1 − 1

3n − 2n
· E⊃ +

3n − 2n − 2k−1

3n − 2n
· E6⊃ . (2)

After plugging in E⊃ and E6⊃, a tedious calculation shows that indeed E(h) = E⊃.

Second, let h 6⊃ c. Then T gives a positive example and according to Claim B, h’s

equation is

E(h) = 1 +
2k − 1

2n
· E⊃ +

2n − 2k

2n
· E6⊃ . (3)

Again, a calculation shows that E(h) = E6⊃ actually holds. We have therefore proved

that E specifies the expected times for all hypotheses.

To prove point (2) we have to show that the value 1 + 1
|C(z)|

∑
h′∈C(z) E(h′) is not

lower than E(h) for any z ∈ X (c). Let h ⊃ c. From Claim A (3) we know that the

example T (h) minimizes the number of consistent ⊃-hypotheses among all examples

z ∈ X (c) (which are all negative because of h ⊃ c). Changing T (h) can thus only

increase the probability for a transition to a ⊃-hypothesis (or leave it unchanged).

But since E⊃ > E 6⊃ such a probability increase would be no improvement.

Let h 6⊃ c. Changing T (h) to a different positive example will not change the

probabilities (Claim B). Assume that T (h) is changed to a negative example (x, 0).

Then according to Claim A(1–3) we are lead to the equation

E(h) = 1 +
2k − 2k−` − 1

3n − 2n
· E⊃ +

3n − 2n − 2k + 2k−`

3n − 2n
· E6⊃ .

The right hand side becomes minimal for ` = 1, since this results in the coefficient of

E⊃ being minimal and also E⊃ > E6⊃. But this minimal right hand side is identical

to the ride hand side of equation (2) which has been shown to equal E⊃. The original

value E(h) = E6⊃ is therefore still better.



10 Frank J. Balbach and Thomas Zeugmann

The teacher from Fig. 1 can be computed in linear time. It outputs a positive

example whenever possible (i.e., when h 6⊃ c∗). Since there are 2n hypotheses consis-

tent with a positive example and 3n − 2n consistent with a negative one, this means

following a greedy strategy minimizing the number of consistent hypotheses for the

learner to choose from, thus maximizing the probability for reaching c∗ in the next

step.

Such a greedy strategy seems sensible and is provably optimal in the case of Mn.

However, there are classes where no greedy teacher is optimal.

Definition 3. Let C be a class over X and c∗ ∈ C. A stationary teacher T : C ∪
{init} → X for c∗ is called greedy iff for all h ∈ C: T (h) ∈ argminz∈X (c∗)

z /∈C(h)

|C(z)|.

Fact 3. There is a class C and target c0 such that no greedy teacher is optimal.

Proof. Figure 2 displays such a concept class C and target c0. T ∗ with teaching

times H∗ is an optimal teacher and T g with Hg is the only greedy teacher.

h x1 x2 x3 x4 x5 T ∗(h) H∗(h) T g(h) Hg(h)
init – – – – – x1 176/35=5.0285. . . x1 2536/504=5.0317. . .
c0 1 1 1 1 1 – 0 – 0
c1 0 0 0 0 1 x1 176/35 x1 2536/504
c2 0 0 0 1 1 x1 176/35 x1 2536/504
c3 0 0 1 0 1 x1 176/35 x1 2536/504
c4 0 0 1 1 1 x1 176/35 x1 2536/504
c5 0 1 0 1 1 x1 176/35 x1 2536/504
c6 0 1 1 0 1 x1 176/35 x1 2536/504
c7 0 1 1 1 1 x1 176/35 x1 2536/504
c8 1 0 0 1 0 x2 186/35 x2 2680/504
c9 1 1 1 0 0 x5 189/35 x4 2725/504
c10 1 1 1 1 0 x5 189/35 x5 2723/504

Figure 2: Class with an optimal teacher T ∗ and a greedy teacher T g that is not
optimal. Both teachers teach c0 to the learner L+

1 .

We now compare E+
1 with other dimensions. The comparison of E+

1 with the

number MQ of membership queries (see Angluin [1]) is interesting because MQ and

E+
1 are both lower bounded by the teaching dimension.

Fact 4.

(1) For all C and c∗ ∈ C: E+
1 (c∗) ≥ TD(c∗).

(2) There is no function of TD upper bounding E+
1 (c).

(3) There is no function of E+
1 upper bounding MQ.

(4) There is a concept class C with E+
1 (C) > MQ(C).

(5) For all concept classes C, E+
1 (C) ≤ 2MQ(C).
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Proof. (1) This follows from Lemma 1. (2) Let Cn = {c ⊆ [1, n] |c| = 2}. Then

TD(Cn) = 2, but E+
1 (Cn) = n−1 because the optimal teacher gives positive examples

all the time and there are n − 1 hypotheses consistent to such an example. (3)

E+
1 (c) = 1 for all c ∈ Sn, but MQ(Sn) = n− 1. (4) MQ(Dn) = n and E+

1 (D) = 2n−1.

(5) It is known (see e.g., Angluin [2]) that log |C| ≤ MQ(C) for all classes C. Also,

E+
1 (C) ≤ |C| because in every step the learner cannot choose from more than |C|

hypotheses. Combining both inequalities yields the fact.

Roughly speaking, teaching L+
1 can take arbitrarily longer than teaching in the

classical model, but is still incomparable with membership query learning.

4.2. Learners with ∞-Memory

A straightforward MDP for teaching c∗ to L+
∞ has states S = (C ∪ {init}) ×

X (c∗)≤|X|. The number of states can be reduced because two states (h,m) and (h,m′)

with C(m) = C(m′) are equivalent from a teacher’s perspective, but in general the size

of the resulting MDP will not be polynomial in the size of the matrix representation of

C. Therefore, optimal teachers cannot be computed efficiently by the known general

MDP algorithms.

A similar criterion as Lemma 2 can be stated for the L+
∞ learner, too, and used

to prove optimality of algorithms. We mention, without the technical proof, that a

slight modification of the algorithm in Fig. 1 is optimal for L+
∞ and Mn.

That computing E+
∞ is already a hard problem can be seen as follows. First, there

is always a teacher that needs at most TD(c∗) rounds by giving a minimal teaching set,

hence E+
∞(c∗) ≤ TD(c∗). Second, it follows from Lemma 1 that E+

∞(c∗) ≥ TD(c∗)/2.

This means that every algorithm computing E+
∞(c∗) also computes a factor 2 approx-

imation of the teaching dimension.

As it has often been noted [22, 6, 11], the problem of computing the teaching

dimension is essentially equivalent to the SET-COVER (or HITTING-SET) problem which

is a difficult approximation problem. Raz and Safra [21] have shown that there is no

polynomial time constant-factor approximation (unless P = NP). Moreover, Feige [9]

proved that SET-COVER cannot be approximated better than within a logarithmic

factor (unless NP ⊆ DTime(nlog log n)).

Corollary 5. Unless NP ⊆ DTime(nlog log n), computing E+
∞ is NP-hard and

cannot be approximated with a factor of (1− ε) log |C| for any ε > 0.

Fact 6. Let C be a concept class and c∗ ∈ C a target. Then there is a successful

teacher for the learner L+
∞ halting after at most |X| rounds that is also optimal.

Proof. Every given example is memorized forever. Hence, an optimal teacher never

presents the same example twice and after at most |X| rounds there is only one

consistent hypothesis for the learner to choose from, namely c∗.
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As there is always a successful teacher giving at most TD(c∗) examples, one could

conjecture that there is also an optimal teacher teaching finitely within at most TD(c∗)

rounds. But this not the case.

Fact 7. There is a concept class C and a concept c∗ ∈ C such that all teachers

teaching c∗ to the learner L+
∞ finitely within TD(c∗) rounds are suboptimal.

Proof. The concept class C and the concept c∗ are defined by Figure 3. The teaching

dimension of c∗ is three and the (unique) smallest teaching set is

S := {(x1, 1), (x2, 1), (x3, 1)} .

x1 x2 x3 x4 x5 x6

init: – – – – – –
c∗: 1 1 1 1 1 1

1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1
1 1 0 0 1 0
1 0 1 0 1 0
0 1 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1
0 1 1 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0

Figure 3: Concept class and target whose optimal L+
∞-teacher is not finite after

TD(c∗) = 3 rounds. The optimal teacher starts with x4 and is finite after 4 rounds
(see Fact 7).

We first prove that every teacher that is finite within three rounds needs expected

2.6 rounds.

Let T be such a teacher. In order to be finite after three rounds, T must teach S

and hence start with x1, x2, or x3. For symmetry reasons we assume without loss of

generality that T starts with x1. The probability for the learner to reach c∗ directly

is 1/9. With probability 1/2 the learner reaches a hypothesis containing x2, but not

x3; and with equal probability a hypothesis containing x3, but not x2. As both cases

are symmetric, we assume the first one without loss of generality. The teacher T then

goes on teaching (x3, 1) which is the only inconsistent example in S.

The probability of reaching c∗ is 1/5, since there are five hypotheses consistent with

(x1, 1), (x3, 1). With probability 4/5 the learner reaches a hypothesis not containing

x2. Finally the teacher T gives (x2, 1) which leads to c∗ with certainty. Altogether

the expected number of rounds is

1

9
· 1 +

8

9
· 1

5
· 2 +

8

9
· 4

5
· 3 = 2.6 .
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On the other hand, let T ′ be the teacher starting with (x4, 1) and then teaching

in each round an inconsistent example from S. In the first round, the probability

for an immediate transition to c∗ is 1/4. In the second, third, and fourth round the

probabilities are 1/3, 1/2, and 1, respectively, since each example rules out exactly

one hypothesis. Thus the expected number of rounds for T ′ is

1

4
· 1 +

3

4
· 1

3
· 2 +

3

4
· 2

3
· 1

2
· 3 +

3

4
· 2

3
· 1

2
· 4 = 2.5 .

Therefore T cannot be optimal.

5. Learners without Feedback

The problem of finding the optimal cost in an MDP whose states cannot be ob-

served is much harder than in an observable MDP. In general, it is not even decidable

whether the optimal cost is below a given threshold (see Madani, Hanks, and Con-

don [17]). We know of no obvious algorithm to decide this problem in the special case

of teaching 1-memory learners.

Teaching ∞-memory learners can be seen as a finite horizon unobservable MDP

since any reasonable teacher presents a different example in every round and thus can

stop after at most |X| rounds. The decision problem for finite horizon unobservable

MDPs is NP-complete (Mundhenk et al. [19]) and the inapproximability result of

Corollary 5 holds for the feedbackless case as well, since TD(c∗)/2 ≤ E−
∞(c∗) ≤

TD(c∗).

6. Teaching Positive Examples Only

The learnability of classes from positive data is a typical question in learning theory.

Similar restrictions on the data can be posed in teaching models, too. In contrast to

teaching with positive and negative data, where all classes are teachable, we now get

classes that are not teachable. More precisely we have the following characterization

for teachability with positive data.

Theorem 8. Let C be a concept class and c∗ ∈ C a target concept. Then for all

learners Lσ
µ with µ ∈ [1,∞], σ ∈ {+,−}: The concept c∗ is teachable from positive

data iff there is no c ∈ C with c ⊃ c∗.

Proof. For the if part, assume there is no proper superset of c∗ in the class. Then

the set S+ of all positive examples for c∗ is a teaching set for c∗. Learners with ∞-

memory can be taught by presenting S+, since they remember all examples and are

always consistent. Learners with smaller memory can be taught by infinitely repeating

S+ in any order.

For the only-if part, assume there is a c ∈ C with c ⊃ c∗. Let z = (x, 1) ∈ X (c∗) be

the first example taught. Then c ∈ C(z) and therefore there is a positive probability
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that the randomized learner picks c as first hypothesis. In this case, it is impossible

to trigger any further mind changes by giving positive examples. Thus, with positive

probability the number of examples is infinite, leading to an infinite expected number

of examples.

Theorem 8 also characterizes teaching with positive data in the classical teaching

dimension model. If there is no c ⊃ c∗, the set of all positive examples of c∗ is a

teaching set, but if there is a c ⊃ c∗, then every set of positive examples for c∗ is also

consistent with c.

We have seen that teachability with positive data has a simple characterization.

Things become a little more complicated when combined with inconsistent teachers

discussed in the next section.

7. Inconsistent Teachers

Until now, teachers were required to always tell the truth, i.e., to provide examples

z ∈ X (c∗). In reality it might sometimes be worthwhile to teach something which is,

strictly speaking, not fully correct, but nevertheless helpful for the students. For ex-

ample, human teachers sometimes oversimplify to give a clearer, yet slightly incorrect,

view on the subject matter.

To model this we allow the teacher to present any example from X × {0, 1}, even

inconsistent ones. One can see this as an analog to inconsistent learners in learning

theory, as these learners also contradict something they actually know.

Clearly, teaching learners with ∞-memory becomes difficult after giving an incon-

sistent example because the target is not consistent with the memory contents any

more. Even worse, there might be no consistent hypothesis available. However, the

model can be adapted to this, e.g., by stipulating that a memorized example (x, v)

can be “erased” by the example (x, 1 − v), but here we will not pursue this further.

We restrict ourselves to consider only the 1-memory learner.

We first look at inconsistent teachers in combination with teaching from positive

data. In this case, for a target concept c, the only inconsistent examples allowed

are of the form (x, 1), where x /∈ c. The class C1 in Figure 4 shows that, when

only positive data are allowed, inconsistent teachers can teach concepts to L+
1 that

consistent teachers cannot. First, the teacher gives (x1, 1). If the learner guesses c∗,

we are done. Otherwise, the learner must return c1 and the teacher gives (x3, 1) which

is inconsistent with c∗. Now, the learner has to guess c2. Next, (x1, 1) is again given

and the process is iterated until the learner returns c∗.

However, consistent teachers with both positive and negative data are more pow-

erful as we show next.

Fact 9. There is a class that cannot be taught to L+
1 by an inconsistent teacher

from positive data.
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C1: x1 x2 x3 T
init: – – – x1

c∗: 1 0 0 –
c1: 1 1 0 x3

c2: 0 0 1 x1

C2: x1 x2 x3

init: – – –
c∗: 0 1 0
c1: 1 1 0
c2: 0 1 1

Figure 4: The class C1 can be taught to L+
1 by the inconsistent positive-data teacher

T , but cannot be taught by a consistent positive-data teacher (Theorem 8). The class
C2 cannot be taught by an inconsistent positive-data teacher (Fact 9).

Proof. We show that C2 from Figure 4 is such a class. Let T be a teacher for L+
1

mapping C2 ∪ {init} to {x1, x2, x3} × {1}. No matter what T (init) is, the probability

that the learner switches to c1 or c2 is positive. If the learner guesses c1 (the c2

case is analog), the teacher must teach (x3, 1), since all other examples are consistent

with the current hypothesis c1. But the only hypothesis consistent with (x3, 1) is c2.

Analogously, T must give (x1, 1) when the learner is in c2, leading again to c1. So,

the probability that L+
1 never reaches c∗ is positive.

Classes teachable by inconsistent teachers from positive data can be characterized.

We associate a directed graph with the class C. Define the graph G(C) = (V, A) by

V = C and A = {(c, d) d\c 6= ∅}, i.e., there is an arc from c to d iff there is a positive

example inconsistent with c but consistent with d.

Theorem 10. Let C be a concept class and G(C) = (V, A) its associated graph.

For the learner L+
1 a concept c∗ ∈ C is teachable by an inconsistent teacher from

positive data iff for all c ∈ V there is a path to c∗ in G(C).

Proof. For the if part we have to describe a teacher. For each c let c′ be a neighbor

of c on a shortest path to c∗. Let T be such that for all c, T (c) is consistent with c′,

but not with c. There is always such an example due to the definition of G(C) and

the reachability assumption.

Denote by n = |C| and by p = 1/n the minimum probability for reaching c′ when

the learner receives T (c) in state c. If the learner is in any state c, there is a probability

of at least pn > 0 for reaching c∗ within the next n rounds by traversing the shortest

path from c to c∗. Therefore, no matter in which state the learner is, the expected

number of n-round blocks until reaching the target is at most 1/pn. Thus, the expected

time to reach the target from any state, in particular from init, is at most n/pn < ∞.

For the only-if part, let T be a teacher for c∗ ∈ C. Suppose there is a state c with

no path to c∗. Then c ⊃ c∗ (otherwise c∗ \ c 6= ∅ and (c, c∗) ∈ A). At some time, T

must teach an example consistent with c∗, which is then also consistent with c. Hence,

the probability for reaching c during the teaching process is positive. The graph G(C)

contains all transitions that are possible between the hypotheses by positive examples.

Since c∗ is not reachable from c in G(C) there is no sequence of positive examples that

can trigger hypothesis changes from c to c∗. Thus, the expected teaching time from
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c is infinite and hence the expected teaching time altogether. A contradiction to c∗

being teachable by T .

The criterion in Theorem 10 requires to check the reachability of a certain node

from all other nodes in a directed graph. This problem is related to the REACHABILITY

problem and also complete for the complexity class NL.

While inconsistent teachers can teach classes to 1-memory learners with feedback

from positive data that consistent teachers cannot teach to L+
1 (cf. Figure 4), the

situation changes if no feedback is available. That is, 1-memory learners without

feedback can be taught the same classes by inconsistent teachers as by consistent

teachers (cf. Theorem 8 and Theorem 11 below).

Theorem 11. For the learner L−
1 a concept c∗ ∈ C is teachable by an inconsistent

teacher from positive data iff there is no c ∈ C with c ⊃ c∗.

Proof. The if-direction follows from Theorem 8.

For the only-if part suppose that c∗ is teachable by a teacher T and there is a c

with c ⊃ c∗. Let (zi)i∈N be the series of examples taught.

Claim: T teaches inconsistent examples only finitely often.

Proof : Suppose T teaches an example (x, 1) /∈ X (c∗) infinitely often. Without

loss of generality we assume that there is a concept containing x (otherwise (x, 1)

would be useless and a teacher T ′ never giving this example would be successful, too).

Whenever (x, 1) is taught, the learner will not be in state c∗ afterwards, i.e., there

are infinitely many t such that Pr[ht 6= c∗] = 1. It follows that Pr[Gt] = Pr[ht−1 6=
c∗ ∧ ∀t′ ≥ t : ht = c∗] = 0 for all t ≥ 1. This means that the success probability is

zero, a contradiction. This proves the claim. (Claim)

From the claim it follows that there is a t′ such that zt ∈ X (c∗) for all t ≥ t′. We

now show that Pr[ht′ = c∗] < 1, i.e., it is uncertain whether the learner is in the target

state. Suppose that Pr[ht′ = c∗] = 1. Let t ≤ t′ be minimal with Pr[ht = c∗] = 1. If

zt ∈ X (c∗) then zt is consistent with c, too, and thus Pr[ht = c∗] ≤ 1/2. If zt /∈ X (c∗),

then Pr[ht = c∗] = 0, a contradiction.

Hence, the probability that the learner is not in the target state at time t′ is

positive. After t′ only consistent examples are given. So there is a probability of at

least 1/|C| that the learner switches to c on the next example. As c ⊃ c∗ the target

cannot be reached by positive examples any more. Thus, the success probability is

less than one, a contradiction. This proves the only-if part.

8. Mind Change Forcing Teachers

In this section we deal again with consistent teachers. When teaching L+
1 it is

useless to provide an example consistent with the current hypothesis, since it does

not change the state of L+
1 . In this situation the optimal teacher is necessarily “mind
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change forcing.” But if we look at L+
µ (µ > 1), it is not obvious that an optimal

teacher has to force the learner to change its mind in every round until successful

learning. While we could prove that for L+
∞ an optimal teacher can be made “mind

change forcing,” it remains open whether a similar statement is true for L+
µ with

1 < µ < ∞.

Theorem 12. Let C be a class and c∗ be a target. Then there is an optimal teacher

for L+
∞ never giving an example consistent with the current hypothesis.

Proof. Let T be a successful teacher that teaches a consistent example z1 in a

state (h,m) that is reached with positive probability and is not a target state. Then

z1 ∈ X (h)∩X (c∗) and h 6= c∗. We show that T is not optimal for this state and hence

for the initial state. We do this by showing that there is another teacher T ′ giving an

inconsistent example and being not worse than T .

After receiving z1, the learner reaches (h,m ∪ {z1}) due to the conservativeness

property. Then T teaches z1 = T (h,m ∪ {z1}) leading to (h,m ∪ {z1, z2}) and so

on. Since h 6= c∗, T must eventually teach an example zk /∈ C(h). After teaching

z1, . . . , zk the learner has either reached the target or assumes one of the hypotheses

in C(m ∪ {z1, . . . , zk}) \ {c∗} with equal probability p := 1/|C(m ∪ {z1, . . . , zk})| − 1.

For the expected teaching time we have

H(h,m) = k +
∑

h′∈C(m∪{z1,...,zk})

p ·H(h′, m ∪ {z1, . . . , zk})

The teacher T ′ teaches the same examples z1, . . . , zk, but in different order, namely

zk, z1, . . . , zk−1, that is with the inconsistent example first. Formally: T ′(h,m) = zk

and furthermore for all i = 0, . . . , k − 1 and for all h′ ∈ C(m ∪ {zk, z1, . . . , zi}):
T ′(h′, m ∪ {zk, z1, . . . , zi}) = zi+1.

Beginning in (h,m) and being taught by T ′ for k rounds, the learner has either

arrived at the target or assumes one of the hypotheses in C(m ∪ {z1, . . . , zk}) \ {c∗}.
Furthermore all these hypotheses are equally likely. This follows inductively from

the fact that whenever a hypothesis change is triggered, say after zk, z1 . . . , zi, all hy-

potheses from C(m∪{zk, z1, . . . , zi}), and in particular all hypotheses from the subset

C(m ∪ {z1, . . . , zk}), are equally likely; no hypothesis is preferred. The probability

p′ for each of these hypotheses is at most 1/(|C(m ∪ {z1, . . . , zk})| − 1) = p. The

expected teaching time under T ′ is

H ′(h,m) ≤ k +
∑

h′∈C(m∪{z1,...,zk})

p′ ·H ′(h′, m ∪ {z1, . . . , zk})

= k +
∑

h′∈C(m∪{z1,...,zk})

p′ ·H(h′, m ∪ {z1, . . . , zk}) ≤ H(h,m)

where the equality in the second line holds because T and T ′ are identical in the states

(h′, m ∪ {z1, . . . , zk}).
We have shown that T ′ is not worse than T and gives an inconsistent example

in (h,m). By repeating the above argument the states in which T gives consistent

examples can be moved to the “end” where they finally disappear.
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9. Conclusions and Future Work

We have presented a model for teaching randomized learners based on the classical

teaching dimension model. In our model, teachability depends, in a qualitatively

plausible way, on the learner’s memory size, on its ability to give feedback, and on

the order of the examples taught. The model also allows to study learning theory

like questions such as teaching from positive data only or teaching by inconsistent

teachers. Randomization also gives more flexibility in defining the learner’s behavior

by using certain a priori probability distributions over the hypotheses. So, one can

define and study learners preferring simple hypotheses.
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