
TCS -TR-A-07-30

TCS Technical Report

Fast Generation of Very Large-Scale Frequent Itemsets

Using a Compact Graph-Based Representation

by

Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura

Division of Computer Science

Report Series A

October 10, 2007

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682

Fast Generation of Very Large-Scale Frequent Itemsets Using a Compact

Graph-Based Representation

Shin-ichi Minato
Division of Computer Science

Hokkaido University
Sapporo 060-0814, Japan

Takeaki Uno
National Institute of Informatics

Tokyo 101–8430, Japan.

Hiroki Arimura
Division of Computer Science

Hokkaido University
Sapporo 060-0814, Japan

October 10, 2007

(Abstract) Frequent itemset mining is one of the
fundamental techniques for data mining and knowl-
edge discovery. In the last decade, a number of ef-
ficient algorithms for frequent itemset mining have
been presented, but most of them focused on just
enumerating the itemsets which satisfy the given
conditions, and it was a different matter how to
store and index the mining result for efficient data
analysis.
In this paper, we propose a fast algorithm for gener-
ating very large-scale all/closed/maximal frequent
itemsets using Zero-suppressed BDDs (ZBDDs), a
compact graph-based data structure. Our method,
“LCM over ZBDDs,” is based on one of the most ef-
ficient state-of-the-art algorithms proposed before,
and not only enumerating/listing the itemsets but
also generating a compact output data structure
on the main memory. The result can efficiently
be post-processed by using algebraic ZBDD op-
erations. The original LCM is known as an out-
put linear time algorithm, but our new method re-
quires a sub-linear time to the number of frequent
patterns when the ZBDD-based data compression
works well. Our method may greatly accelerate
the data mining process and will lead a new style
of on-memory processing for knowledge discovery
problems.

1 Introduction

Discovering useful knowledge from large-scale
databases has attracted a considerable attention
during the last decade. Frequent itemset mining

is one of the fundamental data mining problems.
Since the pioneering paper by Agrawal et al. [1] var-
ious algorithms have been proposed to solve the fre-
quent pattern mining problem (cf., e.g., [3, 5, 16].
Among those state-of-the-art algorithms, LCM
(Linear time Closed itemset Miner)[15, 13, 14] by
Uno et al. has a feature of the theoretical bound
as output linear time. Their open source code[12]
is known as one of the fastest implementation of
frequent itemset mining program.

LCM and most of the other itemset mining al-
gorithms focus on just enumerating or listing the
itemsets which satisfy the given conditions, and it
was a different matter how to store and index the
result of itemsets for efficient data analysis. If we
want to post-process the mining results by apply-
ing various conditions or restrictions, once we have
to dump the frequent itemsets into storage. Even
LCM is an output linear time algorithm, it may re-
quire impracticable time and space if the number of
frequent itemsets becomes enormous. Usually we
control the output size with the minimum support
threshold in ad hoc setting, but we do not know if
it may lose some important information.

For representing very large-scale frequent item-
sets, one proposed a method of using Zero-
suppressed Binary Decision Diagrams (ZBDDs)[7],
an efficient graph-based data structure. ZBDD is
a variant of Binary Decision Diagram (BDD)[2],
which was originally developed in VLSI logic de-
sign area, but recently applied to data mining
problems[9, 6, 8]. Last year, Minato et al. pre-
sented ZBDD-growth[11] algorithm to compute

1

2 Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura

all/closed/maximum frequent itemsets based on
ZBDD operations, and generate a compressed out-
put data structure on the main memory. Unfor-
tunately, the overhead of ZBDD-based frequency
computation is not small in their algorithm, so
the computational advantage is limited to only
the examples where ZBDD-based data compression
rate is extremely high. Otherwise, for example,
when the number of frequent itemsets is not very
large, ordinary LCM algorithm is much faster than
ZBDD-growth.

In this paper, we propose a good combination
of LCM algorithm and a ZBDD-based data struc-
ture. Our method, “LCM over ZBDDs,” can gener-
ate very large-scale frequent itemsets on the main
memory with a very small overhead of computa-
tion time compared with the original LCM algo-
rithm. The mining result can be post-processed ef-
ficiently by using algebraic ZBDD operations. The
original LCM is an output linear time algorithm,
but our new method requires a sub-linear time to
the number of frequent itemsets when the ZBDD-
based data compression works well. Our method
may greatly accelerate the data mining process and
will lead a new style of on-memory processing for
knowledge discovery problems.

2 Preliminaries

Let E = {1, 2, . . . , n} be the set of items. A trans-
action database on E is a set T = {T1, T2, . . . , Tm}
such that each Ti is included in E . Each Ti is called
a transaction (or tuple). We denote by ||T || the sum
of sizes of all transactions in T , that is, the size of
database T . A set P ⊆ E is called an itemset (or
pattern). The maximum element of P is called the
tail of P , and denoted by tail(P). An itemset Q is a
tail extension of P if and only if both Q \ P = {e}
and e > tail(P) hold for an item e. An itemset
P �= ∅ is a tail extension of Q if and only if Q =
P \ tail(P), hence Q is unique, i.e., any non-empty
itemset is a tail extension of a unique itemset.

For itemset P , a transaction including P is
called an occurrence of P . The denotation of P ,
denoted by Occ(P) set of the occurrences of P .
|Occ(P)| is called the frequency of P , and denoted

by frq(P). In particular, for an item e, frq({e})
is called the frequency of e. For given constant θ,
called a minimum support, itemset P is frequent if
frq(P) ≥ θ. If a frequent itemset P is included
in no other frequent itemset, P is called maximal.
We define the closure of itemset P in T , denoted
by clo(P), by

⋂
T∈Occ(P) T . An itemset P is called

closed if P = clo(P).

3 LCM and ZBDDs

In this section, we briefly explain LCM algorithm
and ZBDD-based techniques for representing fre-
quent itemsets.

3.1 LCM algorithm

LCM is a series of algorithms for enumerating fre-
quent itemsets, developed by Uno et al. These al-
gorithms have a feature of the theoretical bound
as output linear time. The first LCM algorithm
is presented in FIMI2003[15], and the second ver-
sion of LCM demonstrated its remarkable efficiency
in FIMI2004[13]. The original LCM was developed
for enumerating closed itemsets, and then LCMfreq
and LCMmax are presented for mining all frequent
itemsets and maximal itemsets1. Now the three
variants are integrated into one program. Those
implementations are available at the developer’s
web page[12] as open source software.

In general, frequent itemset mining algorithms
are classified into the two categories: apriori-like
(or level-by-level) algorithms[1] and backtracking
(or depth-first) algorithms[16, 5]. LCM algorithms
belong to backtracking style.

Backtracking algorithm is based on recursive
calls. The algorithm inputs a frequent itemset P ,
and generates new itemsets by adding one of the
unused items to P . Then, for each itemset being
frequent among them, it generates recursive calls
with respect to it. To avoid duplications, an iter-
ation of backtracking algorithms adds items with

1The complexity has been proved theoretically in gener-
ating all/closed itemsets, but still open (only experimental)
for maximal one.

Fast Generation of Very Large-Scale Frequent Itemsets Using a Compact Graph-Based Representation 3

indices larger than the tail of P . We describe the
framework of backtracking algorithms as follows.

ALGORITHM Backtracking (P : itemset)
Output P

For each e ∈ E , e > tail(P) do
If P ∪ {e} is frequent then

call Backtracking (P ∪ {e})

LCM algorithms are based on backtracking al-
gorithms, and use acceleration techniques for the
frequency counting, called occurrence deliver and
anytime database reduction. Hence, LCM algo-
rithms efficiently compute the frequency. Here we
omit detailed techniques used in LCM, as they are
described in [13, 14].

Although LCM can efficiently enumerate large-
scale frequent itemsets, it is a different matter how
to store and index the result of itemsets for efficient
data analysis. Even LCM is an output linear time
algorithm, it may require impracticable time and
space if the number of frequent itemsets becomes
enormous. Usually we control the output size with
the minimum support threshold in ad hoc setting,
but we do not know if it may lose some important
information to be discovered.

3.2 ZBDDs

A Binary Decision Diagram (BDD) is a graph rep-
resentation for a Boolean function. An Example is
shown in Fig. 1 for F (a, b, c) = abc ∨ abc. Given a
variable ordering (in our example a, b, c), one can
use Bryant’s algorithm[2] to construct the BDD for
any given Boolean function. For many Boolean
functions appearing in practice this algorithm is
quite efficient and the resulting BDDs are much
more efficient representations than binary decision
trees.

BDDs were originally invented to represent
Boolean functions. But we can also map a set
of combinations into Boolean space of n variables,
where n is the cardinality of E (see Fig. 2). So,
one could also use BDDs to represent sets of com-
binations. However, one can even obtain a more
efficient representation by using Zero-suppressed
BDDs (ZBDDs)[7].

If there are many similar combinations then the
subgraphs are shared resulting in a smaller repre-
sentation. In addition, ZBDDs have a special type
of node deletion rule. As shown in Fig. 3, All nodes
whose 1-edge directly points to the 0-terminal node
are deleted. Because of this, the nodes of items that
do not appear in any sets of combinations are au-
tomatically deleted as shown in Fig.1. This ZBDD
reduction rule is extremely effective if we handle a
set of sparse combinations. If the average appear-
ance ratio of each item is 1%, ZBDDs are possi-
bly more compact than ordinary BDDs, up to 100
times.

ZBDD representation has another good prop-
erty that each path from the root node to the 1-
terminal node corresponds to each combination in
the set. Namely, the number of such paths in the
ZBDD equals to the number of combinations in
the set. This beautiful property indicates that,
even if there are no equivalent nodes to be shared,
the ZBDD structure explicitly stores all items of
each combination, as well as using an explicit lin-
ear linked list data structure. In other words, (the
order of) ZBDD size never exceeds the explicit rep-
resentation. If more nodes are shared, the ZBDD
is more compact than linear list.

Table 1 summarizes the most of primitive oper-
ations of ZBDDs. In these operations, “∅,” “1,”
and P.top can be obtained in a constant time.
P.offset(v), P.onset(v), and P.change(v) opera-
tions require a constant time if v is the top vari-
able of P , otherwise they consume linear time to
the number of ZBDD nodes located higher position
than v. The union, intersection, and difference op-
erations can be performed in almost linear time to
the size of ZBDDs.

3.3 ZBDD-growth algorithm

Using a ZBDD-based compact data structure,
we can efficiently manipulate large-scale itemset
databases on the main memory. Recently, Minato
et al. have developed ZBDD-growth algorithm to
generate all/closed/maximal frequent itemsets for
given databases. The details of the algorithm is
written in the article[11]. As well as LCM algo-
rithms, ZBDD-growth is based on the backtracking

4 Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura

Figure 1: Binary Decision Tree, BDDs and ZBDDs

a b c F → S
0 0 0 0
0 0 1 0
0 1 0 1 → b
0 1 1 0
1 0 0 0
1 0 1 1 → ac
1 1 0 0
1 1 1 0

As a Boolean function:
F = abc ∨ abc

As a set of combinations:
S = {ac, b}

Figure 2: Correspondence of Boolean functions and sets of combinations.

algorithm using recursive calls. This algorithm has
the two technical features as follows:

(i) using of ZBDDs for the internal data structure,
and

(ii) using of ZBDDs for the output data structure.

In the first feature, the internal data structure
means that the given transaction database is con-
verted to ZBDD-based representation on the main
memory. On each recursive step of backtrack-
ing, frequency counting for the conditional (or re-
stricted) database is performed by ZBDD opera-
tions. This is similar manner as FP-growth[5] al-
gorithm, which manipulates FP-tree in the back-
tracking algorithm.

Since ZBDDs are representation of sets of com-
binations, a simple ZBDD distinguishes only ex-
istence of each itemset in the database. In order
to count the integer numbers of frequency, ZBDD-
growth algorithm uses an m-digits of ZBDD vec-
tor {F0, F1, . . . , Fm−1} to represent integers up to
(2m − 1), as shown in Fig. 4. The numbers are

encoded into binary digital code, as F0 represents
a set of itemsets appearing odd times (LSB = 1),
F1 represents a set of itemsets whose appearance
number’s second lowest bit is 1, and similar way
we define the set of each digit up to Fm−1. Notice
that this ZBDD vector is used only for the internal
data structure in ZBDD-growth algorithm. The
output data is represented by a simple ZBDD be-
cause the result is just a set of frequent itemsets.
(not keeping frequency of each itemset.)

ZBDD-growth algorithm manipulate ZBDDs for
both the internal and output data structures, so the
advantage of ZBDD-based data compression is fully
employed. There are examples where billions of
frequent itemsets can be represented by only thou-
sands of ZBDD nodes. The mining result can be
post-processed efficiently by using algebraic ZBDD
operations.

However, ZBDD-growth has an overhead for fre-
quency computing using ZBDD vectors. Arith-
metic operations of ZBDD vectors are performed
by a series of ZBDD operations on each binary
digit, so it requires more steps than ordinary 32-

Fast Generation of Very Large-Scale Frequent Itemsets Using a Compact Graph-Based Representation 5

Figure 3: ZBDD reduction rule.

Table 1: Primitive ZBDD operations
“∅” Returns empty set. (0-termial node)
“1” Returns the set of only null-combination. (1-terminal node)
P.top Returns the item-ID at the root node of P .
P.offset(v) Subset of combinations not including item v.
P.onset(v) Gets P − P.offset(v) and then deletes v from each combination.
P.change(v) Inverts existence of v (add / delete) on each combination.
P ∪Q Returns union set.
P ∩Q Returns intersection set.
P −Q Returns difference set. (in P but not in Q.)
P.count Counts number of combinations.

or 64-bit arithmetic operations in the CPU. Un-
less the ZBDD-based data compression rate is very
high, the overhead becomes obvious. There are the
two typical cases where ZBDD is not very effective.

• The number of itemsets is enough small to be
handled easily in anyway.

• The database is completely random and no
similar itemsets are included.

In many practical cases, ZBDD-growth algorithm
is not faster than previous algorithms. As shown
in the experimental result in this paper, ZBDD-
growth is 10 to 100 times slower than ordinary
LCM when the output size is small. ZBDD-growth
wins only when a huge number of frequent itemsets
are generated.

4 LCM over ZBDDs

In this section, we discuss a good combination of
LCM and ZBDDs. Fortunately, we can observe a
number of common properties in LCM algorithms
and ZBDD manipulation, as follows:

• Both are based on the backtracking (depth-
first) algorithm.

• All the items used in the database have a fixed
variable ordering.

• In the algorithm, we choose an item one by one
according to the variable ordering, and then
call the algorithm itself recursively.

• In the current implementation of LCM, the
variable ordering is decided at the beginning
of the algorithm, and the ordering is never
changed until the end of execution.

These common properties indicate that LCM and
ZBDDs may have a really good combination. Our
algorithm, “LCM over ZBDDs,” does not touch the
core algorithm of LCM, and just generates a ZBDD
for the solutions obtained by LCM. In this way, we
aim to generate very large-scale frequent itemsets
efficiently with a very small overhead of ZBDD ma-
nipulation. Here we describe the techniques in the
new method.

6 Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura

Figure 4: ZBDD vector for frequency counting.

LCM Backtrack(P : itemset)
{

Output P
For e = n to tail(P) + 1 step −1 do

If P ∪ {e} is frequent
LCM Backtrack(P ∪ {e})

}

Figure 5: Basic structure of LCM algo-
rithm.

ZBDD LCMovZBDD Naive(P : itemset)
{

ZBDD F ← P
For e = n to tail(P) + 1 step −1 do

If P ∪ {e} is frequent {
F ′ ← LCMovZBDD Naive(P ∪ {e})
F ← F ∪ F ′

}
Return F

}

Figure 6: Naive modification for generating
ZBDDs.

4.1 ZBDD construction in LCM proce-
dure

We recall the basic structure of the original LCM
algorithm in Fig. 5. Here we omit detailed tech-
niques used in checking frequency of each itemset,
but basically the algorithm explores all the candi-
date of itemsets in a backtracking (or depth-first)
manner, and when a frequent itemset is found, it
is appended one by one to the output file. On
the other hand, “LCM over ZBDDs” constructs a
ZBDD which is the union of all the itemsets found
in the backtracking search, and finally returns a
pointer to the root node of the ZBDD. A naive
modification can be described as Fig. 6. However,
this naive algorithm has a problem in its efficiency.

In the LCM procedure, a ZBDD grows by re-
peating union operations of the frequent itemsets
found in the depth-first search. If we look at the
sequence of itemsets generated by the algorithm,
the consecutive itemsets are quite similar to each
other in most cases, namely, only a few items near
by the tail are different and the other top items are
completely identical. The ZBDD union operations

becomes as Fig. 7, only a few bottom levels are
different and the almost all other part is the same.
Since the procedure of ZBDD operation is executed
recursively from the top node to the bottom node,
the computation of a union operation requires O(n)
steps while only a few bottom items are meaning-
ful. Namely, this algorithm will become n times
slower. It is unacceptable loss of efficiency because
n may be more than hundred in practical datasets.

To address this problem, we improved the algo-
rithm as shown in Fig. 8. On each recursive step,
we construct a ZBDD only for the lower items, and
after returning from the subsidiary recursive call,
we put the top item on the current result of ZBDD.
In this way, we can avoid redundant traversals in
the ZBDD union operation, as shown in Fig. 9. If
we use the variable ordering of ZBDDs as same as
the LCM’s item ordering, each ZBDD operation re-
quires only a constant time, and the total overhead
of ZBDD generation can be bounded by a constant
factor compared with the original LCM.

Fast Generation of Very Large-Scale Frequent Itemsets Using a Compact Graph-Based Representation 7

Figure 7: ZBDD union operations in naive LCM over ZBDDs.

ZBDD LCMovZBDD(P : itemset)
{

ZBDD F ← “1”
For e = n to tail(P) + 1 step −1 do

If P ∪ {e} is frequent {
F ′ ← LCMovZBDD(P ∪ {e})
F ← F ∪ F ′.change(e)

}
Return F

}

Figure 8: Improved version of “LCM over
ZBDD.”

Figure 9: Efficient ZBDD con-
struction in LCM over ZBDDs.

4.2 Employing hypercube decomposi-
tion

The original LCM finds a number of frequent item-
sets at once for reducing the computation time by
using the technique of hypercube decomposition[15]
(or, also called equisupport). For a frequent item-
set P , let H(P) be the set of items e satisfying
e > tail(P) and Occ(P) = Occ(P ∪ {e}). Then,
for any Q ⊆ H(P), Occ(P) = Occ(P ∪ Q) holds,
and P ∪ Q is frequent. The original LCM avoids
duplicated backtracking with respect to items in-
cluded in H(P), by passing H(P) to the subsidiary
recursive calls. The algorithm is shown in Fig. 10.

Current LCM implementations have the two
output options, (i) printing out all the solutions
to the output file, or (ii) just counting the total
number of solutions. When counting the number
of itemsets, we accumulate 2’s power to the hyper-
cube size for each solution, without generating all
candidates derived from the hypercube. This tech-
nique greatly reduces the computation time since
the LCM algorithm is dominated by the output
size.

Also in LCM over ZBDDs, we can employ the

hypercube decomposition technique. The algo-
rithm is described in Fig. 11. A remarkable advan-
tage of our method is that we can efficiently gen-
erate a ZBDD including all the solutions, within a
similar computation time as the original LCM only
counting the number of the solutions. The original
LCM is known as an output linear time algorithm,
but our method can generate all the solutions in
a sub-linear time to the number of solutions if the
hypercubes often appear.

4.3 Closed/maximal itemset mining

The original LCM can also generate
closed/maximal itemsets. Our method does
not touch the core algorithm of LCM, and just
generates ZBDDs for the solutions obtained by
LCM. Therefore, a ZBDD for closed/maximal
itemsets can be generated as well as the original
LCMs. The technique of hypercube decompo-
sition should slightly be modified to generate
closed/maximal one, but it is a similar technique
used in the original LCMs.

8 Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura

LCM Backtrack H(P,S: itemset)
{

S′ ← S ∪H(P)
Output itemsets including P

and included in P ∪ S′
For e = n to tail(P) + 1 step −1 do

If e /∈ S′ and P ∪ {e} is frequent
LCM Backtrack H(P ∪ {e}, S′)

}

Figure 10: Original LCM with hypercube
decomposition.

ZBDD LCMovZBDD H(P,S: itemset)
{

S′ ← S ∪H(P)
ZBDD F ← “1”
For e = n to tail(P) + 1 step −1 do

If e ∈ S′
F ← F ∪ F.change(e)

Else if P ∪ {e} is frequent {
F ′ ← LCMovZBDD H(P ∪ {e}, S′)
F ← F ∪ F ′.change(e)
}

Return F
}

Figure 11: LCM over ZBDDs with hyper-
cube decomposition.

5 Experimental Results

Based on the above ideas, we implemented LCM
over ZBDDs by modifying the open software, LCM
ver. 5[12]. We composed about 50 lines modifica-
tions or additions to the main file of the original
LCM, and compiled it with our own ZBDD pack-
age, which consists of about 2,300 lines of C codes.
We used a 2.4GHz Core2Duo E6600 PC, 2 GB of
main memory, with SuSE Linux 10 and GNU C++
compiler. On this platform, we can manipulate up
to 40,000,000 nodes of ZBDDs with up to 65,000
different items.

For evaluating the performance, we applied our
method to the practical size of datasets chosen
from FIMI2003 repository[4] with various mini-
mum support thresholds. We compared our results
with the original LCM[12] and ZBDD-growth[11].
In the datasets, “mushroom” is known as an
example where ZBDD-growth is effective since
the ZBDD-based data compression works well.
”T10I4D100K” is known as an opposite case, an
artificial database consists of randomly generated
combinations. In this case, ZBDD-based data com-
pression is quite ineffective. “BMS-WebView-1”
has an intermediate property between the two.

Table 2 shows our experimental results. In this
table, |ZBDD| means the number of ZBDD nodes
representing all frequent itemsets. The column
“LCM-count” shows the computation time of the
original LCM only counting the number of solu-
tions, and ‘LCM-dump” means the time for listing

all itemset data to the output file (using /dev/null).
“LCMoverZBDD” and “ZBDD-growth” show the
time for generating the result of ZBDD on the main
memory, including the time for counting the ZBDD
nodes.

From the experimental results, we can clearly
see that LCM over ZBDDs is more efficient than
ZBDD-growth in most cases. Larger advantage
of our method can be observed when a smaller
number of solutions are generated. ZBDD-growth
shows comparable performances to our method
only in “mushroom” with very low minimum sup-
port, but for all the other cases, our method over-
whelms ZBDD-growth.

We can also observe that LCM over ZBDDs
is more efficient than the original LCM-dump.
The difference becomes significant when very large
number of itemsets are generated. The original
LCM-dump is known as an output linear time al-
gorithm, but our LCM over ZBDDs requires a sub-
linear time to the number of itemsets. The compu-
tation time of our method is almost same as exe-
cuting LCM-count. We must emphasize that LCM-
count does not store the itemsets but only count
the number of solutions. On the other hand, LCM
over ZBDDs generates all the solutions and store
them on the main memory as a compact ZBDD.
This is an important point.

After executing LCM over ZBDDs, we can apply
various algebraic operations to the ZBDD for filter-
ing or analyzing the frequent itemsets[11]. Storing

Fast Generation of Very Large-Scale Frequent Itemsets Using a Compact Graph-Based Representation 9

Table 2: Comparison of LCM over ZBDDs with the previous methods.
Dataset name: #Frequent LCMoverZBDDs LCM-count LCM-dump ZBDD-growth
min. support itemsets |ZBDD| Time(s) Time(s) Time(s) Time(s)

mushroom: 1,000 123,287 760 0.50 0.49 0.64 1.78
500 1,442,504 2,254 1.32 1.30 3.29 3.49
300 5,259,786 4,412 2.25 2.22 9.96 5.11
200 18,094,822 6,383 3.21 3.13 31.63 6.24
100 66,076,586 11,584 5.06 4.87 114.21 6.72
70 153,336,056 14,307 7.16 7.08 277.15 6.97
50 198,169,866 17,830 8.17 7.86 357.27 6.39

T10I4D100K: 100 27,533 8,482 0.85 0.85 0.86 209.82
50 53,386 16,872 0.97 0.92 0.98 242.31
20 129,876 58,413 1.13 1.08 1.20 290.78
10 411,366 173,422 1.55 1.36 1.64 332.22
5 1,923,260 628,491 2.86 2.08 3.54 370.54
3 6,169,854 1,576,184 5.20 3.15 8.14 386.72
2 19,561,715 3,270,977 9.68 5.09 22.66 384.60

BMS-WebView-1: 50 8,192 3,415 0.11 0.11 0.12 29.46
40 48,544 10,755 0.18 0.18 0.22 48.54
36 461,522 28,964 0.49 0.42 0.98 67.16
35 1,177,608 38,164 0.80 0.69 2.24 73.64
34 4,849,466 49,377 1.30 1.07 8.58 83.36
33 69,417,074 59,119 3.53 3.13 144.98 91.62
32 1,531,980,298 71,574 31.90 29.73 3,843.06 92.47

chess: 1,000 29,442,849 53,338 197.58 197.10 248.18 1,500.78
connect: 40,000 23,981,184 3,067 5.42 5.40 49.21 212.84
pumsb: 32,000 7,733,322 5,443 60.65 60.42 75.29 4,189.09

BMS-WebView-2: 5 26,946,004 353,091 4.84 3.62 51.28 118.01

the result as a ZBDD will be more useful than hav-
ing a large dump file of all frequent itemsets.

Finally, we show the experimental results for
generating closed itemsets in Table 3. We com-
pred our results with the original LCM and ZBDD-
growthC[10], a variation of ZBDD-growth to gen-
erate closed itemsets. Since the closed (or max-
imal) itemsets are a very small subset of all fre-
quent itemsets, in this case, the performances of
LCM-count and LCM-dump are not so different.
Anyway, LCM over ZBDDs can efficiently generate
the clesed itemsets with a very small overhead of
ZBDD manipulation. As well as the ZBDD of all
frequent itemsets, various post-processing is appli-
cable to the ZBDD of closed itemsets. For exam-
ple, we can easily obtain all “non-closed” itemsets
by using ZBDD-based difference operation between
all frequent itemsets and closed itemsets.

6 Conclusion

In this paper, we proposed “LCM over ZBDDs” al-
gorithm for efficiently generating very large-scale

all/closed/maximal frequent itemsets using ZB-
DDs. Our method is based on LCM, one of the
most efficient state-of-the-art algorithms proposed
before, and not only enumerating the itemsets but
also generating a compact output data structure
on the main memory. The result can efficiently
be post-processed by using algebraic ZBDD opera-
tions.

The original LCM is known as an output lin-
ear time algorithm, but our new method requires a
sub-linear time to the number of frequent patterns
when the ZBDD-based data compression works
well. Our experimental results indicate that the
ZBDD-based method will greatly accelerate the
data mining process and will lead a new style of on-
memory processing for knowledge discovery prob-
lems.

Acknowledgment

This research was partially supported by Japan So-
ciety for the Promotion of Science, Grant-in-Aid
for on Priority Area “Information explosion” (Area

10 Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura

Table 3: Generating closed itemsets.
Dataset name: #Closed LCMoverZBDDs LCM-count LCM-dump ZBDD-growthC
min. support itemsets |ZBDD| Time(s) Time(s) Time(s) Time(s)

mushroom: 1,000 3,427 1,059 0.58 0.55 0.55 1.86
500 9,864 2,803 1.28 1.24 1.24 3.62
100 45,944 9,884 3.06 2.93 2.40 6.54
50 68,468 12,412 3.48 3.35 3.50 8.71

T10I4D100K: 100 26,806 8,548 0.89 0.89 0.92 1,931.21
50 46,993 16,995 1.03 0.99 1.03 2,455.22
10 283,397 164,773 1.69 1.54 1.75 (>5,000)
2 2,270,195 1,476,698 6.62 4.76 6.47 (>5,000)

BMS-WebView-1: 50 7,811 3,477 0.12 0.12 0.13 32.09
40 29,489 11,096 0.24 0.22 0.26 58.44
35 76,260 29,553 0.84 0.79 0.88 102.87
32 110,800 46,667 1.94 1.86 1.98 138.22

#456), and Joint Research Project by National In-
stitute of Informatics, Japan.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami.
Mining association rules between sets of items
in large databases. In P. Buneman and S. Jajo-
dia, editors, Proc. of the 1993 ACM SIGMOD
International Conference on Management of
Data, Vol. 22(2) of SIGMOD Record, pages
207–216, 1993.

[2] R. E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677–691, 1986.

[3] B. Goethals. Survey on fre-
quent pattern mining, 2003.
http://www.cs.helsinki.fi/u/goethals/
publications/survey.ps.

[4] B. Goethals and M. J. Zaki. Frequent item-
set mining dataset repository, 2003. Frequent
Itemset Mining Implementations (FIMI’03),
http://fimi.cs.helsinki.fi/data/.

[5] J. Han, J. Pei, Y. Yin, and R. Mao. Mining
frequent patterns without candidate genera-
tion: a frequent-pattern tree approach. Data
Mining and Knowledge Discovery, 8(1):53–87,
2004.

[6] E. Loekit and J. Bailey. fast mining of high
dimensional expressive contrast patterns us-

ing zero-suppressed binary decision diagrams.
In Proc. The Twelfth ACM SIGKDD Inter-
national Conference on Knowledge Discovery
and Data Mining (KDD2006), pages 307–316,
2006.

[7] S. Minato. Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems. In Proc.
of 30th ACM/IEEE Design Automation Con-
ference, pages 272–277, 1993.

[8] S. Minato. Symmetric item set mining based
on zero-suppressed BDDs. In the 9th Interna-
tional Conference on Discovery Science (DS-
2006), (LNAI 4265, Springer), pages 321–326,
10 2006.

[9] S. Minato and H. Arimura. Efficient
combinatorial item set analysis based
on zero-suppressed BDDs. In Proc.
IEEE/IEICE/IPSJ International Work-
shop on Challenges in Web Information
Retrieval and Integration (WIRI-2005), pages
3–10, 4 2005.

[10] S. Minato and H. Arimura. frequent closed
item set mining based on zero-suppressed
BDDs. Trans. of the Japanese Society of Ar-
tificial Intelligence, 22(2):165–172, 2007.

[11] S. Minato and H. Arimura. frequent pattern
mining and knowledge indexing based on zero-
suppressed BDDs. In In Knowledge Discov-
ery in Inductive Databases, 5th International
Workshop, KDID 2006 Revised Selected and

Fast Generation of Very Large-Scale Frequent Itemsets Using a Compact Graph-Based Representation 11

Invited Papers, LNCS 4747, pages 152–169, 9
2007.

[12] T. Uno and H. Arimura. Program codes
of takeaki uno and hiroki arimura, 2007.
http://research.nii.ac.jp/~uno/codes.htm .

[13] T. Uno, M. Kiyomi, and H. Arimura. LCM
ver.2: efficient mining algorithms for fre-
quent/closed/maximal itemsets. In Proc.
IEEE ICDM’04 Workshop FIMI’04 (Interna-
tional Conference on Data Mining, Frequent
Itemset Mining Implementations), 2004.

[14] T. Uno, M. Kiyomi, and H. Arimura. LCM
ver.3: collaboration of array, bitmap and pre-
fix tree for frequent itemset mining. In Proc.
Open Source Data Mining Workshop on Fre-
quent Pattern Mining Implementations 2005,
2005.

[15] T. Uno, Y. Uchida, T. Asai, and H. Arimura.
LCM: an efficient algorithm for enumer-
ating frequent closed item sets. In Proc.
Workshop on Frequent Itemset Min-
ing Implementations (FIMI’03), 2003.
http://fimi.cs.helsinki.fi/src/.

[16] M. J. Zaki. Scalable algorithms for associa-
tion mining. IEEE Trans. Knowl. Data Eng.,
12(2):372–390, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 839.055]
>> setpagedevice

