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Abstract. In this paper, we consider the unordered pseudo-tree matching problem, which
is a problem of, given two unordered labeled trees P and T , finding all occurrences of P in
T via such many-one embeddings that preserve node labels and parent-child relationship.
This problem is closely related to tree pattern matching problem for XPath queries with
child axis only. If m > w , we present an efficient algorithm that solves the problem in
O(nm log w/w) time using O(hm/w + m log w/w) space and O(m log w) preprocessing on
a unit-cost arithmetic RAM model with addition, where m is the number of nodes in P ,
n is the number of nodes in T , h is the height of T , and w is the word length. We also
discuss a modification of our algorithm for the unordered tree homeomorphism problem,
which corresponds to a tree pattern matching problem for XPath queries with descendant
axis only.

1 Introduction

Tree matching is a fundamental problem in computer science, and it has a wide range
of applications in XML/Web database, schema validation, information extraction,
document analysis, image processing, and semi-structured data processing. In par-
ticular, tree matching and tree inclusion problems have attracted much attention
and have been extensively studied [2, 6, 7, 12]. In this paper, we study non-standard
version of the unordered tree matching and inclusion problems, called the unordered
pseudo-tree matching problem (UPTM) [14] and the unordered tree homeomorphism
problem (UTH) [4], respectively, where embedding mappings can be many-one.

As main results, we present an efficient algorithm that solves UPTM problem
with the following complexities (Theorem 1):

– O(nm log w/w) time using O(hm/w + m log w/w) space and O(m log w) prepro-
cessing if m > w. (the large pattern case)

– O(n log m) time using O(h+log m) space and O(m log m) preprocessing if m ≤ w.
(the small pattern case)

where m and n are the sizes of pattern tree P and text tree T , h is the height of T ,
and w = Θ(log n) is the word length of RAM. We also show that UTH problem is
solvable in the same time and space complexities as above (Theorem 2).

A key of our algorithm is a data structure for the small pattern case (m ≥ w)
based on bit-parallel computation of set operations, including tree aggregation that
checks the branching of internal nodes. Developing bit-assignment technique based
on separator trees, we improve the time complexity of the tree aggregation from
O(m) time and space to O(log m) time and space . Combining this result to dynamic
programming tree matching algorithms and a module decomposition technique of
[8], we have claimed results for both UPTM and UTH.
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For the UPTM, our O(nm log w/w) time and O(hm log w/w) space algorithm
improves the complexity of the previous O(n·r·leaves(P )depth(P )/w) = O(nm3/w)
time and O(n · leaves(P )depth(P )/w) = O(nm2/w) space algorithm1 by Yamamoto
and Takenouchi [14] in the worst case. For the UTH, our algorithm is one of the
first bit-parallel algorithm for the problem and slightly faster than the previous
O(nm·depth(P )) time and O(depth(T )·branch(T )) space algorithm1 by Gotz, Koch,
and Martens [4]. These results for UPTM and UTH correspond to evaluation of
fragments of Core XPath queries consisting with child axis only and with descendant
axis only [4], respectively.

Tree matching problems with many-one embeddings have been studied in the
area of FO and MSO logics over combinatorial structures such as strings, trees,
and graphs as well as in database and Web systems [4]. These problems have less
constraints than the other tree matching problems, but this does not necessarily
mean that many-one matching problems are easiest among them. Hence, we hope
that these result becomes steps towards development of efficient query mechanism
for such data intensive applications.

Organization of this paper is as follows. Section 2 prepares definitions and no-
tations. Section 3 shows a fast bit-parallel algorithm for UPTM. Section 4 gives an
extension to UTH. In Section 5, we conclude.

2 Preliminaries

In this section, we give basic definitions and notation on our unordered tree matching
problems according to [4, 6, 14]. For a set S, we denote by |S| the cardinality of S. Let
N+ = {1, 2, . . .}. We define an interval from i to j by [i..j] = {i, i + 1, . . . , j} ⊆ N+,
where i ≤ j. We define the smallest interval including set S ⊆ N+ by Int(S) =
[min S, max S] ⊆ N+. For an array A = A[1] · · ·A[n] and i ≤ j, we define A[i..j] =
A[i] · · ·A[j]. For a binary relation R ⊆ A2 on a set A, we denote by R+ ⊆ A2 the
transitive closure of R.

2.1 Unordered trees
Let Σ = {a, b, a1, a2, . . .} be a finite alphabet of labels. In this paper, we will mainly
consider unordered trees, which are the labeled, rooted trees, where the ordering
among their siblings is irrelevant.

Let P be an unordered tree of m nodes whose labels are drawn from Σ. We
denote by V (P ) the node set, by E(P ) the edge set, and by root(P ) the root of P .
For each node x, labelP (x) ∈ Σ denotes the label of x in P and P (x) denotes the
subtree of P rooted at x.

If (x, y) ∈ E(P ) then we say that x is a parent of y and y is a child of x. If there
exists some downward path from x to y, i.e., (x, y) ∈ E(P )∗, then we say that x is
an ancestor of y and y is a descendant of x and write x ≼ y. If x ≼ y and x ̸= y
then we say that x is a proper ancestor of y and y is a proper descendant of x. If
both of x ̸≼ y and y ̸≼ x hold then x and y are incomparable each other and write

1 In the results, leaves(P ), depth(P ), and branch(P ) is the number of leaves, the maximum depth, and
the maximum branching in a tree P . The parameter r = O(m) is the maximum number of the same
label on paths in P .
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x♯y. For nodes x and y in P , if x♯y and x precedes y in the preorder travesal of P ,
then we say that x precedes y in P (or, x is to the left of y) and write x � y. If x♯y
then either x � y or y � x holds.

For unordered tree P , we denote by |P | and by height(P ) the number of nodes
in P and the height of P . We denote the sets of all leaves and all internal nodes
in P , respectively, by internal(P ) and leaves(P ). Clearly, V (P ) = internal(P ) ⊎
leaves(P ). Let x be any node in P . The arity of x, denote by α(x) ≥ 0, is the
number of children of x. For every 1 ≤ i ≤ α(x), we denote the i-th child of node x
by x[i], and the list of the children of x by children(x) = x[1] · · · x[α(x)].

2.2 Unordered tree matching problem
Let P = P [1..m] be an unordered tree of size m, called a pattern tree, and T =
P [1..n] be an unordered tree of size n, called a text tree. In this subsection, we
introduce the unordered pseudo-tree matching and unordered tree homeomorphism
problems. For other variations of tree matching problems as in [2, 4, 6, 7, 12, 14],
please consult Appendix A.1.

Definition 1 (conditions for tree matching and inclusion). For any (possibly
many-one) mapping ϕ : V (P ) → V (T ), we define the following conditions:

(E0) ϕ preserves node labels. That is, for every node x ∈ V (P ), labelP (x) = labelT (ϕ(x))
holds.

(E1) ϕ preserves the parent-child relationship. That is, for every node x, y ∈ V (P ),
(x, y) ∈ EP ⇒ (ϕ(x), ϕ(y)) ∈ ET holds.

(E1’) ϕ preserves the ancestor-descendant relationship. That is, for every node x, y ∈
V (P ), (x, y) ∈ EP ⇒ ϕ(x) ≺ ϕ(y) holds.

Let F be a class of mappings. Then, a pattern P maps to a node v ∈ V (T )
in T w.r.t. class F if ϕ(root(P )) = v for some ϕ ∈ F . Then, the node v is called
an occurrence of P in T w.r.t. class F . Then, the tree pattern matching problem
w.r.t. F (F -matching problem) is the problem of, given a pattern tree P and a text
tree T , finding all occurrences of P in T w.r.t. class F .

An embedding from P to T is a possibly many-one mapping ϕ : V (P ) → V (T )
with (E0). A unordered pseudo-tree matching (UPTM) [14] is a many-one version of
unordered tree matching, i.e., an embedding ϕ with (E0) and (E1). A unordered tree
homeomorphism (UTH) [4] is a many-one version of unordered tree inclusion, i.e.,
an embedding ϕ with (E0) and (E1’). We denote by UPTM(P, T ) and UTH(P, T )
the sets of all pseudo-tree matching and all tree homeomorphism from P to T . The
unordered pseudo-tree matching problem (UPTM) and the unordered tree homeo-
morphism problem (UTH) are tree matching problem related to the above classes of
mappings.

3 Faster Bit-parallel Algorithm for Unordered Pseudo

Tree Matching

In this section, present efficient algorithm BP-MatchUPTM based on bit-parallel
pattern matching method for the pseudo-tree matching problem. Let P = P [1..m]
be a pattern tree of size m and T = T [1..n] be a text tree of size n.
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algorithm MatchUPTM(P [1..m]: a pattern tree, T [1..n]: a text tree):
Global Variables: P and T ;
Output: all occurrences of P in T w.r.t. unordered pseudo-tree matching (UPTM);
1: VisitUPTM(root(T ));

procedure VisitUPTM(v: text node)
Return Value: R = EmbP,T (v);
2: S ← Constant(∅); {See Definition 2}
3: for i = 1, . . . α(v) do
4: S ← Union(S, VisitUPTM(v[i]));
5: R← Constant([1..m]);
6: R← LabelMatchP (R, labelT (v)); {See Definition 2}
7: R← TreeAggrP (R, S); {See Definition 2}
8: if Member(R, root(P )) then {See Definition 2}
9: output “A match is found at a node v.”;

10: return R;

Fig. 1. An algorithm for the unordered pseudo-tree matching problem.

3.1 Decomposition formula and a bottom-up algorithm
In Fig. 1, we show an algorithm MatchUPTM for Unordered Pseudo Tree Matching.
Our matching algorithm computes, for every text node v in T , the set EmbP,T (v) of
integers in V (P ) = [1..m], called the embedding set , defined by:

EmbP,T (v) = { x ∈ [1..m] | (∃ϕ) ϕ ∈ UPTM(P (x), T ) ∧ ϕ(x) = v }. (1)

Clearly, For every x ∈ [1..m], x ∈ EmbP,T (v) if and only if the corresponding subtree
P (x) has an occurrence at the current node v. By definition, we see that P matches
T at node v iff root(P ) ∈ Emb(P, v). Now, we have the next lemma, which is crucial
to the correctness of our algorithm.

Lemma 1 (decomposition formula for UPTM). For every x ∈ V (P ) and v ∈
V (T ), x ∈ EmbP,T (v) if and only if

(i) labelP (x) = labelT (v), and
(ii) children(x) ⊆

∪
1≤j≤α(v) EmbP,T (v[j]).

From Lemma 1 above, we show in Fig. 1 a bottom-up procedure VisitUPTM to
compute EmbP,T (v) by using the post-order traversal of T . To describe the procedure
VisitUPTM, we need the following operators.

Definition 2 (set manipulation operators). We define operators Constant, Union,
Member, LabelMatch (label matching), and TreeAggr (tree aggregation) on subsets
of [1..m] as follows, where R, S ⊆ [1..m], x ∈ [1..m], and α ∈ Σ:

– Constant(S) ≡ S. This operation returns the set S itself.
– UnionP (S, R) ≡ S ∪ R. this returns the set-union of R and S ⊆ [1..m].
– MemberP (R, x) ≡ S∪R. Given a set R and an element x, this operation returns

“yes” if x ∈ R and “no” otherwise.
– LabelMatchP (R, α) ≡ { k ∈ R | labelP (k) = α }. Given any set R and label α,

this operation returns the set elements in R satisfying (i) of Lemma 1.
– TreeAggrP (R,S) ≡ { k ∈ R | childrenP (k) ⊆ S }. Given any sets R, S, this

operation returns the set of elements in R satisfying (ii) of Lemma 1.
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Fig. 2. An original pattern tree P and its binarization P ′, where white and shadowed circles indicate
original (real) nodes and dummy (virtual) nodes, respectively. The number in each circle indicates the
node id.

In the procedure VisitUPTM, we use the last two operators LabelMatch and
TreeAggr to check (i) and (ii) of Lemma 1. Later, the above set operations will
be implemented in bit-parallel manner in Sec. 3.2.

By representing sets R and S ⊆ [1..m] in lists of integers, it is easy to see that
these operators can be implemented to run in O(m) time and space. Then, we have
the following lemma.

Lemma 2. For the unordered pseudo-tree matching problem, For every pattern tree
P and a text tree T , the algorithm MatchUPTM in Fig. 1 correctly finds all occur-
rences of P in T . Moreover, the algorithm can be implemented to run in O(mn) time
and O(hm) additional space, where m is the size of P , n and h are the size and the
height of T , respectively.

The algorithm MatchUPTM can run in streaming setting using a stack of length
O(hm), where T is given as an input stream consisting of a sequence of balanced
open and close parentheses on alphabet Σ ∪ { ā | a ∈ Σ } as in XML databases [4,
10, 11].

3.2 Bit-parallel implementation: overview
In the following subsections, we give the bit-parallel version of the algorithm MatchUPTM,
called BP-MatchUPTM, that runs in in O(nm log w/w) time and O(hm/w+m log w/w)
space, where m is the size of pattern tree P , n and h are the size and the height of
text tree T , and w = Θ(log n) is the word length of underlying computer. Let us fix
a pattern P = P [1..m] of size m on a finite alphabet Σ. In what follows, we assume
that |Σ| = O(1).

In the bit-parallel implementation of MatchUPTM, we introduce a data structure
A for representing a subset S of the universe [1..m] that efficiently supports the
collection of set manipulation operators in Definition 2 in Sec. 3.1.

In A, we represent any subsets of V (P ) by bitmasks X ∈ {0, 1}m with length m
as m-bit integers from 0 to 2m−1. To do this, we need an assignment Bit : V (P ) →
[1..m] of the unique bit-position Bit(x) in the interval [1..m] to each node x in P .

Basic set operations. Once the assignment Bit is given, for any node set S ⊆
V (P ), we extend this Bit by BIT (S) = {Bit(x) | x ∈ S } ⊆ [1..m]. At this moment,
we leave Bit undefined and the appropriate definition for Bit will be given later in
the next subsection. For any subset X ⊆ [1..m], we define NUM(X) ∈ {0, 1}m to be
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Fig. 3. Branching components of a pattern tree P and the corresponding tree aggregation operation in
bit-parallel computation.

the bitmask for X. Among the set operators in Definition 2, the following operators
are easy to implement.

Lemma 3. Let S,R ⊆ V (P ) be any sets, and X,Y ∈ {0.1}m be the corresponding
bitmasks, respectively. Then, the following codes correctly implements the operators.
Moreover, all operations are executed in O(1) time if m ≤ w.

– Preprocess: Constant(S) ≡ NUM(BIT (S));
– Runtime: UnionP (X,Y ) ≡ (X | Y );
– Runtime: MemberP (X, x) ≡ if (X ∩ BIT ({x})) > 0 then 1 else 0;

Label matching operation. The label matching operation can be imple-
mented using a set of character masks as in SHIFT-AND method for exact match [1,
13, 9] or Move operation for regular expression match [3]

Lemma 4. The operator LabelMatch can be correctly implemented by the following
codes, where { LAB[α] ∈ {0, 1}m |α ∈ Σ } is a set of bitmasks for P . Moreover the
operation can be executed in O(1) time if m ≤ w.

– Preprocess: For each α ∈ Σ, LAB[α] = |x∈V (P ),labelP (x)=αNUM(Bit(x));
– Runtime: LabelMatchP (X, α) ≡ (X & LAB[α]);

Tree aggregation operation. Remaining task is to show how to efficiently
implement TreeAggr operation in bit-parallel computation. For each node x in P , we
define the branching component for x in P by the connected component Cx = {x}∪
children(x) of P consisting of parent x and its children. If no confusion arises, we
identify Cx and the induced depth-one subtree P (Cx) rooted at x, called a branching
tree. We denote by CP = {Cx |x ∈ internal(P )} the set of all branching components
of P .

For example, pattern P of Fig. 2 has three branching components C4 = {1, 2, 3, 4},
C8 = {4, 5, 8, 9}, and C9 = {6, 7, 8}. The upper half of Fig. 3 shows C8 and C9 with
their branching trees.

Then, the tree aggregation operation means gathering the values of children of
x and then copying their conjunction to the value of parent x (See Fig. 3). We want
to compute tree aggregation simultaneously for all internal node x in P . To do this,
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Fig. 4. Tree aggregation on interval [1..m] based on a monotone bit-assignment Bit.

we require bit assignment Bit : V (P ) → [1..m] and a decomposition of C with some
properties described below.

First, to implement the tree aggregation operation in correct and efficient way,
we require the assignment Bit to have the following properties:

Definition 3 (monotone bit assignment). A bit assignment mapping Bit :
V (P ) → [1..m] is said to be monotone w.r.t. the ancestor relation ≼ for P if for any
x, y ∈ V (P ), (x ≻ y) ⇒ (Bit(x) < Bit(y)) holds.

See Fig. 4, for an example of monotone bit-assignment. Next, we give a de-
composition of CP as follows. For any component Cx ∈ CP , we denote by Ix =
Int(BIT (Cx)) the smallest interval in [1..m] containing all bit positions of Cx. Then,
two components Cx and Cy (x ̸= y) overlap if Ix ∩ Iy ̸= ∅. A subset D ⊆ CP is said
to be overlap-free if there are no pairs of components in D that overlap each other.

Definition 4 (overlap-free decomposition). A partition CP = C[1] + · · ·+ C[K]
for some k ≥ 1 is said to be an overlap-free decomposition of CP w.r.t. Bit if for
every k = 1, . . . , K, the k-th subset C[k] is overlap-free w.r.t. Bit. Then, K is called
the height and C[k] is called the k-th layer of the partition.

Suppose that there exists some monotone bit assignment Bit and some overlap-
free decomposition CP = C[1]+ · · ·+C[K] of CP for some Bit. Then, tree aggregation
is implemented in bit-parallel way as follows.

Definition 5 (Preprocess). We first precompute the following bitmasks:

– LEAF = |x∈leaves(P )NUM(BIT ({x})).
– For every level k = 1, . . . , K, and for each Cx in C[k], we define

• DST [k][x] = NUM(BIT ({x}))). The position of parent x.
• SRC[k][x] = NUM(BIT (children(x))). The positions of children(x).
• INT [k][x] = NUM(Int(BIT (Cx))). The interval for Cx.
• SEED[k][x] = NUM(min BIT (Cx)). The “seed” position.

– For every level k = 1, . . . , K, and for each Mask ∈ {DST, SRC, INT, SEED},
• Mask[k] = |Cx∈C[k]Mask[k][x].

Lemma 5 (Runtime). Suppose that CP = C[1] + · · · + C[K] of CP is an overlap-
free decomposition with height K ≥ 1 for a monotone bit assignment Bit w.r.t. ≼.
Then, the code in Fig. 5 correctly implements the tree aggregation operator for the
component Cx. Moreover, this procedure runs in O(K) time if m ≤ w.

Therefore, the remaining thing is how to find a good overlap-free decomposition
CP with small height as well as monotone bit-assignment Bit. We discuss this issue
in the next subsection.
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procedure TreeAggrP (X, Y ):
1: Z ← Constant(∅);
2: For every level k = 1, . . . , K do:
3: BLK ← (Y & SRC[k]) | (INT [k] & (∼ (SRC[k] | DST [k])));
4: Z ← Z | ((BLK + SEED[k]) & DST [k]);
5: Z ← X & (Z | LEAF );
6: return Z;

Fig. 5. An algorithm for implementing TreeAggr operator

3.3 Construction of a monotone bit-assignment and an overlap-
free decomposition based on separator trees

In this subsection, we show how to find both a monotone bit-assignment Bit and
an overlap-free decomposition CP with height O(log m). For this purpose, we use a
data structure called a separator tree.

Binarization of P . Let P be a pattern tree of m nodes. We note that P
is a multi-ary tree whose internal node may have arity α(x) > 2. First, before
constructing separator tree composition, we apply a standard transformation, called
binarization to P for obtaining a binary version P ′ of P . The binarization transforms
each branching component Cx = {x} ∪ {x[1], · · · , x[α]} with the root x and α(x)
children into a new component C ′

x a binary subtree with the same root and the same
number of children by inserting α(x) − 2 dummy internal nodes of out-degree two.
In general, the resulting binary tree P ′ has size at most 2m. In what follows, let
m′ = O(m) be the size of P ′.

Fig. 2 shows an example of the binarization P ′ of the original pattern P , where
the component C4 = {1, 2, 3, 4} with root 4 is transformed into C ′

4 = {1, 2, 3, 4, 10}
with the same root 4.

Construction of a separator tree for P . Secondly, we build a separator tree
M from a binarization P ′ of pattern tree. A separator tree is a binary tree obtained
from P ′ by iteratively removing edges in E(P ′). The following well-known lemma is
sufficient for our purpose:

Lemma 6 (Jordan [5]). Let S be a binary tree. Then, there exists a node in S
such that |S(v)| ≤ (2/3)|S| and |S(v̄)| ≤ (2/3)|S|, where S(v) is the subtree of S
rooted at v and S(v̄) is the tree obtained by pruning S(v) from S.

Suppose that each node w of M has the fields Uw for a subset of V (P ′), and
ew for a cut-edge. Applying the above theorem recursively, we construct a separator
tree M from P ′ as follows.

– We start with a new node as the root of M. We associate V (P ′) to the root by
setting Uroot(M) = V (P ′). We visit root(M), and repeat the following process.

– Suppose that |Uw| = 1. Then, the associated node set Uw is a singleton {x}, and
the current node w is a leaf. We stop the process.

– Otherwise, |Uw| > 1. Then, we find an edge e = (x, y) ∈ E(P ′) according to
Lemma 6 so that removal of e splits the associated component Uw into two
subcomponents U1

w and U0
w of almost equal sizes no more than (2/3)|Uw|, where

U1
w is the subcomponent containing root(P ′) and U0

w is the other subcomponent.
Record the cut-edge e for w as ew. Create the left and the right children, wL and
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Fig. 6. A separator treeM for the binarization P ′ of a pattern tree. Circles and squares indicate internal
nodes and leaf nodes inM, respectively. At each node w, the associated set of numbers in a pair of brackets
indicates the connected component associated to w. Each edge (x, y) is denoted as ey indexed by its lower
end point y.

wR, and associate the component U1
w to wR and U0

w to wL. Then, recursively visit
both of wL and wR.

Lemma 6 ensures that the height of M is O(log m) and the construction re-
quires O(m log m) time. Furthermore, we can observe that (1) there exists a one-one
correspondence between internal(M) and E(P ′), and (2) there exists a one-one
correspondence between leaves(M) and V (P ′).

Now, we compute a bit assignment Bit : V (P ′) → [1..m] as follows. We order
leaves(M) from left to right. Then, we number all leaves in leaves(M), which are
original (real) nodes in P , from left to right consecutively from 1 to m (not m′). We
just skip and unnumber dummy (virtual) nodes included in binarization. Then, we
define bit-assignment Bit : V (P ) → [1..m] such that for each node x in P , if x is
the i-th leaf in this listing over leaves(M), then Bit(x) = i. For the proof of the
next lemma, see Appendix A.2.

Lemma 7. The bit assignment Bit constructed above from M is monotone w.r.t. the
ancestor relation ≼ for P .

By using Bit based on leaf numbering of M, we associate an interval Iw to each
node w in M by Iw = Int(BIT (Uw)). Then, we give a technical lemma.

Lemma 8. For any nodes u,w in M, the following properties hold:

(1) BIT (Uw) ⊆ Iw.
(2) If u ≽ w then Iu ⊆ Iw.
(3) If u♯w then Iu ∩ Iw = ∅.

Finally, we construct a overlap-free decomposition for CP as follows. We traverse
the separator tree M from the root to leaves top-down. Initially, we visit root and
Uroot contains the whole CP . Assume that we are going down and visiting a node w
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in M. Let Cx ∈ CP be the unique component in CP that contains ew in the induced
tree P (Cx). Then, there are two cases. If this happens at the first time with Cx,
that is, ew is the first cut-edge for Cx on the path from the root to w, then we
mark the current node w and associate to w the Cx by Comp(w) = Cx. Otherwise,
this is at least second time cut or so. Then, we skip w and continue the traversal
for descendants. After the traversal, we perform breadth-first search for level k = 0
to K = depth(M). Then, we construct a decomposition CP = C[1] + · · · + C[K]
such that C[k] = {Cx |Cx = Comp(w), w is a marked internal node in M} for each
k = 0, . . . , K. For the proof of the next lemma, see Appendix A.3.

Lemma 9. An overlap-free decomposition CP = C[1] + · · · + C[K] of CP w.r.t. Bit
can be computed by the above procedure in O(m log m) time and O(log m) space.

3.4 Complexity analysis
Combining the algorithm MatchUPTM of Fig. 1 in Sec. 3.1 and the bit-parallel
implementation of the set manipulation operations in Sec. 3.2, and results in Sec. 3.3,
we now have a modified version of the algorithm, called BP-MatchUPTM for the
UPTM problem.

Lemma 10. The operation TreeAggrP can be implemented to run O(log m) time
using O(m log m) preprocessing and O(log m) space if m ≤ w.

Proof. The claim follows from Lemma 7, Lemma 9, and Lemma 5. ⊓⊔

By applying the module decomposition technique of Myers [8] and Bille [3], we
have the main theorem of this paper below:

Theorem 1. The algorithm BP-UPTreeMatch solves the unordered pseudo-tree match-
ing problem with the following complexities:

– In the large pattern case (m > w): O(nm log w/w) time using O(hm/w+m log w/w)
space and O(m log w) preprocessing.

– In the small pattern case (m ≤ w): O(n log m) time using O(h + log m) space
and O(m log m) preprocessing.

where m and n are the sizes of pattern tree and text tree, h is the height of T , and
w = Θ(log n) is the length of computer word.

4 Extension for unordered tree homeomorphism

In this section, we give a modified algorithm for the unordered tree homeomorphism
problem (UTH). Let v be any node in T . Then, the set Desc-EmbP,T (v), called the
descendant embedding set and the auxiliary set Sub-EmbP,T (v) are defined by:

Desc-EmbP,T (v) = { x ∈ [1..m] | (∃ϕ ∈ UTH(P (x), T ) ϕ(x) = v }. (2)

Sub-EmbP,T (v) = { x ∈ [1..m] | (∃ϕ ∈ UTH(P (x), T )(∃w ≽ v) ϕ(x) = w }.

Lemma 11. For any P and T , we have the following properties:
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(1) For every x ∈ V (P ) and v ∈ V (T ), x ∈ Desc-EmbP,T (v) if and only if (i)
labelP (x) = labelT (v), and (ii) children(x) ⊆

∪
1≤j≤α(v) Sub-EmbP,T (v[j]).

(2) For any v in T , Sub-EmbP,T (v) = Desc-EmbP,T (v) ∪
∪

1≤j≤α(v) Sub-EmbP,T (v).

From the above decomposition lemma, we can develop a bit-parallel algorithm
equipped with the bit-parallel implementation of operators including TreeAggr as
shown in Sec. 3. For details, please consult Appendix A.5.

Theorem 2 (complexity of the unordered tree homeomorphism problem).
A modified version of algorithm, BP-MatchUTH, solves the unordered tree homeo-
morphism problem (UTH) with the following complexities:

– In the large pattern case (m > w): O(nm log w/w) time using O(hm/w+m log w/w)
additional space and O(m log w) preprocessing.

– In the small pattern case (m ≤ w): O(n log m) time using O(h+log m) additional
space and O(m log m) preprocessing.

where m and n are the sizes of pattern tree and text tree, and w = Θ(log n) is the
length of computer word.

5 Conclusion

In this paper, we consider the unordered pseudo-tree matching problem and the un-
ordered tree homeomorphism problem. As results, we present efficient algorithms for
both problems that runs in O(nm log w/w) time using O(hm/w +m log w/w) space
and O(m log w) preprocessing with m > w on a unit-cost arithmetic RAM model
with addition. As future work, application to tree pattern matching for practical
subclasses of XPath and XQuery queries are interesting problems.
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A Appendix

A.1 A taxonomy of tree matching problems
There are many variations of tree matching problems, as in [2, 4, 7, 12, 14] (See also
for survey [6]). Below, we summarize some of them. Let P = P [1..m] be an unordered
tree of size m, called a pattern tree, and T = P [1..n] be an unordered tree of size n,
called a text tree.

Definition 6 (conditions for tree matching and inclusion). For any (possibly
many-one) mapping ϕ : V (P ) → V (T ), we define conditions (E0)–(E3) as follows:

(E0) ϕ preserves node labels. That is, for every node x ∈ V (P ), labelP (x) = labelT (ϕ(x))
holds.

(E1) ϕ preserves the parent-child relationship. That is, for every node x, y ∈ V (P ),
(x, y) ∈ EP ⇒ (ϕ(x), ϕ(y)) ∈ ET holds.

(E1’) ϕ preserves the ancestor-descendant relationship. That is, for every node x, y ∈
V (P ), (x, y) ∈ EP ⇒ ϕ(x) ≺ ϕ(y) holds.

(E2) ϕ preserves the precedence relationship. That is, for every node x, y ∈ V (P ) with
x♯y, x � y ⇒ ϕ(x) � ϕ(y) holds.

(E3) ϕ is a one-one mapping. That is, for every node x, y ∈ V (P ), x ̸= y implies
ϕ(x) ̸= ϕ(y) holds.

Most variations of tree pattern matching problems are described in terms of
embeddings [2, 4, 7, 12, 14] as follows.

– A mapping ϕ is said to be an embedding from P to T if it satisfies condition (E0)
above.

– An embedding ϕ is a tree matching if ϕ satisfies (E1), and a tree inclusion if ϕ
satisfies (E1’) instead of (E1).

– ϕ is ordered if it satisfies (E2) and unordered otherwise.
– An embedding ϕ is one-one if ϕ satisfies (E3), and many-one otherwise. We often

omit the term one-one if it is clear from context.

By combination of the above conditions, we can describe a number of tree match-
ing problems. For example, the ordered tree matching [7, 10] is a mapping with (E0),
(E1), (E2), and (E3), and the ordered tree inclusion [2, 7] satisfies (E0), (E1’), (E2),
and (E3). the unordered tree matching [7] is a mapping with (E0), (E1), and (E3),
and the unordered tree inclusion [2, 7] satisfies (E0), (E1’), and (E3). Tree matching
problems with many-one embeddings have been studied in the area of first-order
and second-order logics over combinatorial structures such as strings, trees, cycles,
chains and graphs [4].

Definition 7 (unordered psuedo-tree matching [4]). A unordered pseudo-tree
matching from P to T is a possibly many-one, unordered, tree matching ϕ : V (P ) →
V (T ), that is ϕ satisfies conditions (E0) and (E1). We denote by UPTM(P, T ) the
set of all pseudo-tree matching from P to T

Definition 8 (unordered tree homeomorphism). A unordered tree homeomor-
phism from P to T is a possibly many-one, unordered, tree inclusion ϕ : V (P ) →
V (T ), that is ϕ satisfies conditions (E0) and (E1’). We denote by UTH(P, T ) the
set of all tree homeomorphism from P to T .
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We say that pattern P maps to a node v ∈ V (T ) in T w.r.t. UPTM (w.r.t. UTH,
resp.) if ϕ(root(P )) = v for some ϕ ∈ UPTM(P, T ) (ϕ ∈ UTH(P, T ), resp.). Then,
the node v is called an occurrence of P in T .

A.2 Proof for Lemma 7
Lemma 7. The bit assignment Bit constructed above from M is monotone w.r.t. the
ancestor relation ≼ for P .

Proof. Suppose that x ≽ y and both of them are included in some component U in
M. Then, there exists an upward path π from x to y, and eventually, some edge in
π becomes a cut-edge at some node w in M. This split Uw into U0

w and U1
w such

that x ∈ U0
w and y ∈ U1

w since the latter locates the upper part. We see that U0
w

precedes U1
w in interval [1..m] by Bit. Thus, x ≽ y implies Bit(x) < Bit(y). ⊓⊔

A.3 Proof for Lemma 9
Lemma 9. An overlap-free decomposition CP = C[1] + · · · + C[K] of CP w.r.t. Bit
can be computed by the above procedure in O(m log m) time and O(log m) space.

Proof. First, we can show that Cx = Comp(w) ⊆ Uw because initially any compo-
nent Cx is included in Iroot = [1..m], and Cx is registered as Comp(w) whenever it is
splitted at the first time at some marked node w. Therefore, if Ix = Int(BIT (Cx))
and Iw = Int(BIT (Uw)), then we have Ix ⊆ Iw holds for every marked node w in
M. On the other hand, let Cx, Cx′ be any mutually distinct components associated
to some nodes w and w′, respectively, in M. If both of Cx and Cy belong to C[k]
for some k ≥ 0. then w and w′ also have the same depth k, and thus, w♯w′ holds.
From (3) of Lemma 8, it follows that Iu ∩ Iw. Hence, the result follows. The claimed
complexities are derived as follows. It is not hard to see that the time complexity
is O(m log m) time for constructing a separator tree M by recursive fasion using a
stack. For the space complexity, we use a stack of O(log m) depth to keep nodes of a
path from the root to the current node, and also use O(log m) bitmasks for keeping
the necessary information. Therefore, the space complexity of O(log m) follows. ⊓⊔

A.4 Proof for Theorem 1
[Note: This section is under development. Hiroki Arimura, 2010/05/05]

Suppose a data structure A for set manipulation in Definition 2 with mask size
0 ≤ x ≤ w. In this paper, we assume that |Σ| = O(1) Below, we appreviate Label-
Match, TreeAggr, and Mask by LM, TA, and MK, respectively. For τ ∈ {LM, TA},
let Tτ (x), Sτ (x), and Pτ (x) be the time, space, and preprocessing of operation τ with
mask of size x associated to A. Let SMK(x) be the space required to store mask of
size x. Clearly, SMK(x) = ⌈m/w⌉ space in words.

General complexity. From the construction of the algorithm MatchUPTM in
Fig. 1 and Lemma 2, we have the next claim.

Lemma 12. The algorithm MatchUPTM can be implemented to run in the following
complexities:

– T = O(n · {TLM(m) + TTA(m) + TOther(m)}) time,
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– S = O(h · SMK(m) + {SLM(m) + STA(m) + SOther(m)}) additional space, and
– P = O(PLM(m) + PTA(m) + POther(m)) preprocessing,

where m is the size of P , n and h are the size and the height of T , respectively.

The small pattern case. First, we consider the small pattern case such that
m ≤ w. By putting x = m and substituting Lemma 3, Lemma 4, and Lemma 5 for
Lemma 12, we have the following result.

Lemma 13. In the small pattern case (m ≤ w), the unordered pseudo-tree matching
problem is solvable in

– O(n log m) time using
– O(h + log m) space and
– O(m log m) preprocessing.

The large pattern case. In the large pattern case, we assume that m > w.
For the Constant, Union, Member operations, we have the following.

Lemma 14. In the large pattern case with m > w, we have the following.

Claim 1: The Constant, Union, Member operations can be implemented to run in

– TOther(m) = O(⌈m/w⌉) time.
– SOther(m) = O(⌈m/w⌉) space.
– POther(m) = O(m) preprocessing.

Claim 2: The LabelMatch (LM) operation can be implemented to run in

– TLM(m) = O(⌈m/w⌉) time.
– SLM(m) = O(|Σ| · ⌈m/w⌉) = O(⌈m/w⌉) space.
– PLM(m) = O(|Σ| · m) = O(m) prerocessing.

Claim 3: The TreeAggre (TA) operation can be implemented to run in

– TTA(m) = O(⌈m/w⌉ log m) time.
– STA(m) = O(⌈m/w⌉ log m) space.
– PTA(m) = O(m log w) preprocessing.

Proof. We use the module decomposition technique in Myers [8]. By Jordan’s theo-
rem [5] iteratively, we can split the original pattern tree P into h = O(m/w) small
subtrees of size at most w. Let P = {Q1, . . . , Qh} be the set of resulting small sub-
trees, called components of P . For each component Q ∈ P , root(Q) corresponds
to a cut-edge (y, x) ∈ E(P ). For each component Q ∈ P , we assign a module MQ

to Q. Let parent(Q) = Qy be the component in P that contains y as its leaf and
called the parent component of Q. Since the node x is missing in parent(Q), we
recover this by adding x to the module for parent(Q) so that every internal node in
MQ has both of left and the right child. For each node x in P , we call the position
of x as a parent the real position and the other as a child the dammy position in
the modules. Basically, we apply each operation Opr to each module Q separately.
Then, we copy the value of root(Q) at the child position to the real position of the
node in parent(Q) module by module. This takes at most h = O(⌈m/w⌉) time.
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For instance, we analyze the complexity of the tree aggregation operation as
follows. From Lemma 5, we apply the tree aggregation operation to each module
separately in TTA(w) = O(log w) time, STA(w) = O(log w) space, and PTA(w) =
O(w log w) preprocessing with module size m ≤ w as in small pattern case. By sum-
ming up the complexities for all modules, we finally obtain TTA(m) = O(⌈m/w⌉ log w) =
O(m log w/w) time, STA(m) = O(⌈m/w⌉ log w) = O(m log w/w) space, and PTA(m) =
O(⌈m/w⌉w log w) = O(m log w) preprocessing. Similarly, analysis of other opera-
tions follows from Lemma 3 and Lemma 4. Hence, the result is proved. ⊓⊔

By substituting the complexities of Lemma 14 for Lemma 12, we have the fol-
lowing result.

Lemma 15. In the large pattern case (m > w), the unordered pseudo-tree matching
problem is solvable in

– O(nm log w/w) time using
– O(hm/w + m log w/w) space and
– O(m log w) preprocessing.

Combining above arguments in this subsection, we have the main result of this
paper.

Theorem 1. The algorithm BP-UPTreeMatch solves the unordered pseudo-tree
matching problem with the following complexities:

– In the large pattern case (m > w): O(nm log w/w) time using O(hm/w +
m log w/w) space and O(m log w) preprocessing.

– In the small pattern case (m ≤ w): O(n log m) time using O(h + log m) space
and O(m log m) preprocessing.

where m and n are the sizes of pattern tree and text tree, h is the height of T , and
w = Θ(log n) is the length of computer word. ⋄

A.5 Bit-parallel algorithm for unordered tree homeomor-
phism

In this section, we show detailed definitions and lemmas for Sec. 4. In the unordered
tree homeomorphism problem (UTH), we employ two sets Desc-EmbP,T (v) and
Sub-EmbP,T (v) ⊆ V (P ) = [1..m] for every node v in T defined as follows.

Let v be any node in T . Then, the set Desc-EmbP,T (v), called the descendant
embedding set and the auxiliary set Sub-EmbP,T (v) are defined by:

Desc-EmbP,T (v) = { x ∈ [1..m] | (∃ϕ ∈ UTH(P (x), T ) ϕ(x) = v }. (3)

Sub-EmbP,T (v) = { x ∈ [1..m] | (∃ϕ ∈ UTH(P (x), T )(∃w ≽ v) ϕ(x) = w }.

Lemma 11 in Sec. 4 gives a decomposition formula for UTH as in one for UPTM
in Sec. 3.1.

We can obtain an algorithm MatchUTH for the unordered tree homeomorphism
problem (UTH) from the algorithm MatchUPTM by replacing Line 10 of the recur-
sive subprocedure VisitUPTM with the following line:
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algorithm MatchUTH(P [1..m]: a pattern tree, T [1..n]: a text tree):
Global Variables: P and T ;
Output: all occurrences of P in T w.r.t. unordered tree homeomorphism (UTH);
1: VisitUTH(root(T ));

procedure VisitUTH(v: text node)
Return Value: R ∪ S = Sub-EmbP,T (v);
2: S ← Constant(∅); {See Definition 2}
3: for i = 1, . . . α(v) do
4: S ← Union(S, VisitUTH(v[i]));
5: R← Constant([1..m]);
6: R← LabelMatchP (R, labelT (v)); {See Definition 2}
7: R← TreeAggrP (R, S); {See Definition 2}
8: if Member(R, root(P )) then {See Definition 2}
9: output “A match is found at a node v.”;

10: return Union(R, S); {R ∪ S = Sub-EmbP,T (v)}

Fig. 7. An algorithm for the unordered tree homeomorphism problem (UTH).

10: return R ∪ S; {R ∪ S = Sub-EmbP,T (v)}

In Fig. 7, we show an algorithm MatchUTH for for the unordered tree homeo-
morphism problem (UTH) and its recursive subprocedure VisitUTH.

From Lemma 11, the next lemma immediately follows, we see that the obtained
algorithm correctly solves the unordered tree homeomorphism problem in O(mn)
time and O(hm) additional space. Furthermore, by similar arguments in the previous
section, we can develop a bit-parallel version, called BP-MatchUTH, of the above
algorithm MatchUTH equipped with the bit-parallel implementation of two operators
TreeAggr and LabelMatch.

Theorem 2. (complexity of the unordered tree homeomorphism problem)
A modified version of algorithm, BP-MatchUTH, solves the unordered tree homeo-
morphism problem (UTH) with the following complexities:

– In the large pattern case (m > w): O(nm log w/w) time using O(hm/w +
m log w/w) additional space and O(m log w) preprocessing.

– In the small pattern case (m ≤ w): O(n log m) time using O(h+log m) additional
space and O(m log m) preprocessing.

where m and n are the sizes of pattern tree and text tree, and w = Θ(log n) is the
length of computer word.

Proof. From the construction of the MatchUTH, it is not hard to see that the algo-
rithm has the same complexity to MatchUPTM as given in Lemma 12. Hence, the
result immediately follows from Lemma 14. ⊓⊔


