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Abstract

A primitive sorting network is a fundamental computational model which
is important both in mathematics and in engineering to operate permutations.
In this paper, we propose an efficient method to count the number of ways to
construct minimum primitive sorting networks. We developed πDD vector,
a new data structure to represent and manipulate multisets of permutations,
based on πDDs, which are recently proposed by Minato. We succeeded in
calculating the number 2,752,596,959,306,389,652 for n = 13, which has not
been known in the past, where n is the width of the primitive sorting network.

1 Introduction

Permutations and combinations are two basic concepts in elementary combina-

torics and discrete mathematics [4]. Permutations appear in various problems

such as sorting, ordering, matching, coding and many other real-life situations.

Permutations are also important in group theory since they correspond to bijec-

tive functions and generate symmetric groups. The πDD, proposed by Minato [5],

is a compact and canonical data structure for sets of permutations provided with

a rich family of fundamental algebraic operations over them (e.g., union and inter-

section). πDD offers a convenient means to compute different sets of permutations

of diverse properties by rather naively combining those primitive operations based

on the algebraic characteristic of the target.

A typical situation where the πDD shows its performance is when we would

like to obtain all permutations whose “distance” is at most k from the initial

permutation. For example, the distance of two configurations of a Rubik’s CubeTM

can be defined to be the minimum number of moves that transform one into the

other. A configuration of a Rubik’s Cube can be seen as a permutation of stickers,
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where the initial configuration is the identity, while a legal move on a Rubik’s

Cube is the multiplication of a special kind of permutations. Since πDD provides

a method to calculate the product of two sets of permutations, one can easily

compute all the configurations that can be reached by at most k moves from the

initial configuration [5].

In general, we assume a finite set of “elementary permutations” and are in-

terested in the number of ways to obtain a specific permutation using at most k

multiplications of them. To give a general method to compute the number, this

paper proposes a generalization of πDD, which we call πDD vector. The πDD

vector is a data structure for multisets of permutations, just like the ZDD vec-

tor [6] manipulates multisets of sets. We incrementally construct a πDD vector

for k = 1, 2, . . . that contains a permutation π with multiplicity m iff there are m

ways to represent π as a composition of at most k elementary permutations, which

is performed by a polynomial number of basic operations of the πDD vector.

We demonstrate the advantage of our method through an algorithm that counts

the number of primitive sorting networks, which is an n-input and n-output net-

work to sort any sequence of integers (see Figure 1(a)). It was well studied by

Knuth [3] and is often used in customized hardware of cryptographic systems and

signal processing systems. It consists of n vertical lines (lines, for short) and a

number of horizontal lines (comparators, for short) each of which connects two

adjacent vertical lines. The role of a comparator between the ith line the (i+1)th

line is to sort the ith number and the (i+1)th number of the input sequence. The

primitive sorting network has to output the sorted sequence against an arbitrary

input sequence. We would like to count the number of primitive sorting networks

which have minimum comparators (called minimum).

For mathematical convenience, we consider a ladder lottery (or ghost leg), which

is well-known as “amidakuji” in Japan, instead of a primitive sorting network (see

Figure 1(b)). A horizontal line (bar, for short) of a ladder lottery has the role

of swapping two numbers instead of sorting. A ladder lottery which has n lines

receives the sequence a(1), . . . , a(n) as the input and outputs the sequence 1, . . . , n,

where {a(1), . . . , a(n)} = {1, . . . , n}, which represents the permutation a obviously.

We say a ladder lottery ℓ is minimum if there is no ladder lottery with less bars for

the same permutation. Since it can be shown that a minimum primitive sorting

network is equivalent to a minimum ladder lottery for the reverse permutation πrev,

which is defined by πrev(i) = n − i + 1 for each i, we set our goal to count the

number of minimum ladder lotteries for the reverse permutation.

By B(n) we denote our target number. Yamanaka et al. [9] developed an al-

gorithm based on the reverse search [1] to enumerate all minimum ladder lotter-

ies with n lines for the reverse permutation, by which they obtained B(11) =

5,449,192,389,984. It took about 15 days to find the number B(11) [10]. Their al-

gorithm runs in O(1) time per an output ladder lottery. Matthew showed B(12) =

2,894,710,651,370,536 [8].

We present a simple counting algorithm for this problem which uses a poly-
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Input

Output 1 2 3 4 5

x1 x2 x3 x4 x5

xi xi+1

min{xi , xi+1} max{xi , xi+1}

Comparator

(a)

Input

Output

5 4 2 1 3

Bar

(b)

1 2 3 4 5

{x1 ,..., xn} = {1,..., n}

xi xi+1

xi+1 xi

Figure 1: Examples of a primitive sorting network and a ladder lottery for n = 5.

nomial number of basic operations of the πDD vector, by which we can compute

B(12) in practical time. In addition, we improve the algorithm so that it com-

putes the number of minimum ladder lotteries with n lines by the πDD vector

for permutations over {1, . . . , n − 1} by taking advantage of the special struc-

ture of minimum ladder lotteries. This technique enables us to compute B(13) =

2,752,596,959,306,389,652, which has not been known in the past, in 473,314 sec-

onds (about 5 days) on a 2.4GHz Opteron calculation server with 256GB memory.

2 Preliminaries

In this paper, we fix an integer n ≥ 2.

2.1 Permutation

A permutation is a bijective function π : S → S. This paper consider only permu-

tations on S = {1, . . . , n}. The application of π to an integer x is often denoted

as xπ instead of π(x). The product of two permutations is defined as their func-

tion composition: xπ1π2 = π2(π1(x)). A permutation π is often specified by the

sequence (1π, . . . , nπ). The identical permutation (1, 2, . . . , n) is denoted by πe. A

transposition τx,y for x, y ∈ S and x ̸= y is a permutation such that xτx,y = y,

yτx,y = x, and zτx,y = z for z ̸= x, y.

Proposition 1 (Minato [7]). Any permutation π on S can be uniquely represented

as a composition of transpositions π = τx1,y1 . . . τxk,yk with x1, . . . , xk, y1, . . . , yk ∈
S satisfying that xi > yi for all i = 1, . . . , k and xi < xi+1 for all i = 1, . . . , k − 1.

An adjacent transposition is a transposition τx,y with y = x + 1, which we

abbreviate as τx. The inversion inv(π) of permutation π is defined by the number

of pairs (i, j) such that i, j ∈ S, i < j and iπ > jπ. For any permutation π and

any integer i, either inv(πτi) = inv(π)+ 1 or inv(πτi) = inv(π)− 1 holds because a

pair (i, i+ 1) is swapped and any other pair is not swapped by τi. A permutation

and its inversion has the following well-known property.
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Proposition 2. For any permutation π, π is written as a product of inv(π) adja-

cent transpositions.

2.2 πDD

Minato [7] has introduced a data structure for sets of permutations based on Propo-

sition 1 and named it πDD. Here we give only a definition of the πDD. For more

detailed explanations and implementation of the πDD, the reader is referred to

Minato’s original paper [7]. A πDD is defined to be a labeled directed acyclic

graph satisfying the following properties.

• There are only two vertices 0 and 1 with outdegree 0, called the 0-terminal

and 1-terminal.

• Each vertex except terminals has just 2 outgoing edges, which are labeled by

0 and 1 and called the 0-edge and 1-edge, respectively.

• Each vertex P except for the terminals is labeled by a pair of elements

(xP , yP) ∈ S × S satisfying xP > yP .

• (ordered) If the 0-edge of a vertex P points Q, then either xP = xQ and

yP < yQ or xP > xQ holds. If the 1-edge of a vertex P points R, then

xP > xR holds.

• (zero-suppression) There is no vertex P whose 1-edge directly points the

0-terminal.

• (uniqueness) There are no distinct vertices P and Q such that

– (xP , yP) = (xQ, yQ);

– their 0-edges point the same vertex;

– their 1-edges point the same vertex.

Each vertex P represents a set ΠP of permutations, which is recursively defined

as follows:

• Π0 = ∅ and Π1 = {πe};

• ΠP = ΠQ ∪ (ΠR · τxP ,yP ) = ΠQ ∪ {πτxP ,yP | π ∈ ΠR } for a non-terminal

vertex P whose 0-edge points Q and 1-edge points R.

Minato [7] has proven that every set of permutation has a unique representation

as a πDD, based on which, hereafter we simply write π ∈ P instead of π ∈ ΠP
by identifying a vertex and the πDD consisting of the vertices reachable from

that vertex. Minato presented some set operations on πDD, these operations are

described in Table 1.
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2.3 Multiset

In this section, we define notation for multisets. A multiset is a map on some set A

into the set of the non-negative integers. A is called an underlying set of elements.

For example,

P(x) =


3 if x = a;

1 if x = b;

0 if x = c or x = d

means a multiset which includes three a’s and one b, where the underlying set

is {a, b, c, d}. The number of x’s in P is denoted by P. numberof(x) or simply

P(x). For two multisets P and Q, we define the multiset sum by (P ⊎ Q)(x) =

P(x) +Q(x). For any multiset P whose underlying set is A and any set B ⊆ A,

the subtraction B from P is defined by

(P \B)(x) =

{
0 if x ∈ B;

P(x) otherwise.

The indicator function of a set C is

1C(x) =

{
1 if x ∈ C;
0 otherwise.

The zero multiset is 0(x) = 0 for all x. We denote the set of elements that a

multiset P contains by P. support = {x |P(x) ≥ 1}.
Let Π be all permutations over {1, . . . , n}. For any permutation π ∈ Π and any

multiset P whose underlying set is Π, we define the product of P and π by

(P · π)(x) = P(y) for all x ∈ Π

where y is a permutation such that x = yπ. This means to multiply each “element”

in P by π.

2.4 Multiset of Permutations and πDDs

To represent and compute multisets of permutations efficiently, we introduce a

πDD vector which is an array of πDDs. Let P be a multiset of permutations

over {1, . . . , n}. Let mP = maxπ P(π) and k = ⌊logmP⌋. Note that P(π) is the

number of π’s in P. For any permutation π over {1, . . . , n}, let sπ0 , sπ1 , . . . , sπk ∈
{0, 1} be such that P(π) =

∑
0≤i≤k(2

i × sπi ), namely, the binary representation

of P(π) is (sπk . . . s
π
1s

π
0 )2. We define a πDD vector P⃗ which represents P by P⃗ =

(P0,P1, . . . ,Pk) where all of P0,P1, . . . ,Pk are πDDs such that for any permutation

π and any index i, π ∈ Pi if and only if sπi = 1. We show an example of a πDD

vector in Figure 2. In πDD, two vertices P = Q if a set of permutations ΠP is

equal to ΠQ. We treat with an array of permutations so we handle a number of

sets of permutations simultaneously in a monolithic memory space.
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1, 3

2, 3 2, 3

1 0

1, 2

1, 3

P0 P1

P2

Figure 2: πDD vector P⃗.

Table 1: Primitive πDD operations.
P.top Returns IDs (x, y) at the root node of P.
P ∪Q Returns {π | π ∈ P or π ∈ Q}.
P ∩Q Returns {π | π ∈ P and π ∈ Q}.
P \ Q Returns {π | π ∈ P and π /∈ Q}.
P.τ(x, y) Returns P · τx,y.
P ∗ Q Returns {αβ | α ∈ P and β ∈ Q}.
P.cofact(x, y) Returns {πτx,y | π ∈ P and xπ = y}.
P.count Returns the number of permutations.

We introduce multiset operations on πDD vectors. Let P and Q be multisets of

permutations, and P⃗ and Q⃗ be πDD vectors which represent P andQ, respectively.

We describe the multiset sum operation P ⊎Q on πDD vectors as Algorithm 1.

This algorithm implements a simple adder circuit for P and Q. In this algorithm,

πDDRi represents the set of permutations π such that the ith digit sπi of (P⊎Q)(π)

is 1, and πDD C is the set of permutations that P⊎Q is carried up in the ith digit.

By repeating this process, we obtain the πDD vector R⃗ = (R0,R1 . . . ,Rk) which

represents P ⊎Q.

Algorithm 1 Multiset Sum ⊎ (P⃗ = (P0, . . . ,PkP ), Q⃗ = (Q0, . . . ,QkQ))

k ← max (kP , kQ), C ← ∅.
for i = 0, 1, . . . , k do
Ri ← Pi ⊕Qi ⊕ C, C ← (Pi ∩Qi) ∪ (Qi ∩ C) ∪ (Pi ∩ C).

end for
if C ̸= ∅ then
k ← k + 1, Rk ← C

end if
return πDD vector R⃗ = (R0,R1 . . . ,Rk)

Similarly, we can compute subtraction and multiplication on multisets of per-

mutations. We describe some primitive πDD vector operations in Table 2. In this

table, we consider that a multiset is identical to the corresponding πDD vector.
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Table 2: Primitive πDD vector operations.
A.to multiset Returns 1A.

P⃗ · τx,y Returns P′ s.t. P′(π · τx,y) = P(π)

P⃗ ⊎ Q⃗ Returns P ⊎Q.

P⃗.support Returns {π | P(π) ≥ 1}.
P⃗ \ A Returns P \A.
P⃗.numberof (π) Returns P(π).

3 Counting minimum ladder lotteries

3.1 Definition of a ladder lottery

In the paper, we treat only ladder lotteries with n lines. We define an alphabet

Σn = {t1, . . . , tn−1}. A ladder lottery (ladder, for short) ℓ which has n lines and k

bars is a string ta1 · · · tak over Σn, where ai ∈ {1, . . . , n− 1} for each i = 1, . . . , k.

The ith character tai of ladder ta1 · · · tak means that the ith bar connects the aith

and the (ai + 1)th lines.

For ladder ℓ = ta1 · · · tak , we write ℓ[i] = ai and ℓ. sub(i, j) = taitai+1 · · · taj . We

denote the length of ℓ by |ℓ|. Let Ln = Σ∗
n denote the set of all ladders with n

lines. For ℓ = ta1 · · · tak ∈ Ln, we define perm(ℓ) = τa1 · · · τak , which is called the

permutation represented by ℓ. For any permutation π and any ladder ℓ ∈ Ln such

that perm(ℓ) = π, if

∀ℓ′ ∈ Ln, perm(ℓ′) = π =⇒ |ℓ| ≤ |ℓ′|

is satisfied, then ℓ is a minimum ladder for π.

We now prove that each bar of a minimum ladder always swaps a pair (a, b)

such that a < b and increases the inversion of its permutation by one.

Lemma 3. Let k ≤ n(n−1)/2 be an integer. Then, ta1 · · · tak is a minimum ladder

if and only if inv(perm(ta1 · · · tai)) = i holds for all i = 1, . . . , k.

Proof. Suppose that ta1 · · · tak is minimum. Let xi = inv(perm(ta1 · · · tai)) for i =
1, . . . , k − 1. Trivially, x1 = inv(perm(ta1)) = 1 holds. Since for any permutation

π and any adjacent transposition τ , either inv(πτ) = inv(π) + 1 or inv(πτ) =

inv(π) − 1 is satisfied, xi+1 − xi = ±1 holds for i = 1, . . . , k − 1. Therefore,

xk = x1 +
∑k−1

i=1 (xi+1 − xi) ≤ k. Suppose that xk = h for some integer h < k.

By Proposition 2, we can write perm(ta1 · · · tak) = τb1 · · · τbh for some b1, . . . , bh.

Therefore, ladder tb1 · · · tbh represents perm(ta1 · · · tak). However, this contradicts

that ta1 · · · tak is minimum because tb1 · · · tbh has just h bars. Hence, xk = k. Since

xi+1−xi = ±1 for all i = 1, . . . , k−1 and x1 = 1, we have xi = i for all i = 1, . . . , k

and obtain the necessity.

For the sufficiency, suppose that inv(perm(ta1 · · · tak)) = k and ta1 · · · tak is

not minimum. Then, by the definition of a minimum ladder, there exists ladder
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t3 t5 t1 t3 t1 t5 t1 t3 t5~ ~

2 1 4 3 6 5 2 1 4 3 6 5 2 1 4 3 6 5

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Figure 3: Ladder lotteries which belong to the same equivalence class. The right-
most one is normal.

tc1 · · · tch such that perm(tc1 · · · tch) = perm(ta1 · · · tak) for some h < k. By the

same discussion as above, inv(perm(tc1 · · · tch)) ≤ h < k. However, inv(perm(tc1 · · ·
tch)) = inv(perm(ta1 · · · tak)) = k. This is a contradiction.

For ℓ = ta1 · · · tai−1taitai+1tai+2 · · · tak ∈ Ln, we define swap(ℓ, i) = ta1 · · · tai−1tai+1

taitai+2 · · · tak . If either ℓ[i + 1] < ℓ[i] − 1 or ℓ[i + 1] > ℓ[i] + 1 holds, then

perm(ℓ) = perm(swap(ℓ, i)), i.e., ℓ and swap(ℓ, i) represents the same permu-

tation (see Figure 3). For ℓ, ℓ′ ∈ Ln, we define ℓ ∼ ℓ′ iff there exist an in-

teger m ≥ 1, ladders ℓ1, . . . , ℓm, and integers z1, . . . , zm−1 such that ℓ = ℓ1,

ℓ′ = ℓm, ℓi+1 = swap(ℓi, zi) for i = 1, . . . ,m − 1, and (ℓi[zi + 1] < ℓi[zi] − 1 or

ℓi[zi + 1] > ℓi[zi] + 1). Clearly, the relation ∼ is an equivalence relation of ℓ. We

denote the equivalence class that contains ℓ by Cn(ℓ) = {ℓ′ ∈ Ln | ℓ ∼ ℓ′}.
We regard two ladders which belong to the same equivalence class as one ladder.

To be accurate, for a given permutation π, the number of ladder for π should be

defined as |{Cn(ℓ) | ℓ ∈ Ln, perm(ℓ) = π}|. To determine a representative of each

equivalence class and count them, we introduce a normal form of a ladder.

Definition 4. A ladder ℓ ∈ Ln is in the normal form (simply, normal) if ℓ satisfies

ℓ[i+ 1] ≥ ℓ[i]− 1 for each i = 1, . . . , |ℓ| − 1.

We illustrate all normal minimum ladders for the reverse permutation for n = 4

in Figure 4. We now prove that there exists a bijection from the set of normal

ladders to the set of equivalence classes Cn in Lemmas 5 and 7, namely, the number

of equivalence classes Cn equals to that of normal ladders. Thus, we focus on

counting distinct normal ladders.

Lemma 5. For any ladder ℓ, there exists a normal ladder in Cn(ℓ).

Proof. For ℓ′ ∈ Ln and an integer m, let P (ℓ′,m) be the proposition that ℓ′[i+1] ≥
ℓ′[i] − 1 holds for each i = 1, . . . ,m. We now show the following statement:

for a ladder ℓ′, if ℓ′ is not normal, P (ℓ′,m) is satisfied and P (ℓ′,m + 1) is not

satisfied, then there exists a ladder ℓ′′ such that ℓ′ ∼ ℓ′′ and P (ℓ′′,m + 1) are

satisfied. Suppose that ℓ′ has k bars. If m = 0 or ℓ′[m + 2] < ℓ′[i] − 1 for

all i = 1, . . . ,m + 1, then ℓ′′ = tℓ′[m+2]tℓ′[1]tℓ′[2] · · · tℓ′[m+1]tℓ′[m+3]tℓ′[m+4] · · · tℓ′[k]
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satisfies ℓ′ ∼ ℓ′′ and P (ℓ′′,m + 1). Otherwise, let j be an integer such that

ℓ′[m + 2] ≥ ℓ′[j] − 1 and ℓ′[m + 2] < ℓ′[i] − 1 for all i = j + 1, . . . ,m + 1.

Then, ℓ′′ = tℓ′[1] · · · tℓ′[j]tℓ′[m+2]tℓ′[j+1]tℓ′[j+2] · · · tℓ′[m+1]tℓ′[m+3]tℓ′[m+4] · · · tℓ′[k] satis-
fies ℓ′ ∼ ℓ′′ and P (ℓ′′,m+ 1). Therefore, the statement is obtained for both cases.

Note that for a ladder ℓ′ with k bars, ℓ′ is normal if P (ℓ′, k − 1) is satisfied.

Applying the statement inductively, for any ladder ℓ, we can obtain the normal

ladder ℓ′ such that ℓ ∼ ℓ′.

Before we show uniqueness of the normal form of a ladder, we prove the following

lemma.

Lemma 6. For any integers i and j (> i), and any normal ladder ℓ = ta1 · · · tak ,
suppose that ℓ[i] = y and ℓ[j] = x. Then, all of tx+1, tx+2, . . . , ty−2, ty−1 occur in

ℓ. sub(i+ 1, j − 1) if x+ 1 < y.

Proof. Suppose that at least one of tx+1, tx+2, . . . , ty−1 does not occur in ℓ. sub(i+

1, j − 1). Let c be an integer such that tc does not occur and all of tc+1, . . . , ty−1

occur in ℓ. sub(i + 1, j − 1). Let i′ be the position where the last tc+1 occurs

in ℓ. sub(i + 1, j − 1). We now prove ai′′ > c for any i′′ ≥ i′ + 1 by induction.

By the property of a normal ladder, ai′+1 ≥ ai′ − 1 = (c + 1) − 1 = c. Since

ai′+1 ̸= c, ai′+1 > c. Therefore, this is true for i′ + 1. Assume that ai′′ > c. Then,

ai′′+1 ≥ ai′′ − 1. Since ai′′+1 ̸= c, ai′′+1 > c holds. Thus, ai′′ > c is satisfied for any

i′′ ≥ i′ + 1. However, since i′ < j and aj = x < c, this is a contradiction.

Lemma 7. For any two distinct normal ladders ℓ, ℓ′ ∈ Ln, Cn(ℓ) ̸= Cn(ℓ
′).

Proof. Suppose that ℓ and ℓ′ belong to the same equivalence class Cn(ℓ). Since ℓ

and ℓ′ are distinct, there exist h ≥ 0 and x, y ∈ {1, . . . , n− 1} such that

ℓ = ta1ta2 · · · tahtx · · · ,
ℓ′ = ta1ta2 · · · tahty · · · .

Without loss of generality, x < y. Since ℓ and ℓ′ belong to the same equivalence

class, there exist ℓ1, . . . , ℓm ∈ Cn(ℓ) and integers z1, . . . , zm−1 such that ℓ1 = ℓ,

ℓm = ℓ′, ℓi+1 = swap(ℓi, zi) for all i ∈ {1, . . . ,m − 1}, and ℓi ∼ ℓi+1 for all

i ∈ {1, . . . ,m−1}. Therefore, tx must occur after the (h+1)th character in ℓ′. Let

i be the position where the first tx occurs after the hth character in ℓ′. By Lemma 6,

tx+1 must occur in ℓ′. sub(h + 1, i − 1). For a ladder ℓ′′, let α(ℓ′′) be the position

where the first tx occurs and β(ℓ′′) be the position where the first tx+1 occurs in

ℓ′′. sub(h+1, |ℓ′′|). Then, let P (ℓ′′) be the proposition α(ℓ′′) < β(ℓ′′). Clearly, P (ℓ)

holds and P (ℓ′) does not hold. Therefore, there exists j such that P (ℓj) holds and

P (ℓj+1) does not hold. Then, for some i′, ℓj [i
′] = x, ℓj [i

′+1] = x+1, ℓj+1[i
′] = x+1

and ℓj+1[i
′ + 1] = x. Hence ℓj ̸∼ ℓj+1. This is a contradiction.
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Figure 4: All normal minimum ladders for the reverse permutation when n = 4.

Let S
(k)
i be the set of all ladders which has k bars and whose last character

is ti. For any normal ladder ℓ, if the (j + 1)th character of ℓ is ti, then the jth

character of ℓ must be one of t1, . . . , ti or ti+1. On the other hand, for any normal

ladder s whose last character is ti, all of sti−1, sti, . . . , stn−1 become normal ladders.

Therefore, S
(k)
i can be computed by the following recurrence relation:

S
(k)
i =


∅ if i = n;

{ti} if k = 1 and 1 ≤ i ≤ n− 1;

{sti | s ∈
∪i+1

j=1 S
(k−1)
j } otherwise.

∪n−1
j=1 S

(k)
j is the set of all normal ladders which has k bars. Therefore, { ℓ ∈∪n−1

j=1 S
(k)
j | ∀ℓ′ ∈

∪k−1
i=1

∪n−1
j=1 S

(i)
j , perm(ℓ) ̸= perm(ℓ′) } is the set of normal mini-

mum ladders whose inversion is k. Our basic idea to count the number of minimum

ladder lotteries is based on this formula. However computing every set S
(k)
j is too

much for our purpose.

3.2 Counting minimum ladder lotteries using πDD

To count the number of minimum ladders for a given permutation π, it is enough

to memorize perm(s) instead of s ∈ S(k)
j because perm(sti) = perm(s)τi holds for

any ladder s and any integer i. Therefore, we adopt the method by multisets of

permutations described in the introduction. P̄
(k)
i denotes the multiset of permu-

tations which are represented by each element in S
(k)
i . This can be computed by

the following recurrence relation:

P̄
(k)
i =


∅ if i = n;

1{τi} if k = 1 and 1 ≤ i ≤ n− 1;

(
⊎i+1

j=1 P̄
(k−1)
j ) · τi otherwise.

We can efficiently compute P̄
(k)
i using πDD vectors described in the previous sec-

tion.

Lemma 8. For any i ∈ {1, . . . , n− 1}, any integer k and any permutation π,

P̄
(k)
i (π) = |{s | s ∈ S(k)

i , perm(s) = π}|.
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Proof. We use induction on k. When k = 1, the statement holds clearly. Suppose

that P̄
(k−1)
i (π) = |{s | s ∈ S

(k−1)
i , perm(s) = π}| holds for any i when k ≥ 2.

Computing P̄
(k)
i (π) according to the definition of the operations of multisets, we

obtain

P̄
(k)
i (π) = ((P̄

(k−1)
1 ⊎ · · · ⊎ P̄

(k−1)
i+1 ) · τi)(π)

= (P̄
(k−1)
1 · τi)(π) + · · ·+ (P̄

(k−1)
i+1 · τi)(π)

= P̄
(k−1)
1 (π′) + · · ·+ P̄

(k−1)
i+1 (π′)

=

i+1∑
j=1

|{s | s ∈ S(k−1)
j , perm(s) = π′}|,

where π = π′τi.

Since the last character of any ladder s ∈ S(k−1)
j is tj for any j, S

(k−1)
j ∩S(k−1)

j′ =

∅ holds if j ̸= j′. Therefore,

i+1∑
j=1

|{s | s ∈ S(k−1)
j , perm(s) = π′}| = |{s | s ∈

i+1∪
j=1

S
(k−1)
j , perm(s) = π′}|

= |{sti | sti ∈ S(k)
i , perm(s) = π′}|.

Since perm(s) = π′ ⇐⇒ perm(sti) = π′τi = π, we have

P̄
(k)
i (π) = |{s | s ∈ S(k)

i , perm(s) = π}|.

∪n−1
i=1 P̄

(k)
i includes permutations which are represented by all normal ladders

with k bars. We now show that in order to obtain only minimum normal ladders,

we can remove all permutations which are not represented by minimum ladders

from
∪n−1

i=1 P̄
(k)
i for every k. We define a multiset P

(k)
i and a set D(k) by

P
(k)
i =


∅ if i = n;

1{τi} if k = 1 and 1 ≤ i ≤ n− 1;

((
⊎i+1

j=1P
(k−1)
j ) · τi) \D(k−2) otherwise,

D(k) =

{
{πe} if k = 0;∪n−1

i=1 (P
(k)
i . support) if k ≥ 1.

D(k) becomes the set of all permutations whose inversion is k.

Lemma 9. For any i ∈ {1, . . . , n− 1}, any integer k and any permutation π,

P
(k)
i (π) =

{
|{s | s ∈ S(k)

i , perm(s) = π}| if inv(π) = k;

0 otherwise.
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Proof. For a multiset P, we use notation Φ(P) instead of P. support. We now

prove that D(k) equals to the set of all permutations whose inversion is k. We

use induction on k. Since the permutation whose inversion is 0 is only πe, D
(0) is

the set of all permutations whose inversion is 0. Suppose that D(k−1) is the set

of all permutations whose inversion is k − 1. Consider a permutation π̄ ∈ D(k) =∪n−1
i=1 Φ(P

(k)
i ). For some i and j, π̄ ∈ Φ(P

(k−1)
j · τi) \ D(k−2). By the induction

hypothesis, for any element π′′ in Φ(P
(k−1)
j · τi), either inv(π′′) = k or inv(π′′) =

k − 2 holds. By the induction hypothesis, D(k−2) includes all permutations whose

inversion is k − 2. Therefore, the inversion of all permutations in Φ(P
(k−1)
j · τi) \

D(k−2) is k. Hence, inv(π̄) = k. Since we chose π̄ arbitrarily, we can say that the

inversion of any element in D(k) is k.

Consider a permutation π′ such that inv(π′) = k. By Proposition 2, we can

write π′ = τa1 · · · τak for some a1, . . . , ak. Since inv(τa1 · · · τak−1
) = k − 1 holds,

τa1 · · · τak−1
∈ D(k−1) is satisfied by the induction hypothesis. Then, τa1 · · · τak−1

∈
Φ(P

(k−1)
ak−1 ) holds. Therefore, π′ = τa1 · · · τak ∈ Φ(P

(k−1)
ak−1 · τak). Since inv(π′) = k is

also satisfied, π′ ̸∈ D(k−2) holds by the induction hypothesis. Therefore, π′ ∈ P
(k)
ak

and π′ ∈ D(k). We can say that all permutations whose inversion is k are in D(k).

We obtain that D(k) equals to the set of all permutations whose inversion is k.

We use induction on k. When k = 1, the statement holds clearly. Suppose that

P
(k−1)
i (π) =

{
|{s | s ∈ S(k−1)

i , perm(s) = π}| if inv(π) = k − 1;

0 otherwise.

Computing P
(k)
i (π), we obtain

P
(k)
i (π) = (((P

(k−1)
1 ⊎ · · · ⊎P

(k−1)
i+1 ) · τi) \D(k−2))(π)

=

{
0 if inv(π) = k − 2

(P
(k−1)
1 · τi)(π) + · · ·+ (P

(k−1)
i+1 · τi)(π) otherwise

=

{
0 if inv(π) = k − 2

P
(k−1)
1 (π′) + · · ·+P

(k−1)
i+1 (π′) otherwise,

where π = π′τi. By the induction hypothesis,

P
(k)
i (π) =


∑i+1

j=1 |{s | s ∈ S
(k−1)
j , perm(s) = π′}| if inv(π) ̸= k − 2

and inv(π′) = k − 1

0 otherwise.

Since π = π′τi and inv(π) = inv(π′)± 1,

inv(π) ̸= k − 2 and inv(π′) = k − 1 =⇒ inv(π) = k.

Thus, we obtain

P
(k)
i (π) =

{∑i+1
j=1 |{s | s ∈ S

(k−1)
j , perm(s) = π′}| if inv(π) = k

0 otherwise.
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Therefore,

P
(k)
i (π) =

{
|{s | s ∈ S(k)

i , perm(s) = π}| if inv(π) = k;

0 otherwise.

Note that if inv(π) = k, all ladders in {s | s ∈ S
(k)
i ,perm(s) = π} are mini-

mum for any i by Lemma 3. Therefore, if inv(π) = k, P
(k)
i (π) gives the number

of minimum ladders whose last character is ti for π. We present an algorithm

CountLadder to compute P
(k)
i and count minimum normal ladders.

Algorithm 2 CountLadder(n, π)

D1 ← ∅, D2 ← ∅
for i = 1, . . . , n− 1 do

Pi ← 1{τi}
end for
Pn ← 0
for k = 2, . . . , inv(π) do
D ← 0, Psum ← P1

for i = 1, . . . , n− 1 do
Psum ← Psum ⊎Pi+1

Pi ← (Psum · τi) \D2

D ← D ∪ (Pi. support)
end for
D2 ← D1, D1 ← D

end for
return (

⊎n−1
j=1 Pj). numberof(π)

Theorem 10. For a given integer n and a permutation π, CountLadder(n, π)

returns the number of minimum normal ladders for π with n lines correctly.

Proof. After the end of the algorithm, Pi corresponds to P
(inv(π))
i . By Lemma 9,

(
⊎n−1

j=1 Pj)(π) gives the number of minimum normal ladders for π.

3.3 Counting minimum ladder lotteries using diagonal bars

Consider any permutation π. For any minimum ladder ℓ = ta1 · · · tak , all of

t1, . . . , t1π−1 must occur in ℓ in this order (see Figure 5(a)).

Lemma 11. Every minimum ladder ℓ is uniquely represented as

ℓ = α0t1α1t2α2 . . . td−1αd−1,

where d = 1(perm(ℓ)), αi ∈ Σ∗
n and neither ti nor ti+1 occurs in αi.
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t2 t1 t4 t3 t2 t1 t4 t3 t2 t1 ~

4 5 3 1 2

1 2 3 4 5

0 1 2 3

(a)

t2 t4 t3 t4 t1 t2 t3 t1 t2 t1

4 5 3 1 2

1 2 3 4 5

(b)

0 1 2 2 3

d = 1    = 4

5 3 1 2

1 2 3

t1 t3 t2 t3    t1 t2 t1

4

5 4

(c)

Figure 5: Diagonal bars and β-γ decomposition of a ladder.

Proof. All of t1, . . . , td−1 occur in ℓ because d = 1(perm(ℓ)). We define pi by

pi =



0 if i = 0;

the position where the first ti occurs in ℓ if i = 1;

the position where the first ti occurs

after the pi−1th character in ℓ if 2 ≤ i ≤ d− 1;

|ℓ|+ 1 if i = d.

Let ℓx = tb1tb2 · · · tbx for any integer x ≤ k. We define g(x) = 1(perm(ℓx)), i.e., the

number to which 1 is mapped by the permutation represented by the ladder which

has the first x bars of ℓ.

We now prove the following statements (i) and (ii) are satisfied for i = 1, . . . , d−
1: (i) g(pi) = i+ 1 and (ii) ti does not occur between the (pi + 1)th character and

the (pi+1 − 1)th character in ℓ.

First, we prove (i) for i = 1. By the definition of p1, t1 does not occur between

the first character and the (p1−1)th character in ℓ. Therefore, g(1) = g(2) = · · · =
g(p1 − 1) = 1 and g(p1) = 2. Hence, for i = 1, (i) holds.

Next, we prove that if (i) holds for some i ∈ {1, . . . , d − 1}, (ii) holds for i.

Assume that (i) holds for some i ∈ {1, . . . , d− 1}. Suppose that ti occurs between

the (pi + 1)th character and the (pi+1 − 1)th character in ℓ. Let q be the position

where the first ti occurs between the (pi + 1)th character and the (pi+1 − 1)th

character in ℓ. Since neither ti nor ti+1 occurs between the (pi + 1)th character

and (q− 1)th character in ℓ, g(pi) = g(pi + 1) = · · · = g(q− 1) = i+1 hold by the

assumption g(pi) = i+1. Since the qth character of ℓ is ti, perm(ℓq) = perm(ℓq−1)τi
holds. Let π = perm(ℓq−1), and a and b be the integers such that aπ = i and

bπ = i + 1. By the definition of g, b = 1 and a > 1. Therefore, multiplying

π by τi decreases its inversion by 1. However, since ℓ is minimum, by Lemma 3,

inv(perm(ℓq−1)) = q−1 and inv(perm(ℓq)) = q. This is a contradiction. Therefore,

ti does not occur between the (pi + 1)th character and the (pi+1 − 1)th character

in ℓ.
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Finally, we prove that if both (i) and (ii) hold for some i ∈ {1, . . . , d − 2}, (i)
holds for i+ 1. Assume that both (i) and (ii) hold for some i ∈ {1, . . . , d− 2}. By
this assumption and the definition of pi+1, neither ti nor ti+1 occurs between the

(pi +1)th character and the (pi+1− 1)th character. Therefore, g(pi) = g(pi +1) =

· · · = g(pi+1 − 1) = i + 1. Since the pi+1th character is ti+1, g(pi+1) = g(pi+1 −
1) + 1 = i+ 2.

We proved that both (i) and (ii) are satisfied for i = 1, . . . , d − 1. Since (ii)

holds for i = 1, . . . , d− 1, we obtain the statement of the lemma immediately.

We consider a minimum ladder ℓ = α0t1α1t2α2 . . . td−1αd−1 where α0, . . . , αd−1

satisfy the condition of Lemma 11. Let βi be the string which is obtained by

removing all of t1, . . . , ti−1 from αi, and γi be the string which is obtained by

removing all of ti+2, . . . , tn−1 from αi. For any i, any j (≤ i) and any j′ (≥ i+ 1),

αi ∼ βiγi, tjβi ∼ βitj , γitj′ ∼ tj′γi, and βiγj ∼ γjβi hold. Therefore,

α0t1α1t2α2 . . . td−1αd−1 ∼ β0γ0t1β1γ1t2β2γ2t3 · · · td−1βd−1γd−1

∼ β0β1 · · ·βd−1t1t2 · · · td−1γ0γ1 · · · γd−1.

This transformation is called β-γ decomposition of ladder ℓ (see Figure 5(b)).

We call the bars t1t2 · · · td−1 in the middle of ℓ diagonal bars. Note that all of

β0, . . . , βd−1, γ0, . . . , γd−1 are uniquely determined by Lemma 11. We introduce

another normal form of a ladder based on β-γ decomposition.

Definition 12. Let ℓ be a minimum ladder, π = perm(ℓ) and d = 1π. Then, ℓ is

a diagonal normal form (d-normal, for short) if ℓ = ta1 · · · takt1t2 · · · td−1tb1 · · · tbk′
for some integers k and k′ and the following conditions are satisfied: (i) for any

i ∈ {1, . . . , k}, ai ∈ {2, . . . , n− 1}, (ii) the ladder ta1 · · · tak is normal, (iii) for any

i ∈ {1, . . . , k′}, bi ∈ {1, . . . , d− 2}, and (iv) the ladder tb1 · · · tbk′ is normal.

We now prove that the number of equivalence classes Cn equals to that of

d-normal ladders in Lemmas 13 and 14 similar to Lemmas 5 and 7. similar to

Lemma 5.

Lemma 13. For any ladder ℓ, there exists a d-normal ladder in Cn(ℓ).

Proof. For any ladder ℓ, suppose that ℓ is decomposed into ℓ = β0β1 · · ·βd−1t1t2 · · ·
td−1γ0γ1 · · · γd−1, where d = 1(perm(ℓ)). By Lemma 5, there exist normal lad-

ders ℓβ and ℓγ such that ℓβ ∼ β0β1 · · ·βd−1 and ℓγ ∼ γ0γ1 · · · γd−1. The ladder

ℓβt1t2 · · · td−1ℓγ is d-normal and ℓβt1t2 · · · td−1ℓγ ∈ Cn(ℓ).

Lemma 14. For any two distinct d-normal ladders ℓ, ℓ′ ∈ Ln, Cn(ℓ) ̸= Cn(ℓ
′).

Proof. Suppose that ℓ ∼ ℓ′, and let ℓ = α0t1α1t2α2 · · · td−1αd−1 and ℓ
′ = α′

0t1α
′
1t2α

′
2 · · ·

td−1α
′
d−1, where d = 1(perm(ℓ)). Then, suppose that ℓ and ℓ′ are decomposed into

ℓ ∼ β0β1 · · ·βd−1t1t2 · · · td−1γ0γ1 · · · γd−1 and ℓ
′ ∼ β′0β′1 · · ·β′d−1t1t2 · · · td−1γ

′
0γ

′
1 · · · γ′d−1,

respectively.
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We now prove β0β1 · · ·βd−1 ∼ β′0β′1 · · ·β′d−1 and γ0γ1 · · · γd−1 ∼ γ′0γ′1 · · · γ′d−1. It

is enough to show the case when ℓ′ = swap(ℓ, z) for some z, namely, the following

cases (i) and (ii): (i) αi = α′
i for i ∈ {1, 2, . . . , p−1, p+1, . . . , d−1}, αp = α′′txtyα

′′′

and α′
p = α′′tytxα

′′′ for some strings α′′ and α′′′ and some integers x and y, and (ii)

αi = α′
i for i ∈ {1, 2, . . . , p− 2, p+ 1, . . . , d− 1} and α′

p−1 = αp−1tx and txα
′
p = αp

for some integer x ̸= p− 1.

In the case of (i), this clearly holds because β-γ decompositions of ℓ and ℓ′ are

the same. In the case of (ii), both βi = β′i and γi = γ′i hold for i ∈ {1, 2, . . . , p −
2, p + 1, . . . , d − 1}. If x ∈ {1, . . . , i − 2}, then β′p−1 = βp−1, β

′
p = βp, γ

′
p−1 =

γp−1tx and txγ
′
p = γp. Therefore, β0β1 · · ·βd−1 ∼ β′0β′1 · · ·β′d−1 and γ0γ1 · · · γd−1 ∼

γ′0γ
′
1 · · · γ′d−1 hold. If x ∈ {i+1, . . . , d− 1}, then β′p−1 = βp−1tx, txβ

′
p = βp, γ

′
p−1 =

γp−1 and γ′p = γp. Therefore, β0β1 · · ·βd−1 ∼ β′0β
′
1 · · ·β′d−1 and γ0γ1 · · · γd−1 ∼

γ′0γ
′
1 · · · γ′d−1.

Hence, by Lemmas 5 and 7, for normal ladders ℓβ and ℓβ′ such that ℓβ ∼
β0β1 · · ·βd−1 and ℓβ′ ∼ β′0β′1 · · ·β′d−1, ℓβ = ℓβ′ holds, and for normal ladders ℓγ and

ℓγ′ such that ℓγ ∼ γ0γ1 · · · γd−1 and ℓγ′ ∼ γ′0γ
′
1 · · · γ′d−1, ℓγ = ℓγ′ holds. Therefore,

for d-normal ladders ℓ′′ and ℓ′′′ such that ℓ′′ ∼ ℓ and ℓ′′′ ∼ ℓ′, ℓ′′ = ℓ′′′ holds.

We fix our target permutation π in the rest of this section. We will count min-

imum ladders for π. By Lemmas 13 and 14, it is enough to count all d-normal

ladders. Let d = 1π. Consider a d-normal ladder ℓ = ℓ1t1 · · · td−1ℓ2 such that

perm(ℓ) = π, where ℓ1 = ta1 · · · tak and ℓ2 = tb1 · · · tbk′ . Note that ai ≥ 2 and

bi ≤ d − 2 for each i. We now construct a ladder ta1−1ta2−1 · · · tak−1tb1tb2 · · · tbk′ ,
which has n − 1 lines and is obtained by removing diagonal bars from ℓ and

shifting ℓ1 to the left (see Figure 5(c)). To distinguish ℓ′1 = ta1−1ta2−1 · · · tak−1

from ℓ2, we insert the special character δ into ℓ′1ℓ2 between ℓ′1 and ℓ2 as ℓ′1δℓ2,

which we call an r-ladder. Note that ℓ′1 is normal iff ℓ1 is normal. Since a map

ta1 · · · takt1 · · · td−1tb1 · · · tbk′ 7→ ta1−1ta2−1 · · · tak−1δtb1tb2 · · · tbk′ is a one-to-one cor-
respondence, the number of all r-ladders is equal to the number of all minimum

d-normal ladders.

We define the permutation ψπ over {1, . . . , n− 1} by

xψπ =

{
(x+ 1)π if (x+ 1)π < d;

(x+ 1)π − 1 if (x+ 1)π > d.

By a simple calculation, perm(ta1−1ta2−1 · · · tak−1tb1tb2 · · · tbk′ ) = ψπ if and only if

perm(ta1 · · · takt1 · · · td−1tb1 · · · tbk′ ) = π. Therefore, the number of all r-ladders for

ψπ is equal to that of all minimum d-normal ladders for π.
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We enumerate all r-ladders for ψπ by the following recurrence relations:

S
(k)
i =


∅ if i = n− 1;

{ti} if k = 1 and 1 ≤ i ≤ n− 2;

{sti | s ∈
∪i+1

j=1 S
(k−1)
j } otherwise,

Ŝ
(k)
i = {sδ | s ∈ S(k)

i },

V
(k)
i =


∅ if i ≥ d− 1;

{δti} if k = 1 and 1 ≤ i ≤ d− 2;

{sδti | s ∈
∪n−2

j=1 S
(k−1)
j }

∪{sti | s ∈
∪i+1

j=1 V
(k−1)
j } otherwise.

We introduce multisets of permutations similar to CountLadder.

P
(k)
i =


∅ if i = n− 1;

1{τi} if k = 1 and 1 ≤ i ≤ n− 2;

((
⊎i+1

j=1P
(k−1)
j ) · τi) \D(k−2) otherwise,

Q
(k)
i =


∅ if i = n− 1;

1{τi} if k = 1 and 1 ≤ i ≤ n− 2;

(((
⊎n−2

j=1 P
(k−1)
j )

⊎(
⊎i+1

j=1Q
(k−1)
j )) · τi) \D(k−2) otherwise,

D(k) =

{
{πe} if k = 0;∪n−2

i=1 (P
(k)
i . support) if k ≥ 1.

Lemma 15. For any i ∈ {1, . . . , n−2}, any integer k and any permutation π̄ over

{1, . . . , n− 1},

P
(k)
i (π̄) =

{
|{s | s ∈ Ŝ(k)

i , perm(s) = π̄}| if inv(π̄) = k;

0 otherwise,
(1)

Q
(k)
i (π̄) =

{
|{s | s ∈ V (k)

i , perm(s) = π̄}| if inv(π̄) = k;

0 otherwise.
(2)

Proof. We can obtain the statement similar to Lemma 9.

By the above discussion, ((
⊎n−2

j=1 P
(k)
j )⊎(

⊎n−2
j=1 Q

(k)
j ))(ψπ) is the number of min-

imum d-normal ladders for π, where k = inv(ψπ) = inv(π) − (d − 1). We present

an algorithm DiagCountLadder to compute P
(k)
i ,Q

(k)
i and count minimum lad-

ders.

Theorem 16. For a given integer n and a permutation π, DiagCountLadder(n,

π) returns the number of minimum d-normal ladders for π with n lines correctly.
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Algorithm 3 DiagCountLadder(n, π)

d← 1π
D1 ← ∅, D2 ← ∅
for i = 1, . . . , n− 2 do

Pi ← 1{τi}, Qi ← 1{τi}
end for
Pn ← 0, Qn ← 0
for k = 2, . . . , inv(π)− d+ 1 do
D ← 0, Psum ← P1

for i = 1, . . . , n− 2 do
Psum ← Psum ⊎Pi+1

Pi ← (Psum · τi) \D2

D ← D ∪ (Pi. support)
end for
Psum ← Psum ⊎Q1

for i = 1, . . . , n− 2 do
Psum ← Psum ⊎Qi+1

Qi ← (Psum · τi) \D2

end for
D2 ← D1, D1 ← D

end for
return ((

⊎n−2
j=1 Pj) ⊎ (

⊎n−2
j=1 Qj)). numberof(ψπ)

Proof. After the end of the algorithm, Pi and Qi corresponds to P
(k)
i and Q

(k)
i

respectively, where k = inv(π)−d+1. By Lemma 15, ((
⊎n−2

j=1 Pj)⊎(
⊎n−2

j=1 Qj))(ψπ)

gives the number of minimum d-normal ladders for π.

4 Experiments

We implemented the πDD vector manipulation system and added it to our πDD

library. Using the enhanced library, we implemented CountLadder and Di-

agCountLadder algorithms described in the above sections by C++. We can

describe each manipulation of multisets of permutations in CountLadder and

DiagCountLadder directly. The source code of CountLadder is about 130

lines and that of DiagCountLadder is about 150 lines except for the library

code.

Table 3 shows the number of minimum ladder lotteries for the reverse permu-

tation πrev with n lines, i.e., primitive sorting networks which have an n-input and

n-output, and the running times of Yamanaka et al.’s algorithm [9, 10], Count-

Ladder and DiagCountLadder. Their algorithm is implemented on a 3.0GHz

Xeon, 8GB memory, MacOS X computer, while our algorithms are performed

by a 2.4GHz Opteron calculation server with 256GB memory. For n = 13, the
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Table 3: The number of minimum ladders for the reverse permutation (or min-
imum primitive sorting networks) and the counting time by Yamanaka et al.’s
algorithm [10], CountLadder and DiagCountLadder.

Algorithm of [10] CountLadder DiagCountLadder

n Bars Ladders Time (sec.) Time (sec.) Time (sec.)
1 0 1 - - -
2 1 1 0 0.0 -
3 3 2 0 0.0 0.0
4 6 8 0 0.0 0.0
5 10 62 0 0.0 0.0
6 15 908 0 0.0 0.0
7 21 24698 0 0.0 0.1
8 28 1232944 0 1.0 0.3
9 36 112018190 25 14.6 4.1
10 45 18410581880 4230 232.1 62.0
11 55 5449192389984 1350409 4369.6 964.1
12 66 2894710651370536 - 109387.0 20172.6
13 78 2752596959306389652 - - 473314.0

computation time of DiagCountLadder is 473,314 seconds (about 5 days). Di-

agCountLadder is 1400 times as fast as Yamanaka et al.’s algorithm for n = 11,

but note that this is not quite a fair comparison because theirs enumerates all

ladders, while ours counts them.

Table 4 shows the number of πDD nodes for Pi and Qi (i = 1, . . . , n − 1)

when each loop in DiagCountLadder ends and the computation time in each

loop in DiagCountLadder for n = 13. The maximum number of πDD nodes is

431,719,320 for k = 37.

5 Concluding Remarks

We presented algorithms based on multisets of permutations using a πDD vector to

count ladder lotteries. Our method may be applied to various problems. Bulteau

et. al. [2] showed that the sorting by transpositions problem, which is to compute

the minimum number of “transpositions” to transform some permutation into the

identity, is NP-hard. Their definition of “transposition” is to exchange a factor

with indices i, . . . , j − 1 and j, . . . , k − 1. Our method for a ladder lottery can be

extended for the sorting by transpositions directly.
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