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Abstract

A primitive sorting network is a fundamental computational model which
is important both in mathematics and in engineering to operate permutations.
In this paper, we propose an efficient method to count the number of ways to
construct minimum primitive sorting networks. We developed 7DD vector,
a new data structure to represent and manipulate multisets of permutations,
based on mDDs, which are recently proposed by Minato. We succeeded in
calculating the number 2,752,596,959,306,389,652 for n = 13, which has not
been known in the past, where n is the width of the primitive sorting network.

1 Introduction

Permutations and combinations are two basic concepts in elementary combina-
torics and discrete mathematics [4]. Permutations appear in various problems
such as sorting, ordering, matching, coding and many other real-life situations.
Permutations are also important in group theory since they correspond to bijec-
tive functions and generate symmetric groups. The 7DD, proposed by Minato [5],
is a compact and canonical data structure for sets of permutations provided with
a rich family of fundamental algebraic operations over them (e.g., union and inter-
section). wDD offers a convenient means to compute different sets of permutations
of diverse properties by rather naively combining those primitive operations based
on the algebraic characteristic of the target.

A typical situation where the 7DD shows its performance is when we would
like to obtain all permutations whose “distance” is at most k from the initial
permutation. For example, the distance of two configurations of a Rubik’s Cube™
can be defined to be the minimum number of moves that transform one into the
other. A configuration of a Rubik’s Cube can be seen as a permutation of stickers,
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where the initial configuration is the identity, while a legal move on a Rubik’s
Cube is the multiplication of a special kind of permutations. Since 7DD provides
a method to calculate the product of two sets of permutations, one can easily
compute all the configurations that can be reached by at most & moves from the
initial configuration [5].

In general, we assume a finite set of “elementary permutations” and are in-
terested in the number of ways to obtain a specific permutation using at most k
multiplications of them. To give a general method to compute the number, this
paper proposes a generalization of 7DD, which we call 7DD wvector. The 7DD
vector is a data structure for multisets of permutations, just like the ZDD vec-
tor [6] manipulates multisets of sets. We incrementally construct a 7DD vector
for k =1,2,... that contains a permutation 7 with multiplicity m iff there are m
ways to represent 7 as a composition of at most k£ elementary permutations, which
is performed by a polynomial number of basic operations of the 7DD vector.

We demonstrate the advantage of our method through an algorithm that counts
the number of primitive sorting networks, which is an n-input and n-output net-
work to sort any sequence of integers (see Figure 1(a)). It was well studied by
Knuth [3] and is often used in customized hardware of cryptographic systems and
signal processing systems. It consists of n vertical lines (lines, for short) and a
number of horizontal lines (comparators, for short) each of which connects two
adjacent vertical lines. The role of a comparator between the ith line the (i + 1)th
line is to sort the ith number and the (i 4 1)th number of the input sequence. The
primitive sorting network has to output the sorted sequence against an arbitrary
input sequence. We would like to count the number of primitive sorting networks
which have minimum comparators (called minimum).

For mathematical convenience, we consider a ladder lottery (or ghost leg), which
is well-known as “amidakuji” in Japan, instead of a primitive sorting network (see
Figure 1(b)). A horizontal line (bar, for short) of a ladder lottery has the role
of swapping two numbers instead of sorting. A ladder lottery which has n lines
receives the sequence a(1),...,a(n) as the input and outputs the sequence 1,...,n,
where {a(1),...,a(n)} = {1,...,n}, which represents the permutation a obviously.
We say a ladder lottery £ is minimum if there is no ladder lottery with less bars for
the same permutation. Since it can be shown that a minimum primitive sorting
network is equivalent to a minimum ladder lottery for the reverse permutation ey,
which is defined by mev(i) = n — i + 1 for each i, we set our goal to count the
number of minimum ladder lotteries for the reverse permutation.

By B(n) we denote our target number. Yamanaka et al. [9] developed an al-
gorithm based on the reverse search [1] to enumerate all minimum ladder lotter-
ies with n lines for the reverse permutation, by which they obtained B(11) =
5,449,192,389,984. It took about 15 days to find the number B(11) [10]. Their al-
gorithm runs in O(1) time per an output ladder lottery. Matthew showed B(12) =
2,894,710,651,370,536 [8].

We present a simple counting algorithm for this problem which uses a poly-
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Figure 1: Examples of a primitive sorting network and a ladder lottery for n = 5.

nomial number of basic operations of the 7DD vector, by which we can compute
B(12) in practical time. In addition, we improve the algorithm so that it com-
putes the number of minimum ladder lotteries with n lines by the 7DD vector
for permutations over {1,...,n — 1} by taking advantage of the special struc-
ture of minimum ladder lotteries. This technique enables us to compute B(13) =
2,752,596,959,306,389,652, which has not been known in the past, in 473,314 sec-
onds (about 5 days) on a 2.4GHz Opteron calculation server with 256GGB memory.

2 Preliminaries

In this paper, we fix an integer n > 2.

2.1 Permutation

A permutation is a bijective function 7 : S — S. This paper consider only permu-
tations on S = {1,...,n}. The application of 7 to an integer x is often denoted
as zm instead of w(x). The product of two permutations is defined as their func-
tion composition: xmimy = ma(m(x)). A permutation 7 is often specified by the
sequence (17, ...,n7). The identical permutation (1,2,...,n) is denoted by me. A
transposition 1., for x,y € S and x # y is a permutation such that z7,, = y,
YTpy = T, and 27, = z for z # x,y.

Proposition 1 (Minato [7]). Any permutation ™ on S can be uniquely represented
as a composition of transpositions ™ = Ty, yi ... Taypy, With T1,..., Tk, Y1, ..., Yk €
S satisfying that x; > y; for alli=1,... )k and x; < x;41 foralli=1,... k — 1.

An adjacent transposition is a transposition 7., with y = x + 1, which we
abbreviate as 7,. The inversion inv(7) of permutation 7 is defined by the number
of pairs (¢,7) such that i,5 € S, ¢ < j and im > jm. For any permutation 7 and
any integer 4, either inv(77;) = inv(m) 4+ 1 or inv(n7;) = inv(7) — 1 holds because a
pair (4,7 + 1) is swapped and any other pair is not swapped by 7;,. A permutation
and its inversion has the following well-known property.
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Proposition 2. For any permutation 7, m is written as a product of inv(w) adja-
cent transpositions.

2.2 7DD

Minato [7] has introduced a data structure for sets of permutations based on Propo-
sition 1 and named it 7DD. Here we give only a definition of the 7DD. For more
detailed explanations and implementation of the 7DD, the reader is referred to
Minato’s original paper [7]. A 7wDD is defined to be a labeled directed acyclic
graph satisfying the following properties.

e There are only two vertices 0 and 1 with outdegree 0, called the 0-terminal
and 1-terminal.

e Fach vertex except terminals has just 2 outgoing edges, which are labeled by
0 and 1 and called the 0-edge and I-edge, respectively.

e Each vertex P except for the terminals is labeled by a pair of elements
(xp,yp) € S x S satisfying zp > yp.

e (ordered) If the 0-edge of a vertex P points Q, then either xp = zo and
yp < yo or xp > xo holds. If the 1l-edge of a vertex P points R, then
xp > xR holds.

e (zero-suppression) There is no vertex P whose l-edge directly points the
0-terminal.

e (uniqueness) There are no distinct vertices P and Q such that
—(zp,yp) = (v0,Y0);
— their 0-edges point the same vertex;

— their 1-edges point the same vertex.

Fach vertex P represents a set IIp of permutations, which is recursively defined
as follows:

o Ilp =0 and II; = {7 };

ollp =g U (IR : Typyy) = o U {77y, yp | ™ € IIg } for a non-terminal
vertex P whose 0-edge points Q and 1-edge points R.

Minato [7] has proven that every set of permutation has a unique representation
as a wDD, based on which, hereafter we simply write 7 € P instead of ® € Ilp
by identifying a vertex and the 7DD consisting of the vertices reachable from
that vertex. Minato presented some set operations on wDD, these operations are
described in Table 1.
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2.3 Multiset

In this section, we define notation for multisets. A multiset is a map on some set A
into the set of the non-negative integers. A is called an underlying set of elements.
For example,
3 ifzx=aq;
Pz)=4¢1 ifz=10
0 ifz=corx=d

means a multiset which includes three a’s and one b, where the underlying set
is {a,b,c,d}. The number of z’s in P is denoted by P.numberof(x) or simply
P(z). For two multisets P and Q, we define the multiset sum by (P W Q)(z) =
P(z) + Q(z). For any multiset P whose underlying set is A and any set B C A,
the subtraction B from P is defined by

0 if € B;
P(z) otherwise.

(P\ B)(z) = {

The indicator function of a set C' is

1 ifzeC,
10(36):{

0 otherwise.

The zero multiset is 0(x) = 0 for all z. We denote the set of elements that a
multiset P contains by P.support = {z | P(z) > 1}.

Let II be all permutations over {1,...,n}. For any permutation 7 € II and any
multiset P whose underlying set is I, we define the product of P and 7 by

(P-7m)(z) =P(y) for all z € II

where y is a permutation such that x = y7. This means to multiply each “element”
in P by 7.

2.4 Multiset of Permutations and 7DDs

To represent and compute multisets of permutations efficiently, we introduce a
7DD wvector which is an array of 71DDs. Let P be a multiset of permutations
over {1,...,n}. Let mp = max, P(7) and k = |logmp|. Note that P(x) is the
number of 7’s in P. For any permutation 7 over {1,...,n}, let sf,s7,... s} €
{0,1} be such that P(r) = > j;<4(2° x sT), namely, the binary representation
of P(m) is (s} ...s7sf)2. We define a 7DD vector P which represents P by P =
(Po, P1, ..., Px) where all of Py, P, ..., Py are TDDs such that for any permutation
m and any index i, 7 € P; if and only if s = 1. We show an example of a 7DD
vector in Figure 2. In 7DD, two vertices P = Q if a set of permutations Ilp is
equal to IIg. We treat with an array of permutations so we handle a number of
sets of permutations simultaneously in a monolithic memory space.
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Figure 2: 7DD vector P.

Table 1: Primitive 7DD operations.

P.top Returns IDs (z,y) at the root node of P.
PUQ Returns {r |7 € P or 7 € Q}.

PNQ Returns {r | 7 € P and m € Q}.

P\ Q Returns {r |7 € P and 7 ¢ Q}.
P.r(z,y) Returns P - 7, .

PxQ Returns {af | o € P and 5 € Q}.
P.cofact(z,y) | Returns {n7,, | 7 € P and zw = y}.
P.count Returns the number of permutations.

We introduce multiset operations on 7DD vectors. Let P and Q be multisets of
permutations, and P and O be 7DD vectors which represent P and Q, respectively.
We describe the multiset sum operation P W Q on 7DD vectors as Algorithm 1.
This algorithm implements a simple adder circuit for P and Q. In this algorithm,
7DD R, represents the set of permutations m such that the ith digit s7 of (PWQ)(m)
is 1, and wDD C is the set of permutations that P W Q is carried up in the ¢th digit.
By repeating this process, we obtain the 7DD vector R = (Ro,R1...,Rg) which
represents P W Q.

Algorithm 1 MULTISET SUM & (P = (Py,..., Py,), O = (Qo, ..., Qi)

k < max (kp,kg), C <« 0.
fori=0,1,...,k do
Ri+ P Q;dC, C(—('PlﬂQz)U(Qzﬂ(DU(’PZﬂC)
end for
if C # () then
k+—k+1, R+ C
end if
return 7DD vector R = (Ro,R1...,Rg)

Similarly, we can compute subtraction and multiplication on multisets of per-
mutations. We describe some primitive 1DD vector operations in Table 2. In this
table, we consider that a multiset is identical to the corresponding 7DD vector.



Counting Primitive Sorting Networks by mwDDs 7

Table 2: Primitive 7DD vector operations.

A.to_multiset Returns 1 4.

P- Te,y Returns P’ s.t. P'(7- 7, ,) = P(m)
Pwd Returns P & Q.

P.support Returns {7 | P(w) > 1}.

P\A Returns P\ A.

P.numberof (7) | Returns P ().

3 Counting minimum ladder lotteries

3.1 Definition of a ladder lottery

In the paper, we treat only ladder lotteries with n lines. We define an alphabet
Yn ={t1,...,tn—1}. A ladder lottery (ladder, for short) ¢ which has n lines and k
bars is a string tq, - - - to, over X,, where a; € {1,...,n — 1} foreach i =1,... k.
The ith character t,; of ladder ¢, - - - t,, means that the 7th bar connects the a;th
and the (a; + 1)th lines.

For ladder £ = tg, - - - t4,,, we write £[i] = a; and £.sub(i, j) = ta,ta,,, - ta;- We
denote the length of ¢ by |[¢|. Let L, = 3} denote the set of all ladders with n
lines. For ¢ = tq, -+ -tq, € Ly, we define perm(¢) = 74, - - - 7o, , which is called the
permutation represented by . For any permutation m and any ladder £ € L, such
that perm(¢) =, if

V' € Ly, perm({') = m = |¢] < |V

is satisfied, then ¢ is a minimum ladder for m.

We now prove that each bar of a minimum ladder always swaps a pair (a,b)
such that a < b and increases the inversion of its permutation by one.

Lemma 3. Let k < n(n—1)/2 be an integer. Then, ty, - - -tq, is a minimum ladder
if and only if inv(perm(ty, - - -tq,)) =1 holds for alli=1,... k.

Proof. Suppose that t,, - - - tq, is minimum. Let x; = inv(perm(ty, - - - t4,)) for i =
1,...,k — 1. Trivially, 1 = inv(perm(¢q,)) = 1 holds. Since for any permutation
7w and any adjacent transposition 7, either inv(7w7) = inv(n) + 1 or inv(nT) =
inv(m) — 1 is satisfied, x;+1 — 2; = %1 holds for ¢ = 1,...,k — 1. Therefore,
T = 1 + Zf;11($i+]_ — x;) < k. Suppose that x = h for some integer h < k.
By Proposition 2, we can write perm(tq, - - - tq,) = b, - - Tp, for some by, ..., bp.
Therefore, ladder y, - - - 1,
that t,, - - - 4, is minimum because t;, - - - tp, has just h bars. Hence, z3 = k. Since

represents perm(tg, - - - tq, ). However, this contradicts

Tip1—x; =xlforalli=1,...,k—landz; =1, wehave x; =i foralli =1,... k
and obtain the necessity.

For the sufficiency, suppose that inv(perm(tq, ---tq,)) = k and tq, - --tq, is
not minimum. Then, by the definition of a minimum ladder, there exists ladder
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13 15 1 ~ 131 15 ~ htyts

Figure 3: Ladder lotteries which belong to the same equivalence class. The right-
most one is normal.

te, -+ - te, such that perm(te, - --te,) = perm(tq, - - tq,) for some h < k. By the
same discussion as above, inv(perm(t,, - - - t¢,)) < h < k. However, inv(perm(t, - - -
te,)) = inv(perm(tq, - - - tq, ) = k. This is a contradiction. O

Forl =tq, -+ ta,_ tata; s ta; o - tay € L, wedefineswap(l,i) = tq, - - ta,_ ta;,,
ta;tai s - ta,. If either £[i + 1] < f[i] —1 or £[i + 1] > ([i] + 1 holds, then

perm(¢) = perm(swap(¥,i)), i.e., £ and swap(,i) represents the same permu-
tation (see Figure 3). For ¢, ¢ € L,, we define ¢ ~ (' iff there exist an in-
teger m > 1, ladders ¢1,...,4,, and integers zi,...,2zm,m—1 such that ¢ = /y,

V= lns €i+1 = SW&p(&,Zi) fori =1,...,m — 1, and (&[ZZ -+ 1] < Bz[zz] —1or
lilzi + 1] > ¢;]z;] + 1). Clearly, the relation ~ is an equivalence relation of ¢. We
denote the equivalence class that contains ¢ by Cp,(¢) = {¢' € L, | ¢ ~ {'}.

We regard two ladders which belong to the same equivalence class as one ladder.
To be accurate, for a given permutation 7, the number of ladder for 7 should be
defined as |[{C,,(¢)| ¢ € Ly, perm(¢) = w}|. To determine a representative of each
equivalence class and count them, we introduce a normal form of a ladder.

Definition 4. A ladder ¢ € L,, is in the normal form (simply, normal) if ¢ satisfies
i +1) > {[i)]—1foreachi=1,...,|¢ — 1.

We illustrate all normal minimum ladders for the reverse permutation for n = 4
in Figure 4. We now prove that there exists a bijection from the set of normal
ladders to the set of equivalence classes C), in Lemmas 5 and 7, namely, the number
of equivalence classes C, equals to that of normal ladders. Thus, we focus on
counting distinct normal ladders.

Lemma 5. For any ladder {, there exists a normal ladder in Cy, ().

Proof. For ¢’ € L,, and an integer m, let P(¢',m) be the proposition that ¢'[i +1] >
?'[{] — 1 holds for each i = 1,...,m. We now show the following statement:
for a ladder ¢, if ¢ is not normal, P(¢',m) is satisfied and P(¢';m + 1) is not
satisfied, then there exists a ladder ¢” such that ¢ ~ ¢ and P(¢",m + 1) are
satisfied. Suppose that ¢ has k bars. If m = 0 or ¢/[|m + 2] < ¢'[{] — 1 for

all ¢ = 1, e, m 1, then ¢ = tg/[m+2]tg/[1]te/[2} s t@’[m+1]t€’[m+3]t€’[m+4] . 'tf’[k]
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satisfies ¢/ ~ ¢ and P(¢",m + 1). Otherwise, let j be an integer such that
Um+2] > Vj]—1and I/Im+2] < Vi —1foralli = j+1,...,m+ 1L
Then, 0 = té/[l] o -tg/[j]tg/[m+2]tg/[j+1]tg/[j+2] o 'té’[m+1]t€’[m+3]t€’[m+4] ce t@’[k] satis-
fies ¢/ ~ 0" and P(¢",m + 1). Therefore, the statement is obtained for both cases.

Note that for a ladder ¢ with k bars, ¢ is normal if P(¢',k — 1) is satisfied.

Applying the statement inductively, for any ladder ¢, we can obtain the normal
ladder ¢ such that £ ~ ¢'. O

Before we show uniqueness of the normal form of a ladder, we prove the following
lemma.

Lemma 6. For any integers i and j (> i), and any normal ladder £ =t4, - - 4, ,
suppose that £[i] =y and ([j] = x. Then, all of ty41,tz12,... ,ty—2,ty—1 occur in
Cosub(i+1,j—1)ifx+1<y.

Proof. Suppose that at least one of ¢;41,t;42,...,ty—1 does not occur in £.sub(i +
1,j —1). Let ¢ be an integer such that ¢. does not occur and all of t.41,...,ty—1
occur in £.sub(i + 1,5 — 1). Let i’ be the position where the last t.1; occurs
in £.sub(i + 1,7 — 1). We now prove a;» > ¢ for any i’ > i’ + 1 by induction.
By the property of a normal ladder, a1 > ay —1 = (¢+ 1) — 1 = ¢. Since
ajy1 # ¢, ayy1 > c. Therefore, this is true for ' + 1. Assume that a;» > ¢. Then,
ary1 > ayr — 1. Since a;rq1 # ¢, a1 > ¢ holds. Thus, a;» > c is satisfied for any
i > ' 4+ 1. However, since ¢ < j and a; = = < ¢, this is a contradiction. O

Lemma 7. For any two distinct normal ladders £,0' € Ly, Cy,(£) # Cp(¢').

Proof. Suppose that ¢ and ¢’ belong to the same equivalence class C),(¢). Since ¢
and ¢ are distinct, there exist h > 0 and x,y € {1,...,n — 1} such that

EztaltGQ.”tCLhtI.” ,
U =tatay tayty .

Without loss of generality, z < y. Since £ and ¢ belong to the same equivalence
class, there exist £1,...,¢, € Cyh(¢) and integers z1,...,z,—1 such that 1 = ¢,
by, = U, liyn = swap({;,2;) for all i € {1,...,m — 1}, and ¢; ~ ;41 for all
i € {1,...,m—1}. Therefore, t, must occur after the (h+ 1)th character in ¢'. Let
i be the position where the first ¢, occurs after the hth character in #'. By Lemma 6,
tz+1 must occur in ¢.sub(h + 1,7 — 1). For a ladder ¢”, let «(¢”) be the position
where the first ¢, occurs and 3(¢”) be the position where the first ¢,; occurs in
¢".sub(h+1,[£"|). Then, let P(£") be the proposition a(¢”) < B(¢"). Clearly, P(¥)
holds and P(¢') does not hold. Therefore, there exists j such that P(¢;) holds and
P(¢;+1) does not hold. Then, for some ¢, ¢;[i'| = z, {;[i'+1] = x+1, ;1 [I'] = z+1
and ¢ 41[t" + 1] = x. Hence ¢ o £;41. This is a contradiction. O
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i I A B

Figure 4: All normal minimum ladders for the reverse permutation when n = 4.

Let SZ-(k) be the set of all ladders which has k£ bars and whose last character
is t;. For any normal ladder ¢, if the (j + 1)th character of ¢ is t;, then the jth
character of £ must be one of t1,...,t; or t;11. On the other hand, for any normal
ladder s whose last character is t;, all of st;_1, st;, ..., st,_1 become normal ladders.
Therefore, SZ-(k) can be computed by the following recurrence relation:

1] if i =mn;
I T ifk=1land 1 <i<n-—1
{st;|s € UZle S (k=1) } otherwise.

?211 S*) is the set of all normal ladders which has k bars. Therefore, {¢ €
-1

U

U= S (k) KRR Un ! S’ , perm(¢) # perm(¢') } is the set of normal mini-
mum ladders whose inversion is k Our basic idea to count the number of minimum
ladder lotteries is based on this formula. However computing every set SJ(-k)
much for our purpose.

is too

3.2 Counting minimum ladder lotteries using 7DD

To count the number of minimum ladders for a given permutation , it is enough
to memorize perm(s) instead of s € Sj(k) because perm(st;) = perm(s)7; holds for
any ladder s and any integer ¢. Therefore, we adopt the method by multisets of
permutations described in the introduction. ng) denotes the multiset of permu-

(k)

tations which are represented by each element in S;™. This can be computed by

the following recurrence relation:

0 if i =n;
P =1, ifk=land1<i<n—1
(Lﬂ;ill f’gk*l)) -7;  otherwise.

We can efficiently compute f’gk)

tion.

using 7DD vectors described in the previous sec-

Lemma 8. For anyi € {1,...,n— 1}, any integer k and any permutation ,

I_’Z(»k) () =|{s]s € Si(k), perm(s) = m}|.



Counting Primitive Sorting Networks by wDDs 11

Proof. We use induction on k. When k£ = 1, the statement holds clearly. Suppose
that ng_l)(ﬂ') = |{s|s € Si(k_l), perm(s) = 7w}| holds for any ¢ when k > 2.

Computing f’f-k) () according to the definition of the operations of multisets, we

obtain
PO = (PF P w. wP® ) 5)(n)
— @Y )+ @I ()
= P&’“ V(') + +P§il”< )
+1

= Y Hslse S, perm(s) = '},
Jj=1

where m = 7'7;.

Since the last character of any ladder s € Sj(k*l)

() holds if j # j'. Therefore,

is ¢; for any j, Sj(.kfl)ﬂSJ(.,kfl) =

i+1 i+l
Z {s|s e S](-k_l), perm(s) =7’} = |[{s|s€ U SJ(-k_l), perm(s) = 7'}
j=1 J=1

= |{st;|st; € Si(k), perm(s) = 7'}|.

Since perm(s) = 7’ <= perm(st;) = n'r; = m, we have

2 2
P (r) = |{s|s € S, perm(s) = }|.
O
U?:_ll ng) includes permutations which are represented by all normal ladders
with & bars. We now show that in order to obtain only minimum normal ladders,

we can remove all permutations which are not represented by minimum ladders
from ;- ! P ") for every k. We define a multiset ng) and a set D) by

0 if ¢ = m;
P = Lim} ifk=1land1<i<n-—1;
((@;111 Pg'k_l)) “Ti) \ D*=2)  otherwise,

Pk _ {7} if k= 0;
U?z_ll(Pl(-k). support) if k> 1.

D) becomes the set of all permutations whose inversion is k.

Lemma 9. For anyi € {1,...,n— 1}, any integer k and any permutation T,

0 otherwise.

p®) () = {]{8 |s € Si(k)jperm(s) =mn} if inv(m) = k;
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Proof. For a multiset P, we use notation ®(P) instead of P.support. We now
prove that D®*) equals to the set of all permutations whose inversion is k. We
use induction on k. Since the permutation whose inversion is 0 is only 7, DO ig
the set of all permutations whose inversion is 0. Suppose that D*~1) is the set
of all permutations whose inversion is k — 1. Consider a permutation 7# € D*) =
Ui @(PM). For some i and j, 7 € ®(P . )\ D#=?. By the induction
hypothesis, for any element 7" in <I>(P§.k71) - 1;), either inv(n”) = k or inv(n”) =
k — 2 holds. By the induction hypothesis, D®*=2) includes all permutations whose
inversion is k — 2. Therefore, the inversion of all permutations in <I>(P§k71) i)\
D®#=2) is k. Hence, inv(7) = k. Since we chose 7 arbitrarily, we can say that the
inversion of any element in D) is k.

Consider a permutation 7’ such that inv(n’) = k. By Proposition 2, we can
write ' = 74, -+ Tq, for some aj,...,ar. Since inv(ry, - 74,_,) = k — 1 holds,
Tay " " Tap_, € D*=1) i satisfied by the induction hypothesis. Then, 74, --- 74, , €
@(Pg’zj)) holds. Therefore, 7’ = 7,4, -+ 74, € @(P((IIZ:P - Tq,,). Since inv(n’) =k is
also satisfied, ' & D®*=2) holds by the induction hypothesis. Therefore, 7’ € Pa’,?
and 7’ € D*). We can say that all permutations whose inversion is k are in D*).

We obtain that D®*) equals to the set of all permutations whose inversion is k.

We use induction on k. When k = 1, the statement holds clearly. Suppose that

() () = {'{8 s € 87V, perm(s) =} if inv(r) =k — 1;

P, )
0 otherwise.

Computing ng) (), we obtain
k k— k— _
PH(m) = (PYVw-wPlyY) )\ D))

_ )0 if inv(m) =k —2
N (ng_l) i) () e+ (ng‘;}” -7;)(m)  otherwise

_ )0 if inv(m) =k — 2

T PE Y 4+ PR () otherwise,

where m = 7'7;. By the induction hypothesis,

2;111 {s|s e S](-k_l), perm(s) = 7'} if inv(r) #k—2
P (r) = and inv(r') = k — 1
0 otherwise.
Since m = 7'7; and inv(7) = inv(n’) £ 1,
inv(m) # k — 2 and inv(7') = k — 1 = inv(7) = k.
Thus, we obtain
i k— o
P(k)(w) _ 2;11 H{s|s e Sj( b, perm(s) =7’} if inv(r) =k
’ 0 otherwise.
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Therefore,

pt) = [l €517 perm(s) =}| if invi(m) =
. m) =
! 0 otherwise.

O

Note that if inv(m) = k, all ladders in {s|s € ka),perm(s) = 7} are mini-
mum for any ¢ by Lemma 3. Therefore, if inv(7) = k, ng) () gives the number
of minimum ladders whose last character is t; for m. We present an algorithm
COUNTLADDER to compute ng) and count minimum normal ladders.

Algorithm 2 COUNTLADDER(n, 7)
D1 — Q), D2 — @
fori=1,...,n—1do

Pi — 1{"’1’}
end for
P, 0
for k =2,...,inv(7) do
D+ 0, Poum < P4
fori=1,...,n—1do
Psum <~ Psum W Pi—l—l
Pi — (Psum . Ti) \D2
D + D U (P;.support)
end for
D2 < Dl, D1 ~ D
end for
return (HJ;L;I P ;). numberof()

Theorem 10. For a given integer n and a permutation m, COUNTLADDER (n, )
returns the number of minimum normal ladders for m with n lines correctly.

Proof. After the end of the algorithm, P; corresponds to Pgmv(ﬂ))
(H—J?z_ll P;)(m) gives the number of minimum normal ladders for 7. O

. By Lemma 9,

3.3 Counting minimum ladder lotteries using diagonal bars

Consider any permutation 7. For any minimum ladder ¢ = %, ---t,,, all of
t1,...,t1r—1 must occur in ¢ in this order (see Figure 5(a)).

Lemma 11. Every minimum ladder £ is uniquely represented as
{ = aptiataas ... tg_1ag_1,

where d = 1(perm(?)), a; € ¥¥ and neither t; nor t;y1 occurs in ;.
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1 2 3 4 5 1 2 3 4 5 1 2 3 5-4
~ Hiy t3t4§l‘1 t2t3§t1 tzl‘lg ntsthhtz§tihh

Bo B1 B2 V2 V3
(a) (b) (c)

Figure 5: Diagonal bars and 8-y decomposition of a ladder.

Proof. All of t1,...,t3—1 occur in ¢ because d = 1(perm(¢)). We define p; by
0 if i = 0

the position where the first ¢; occurs in ¢ if i =1;

the position where the first ¢; occurs
after the p;_ith character in £ if 2 <i<d—1;
10|+ 1 if i =d.

Dbi

Let £y = ty, tp, - - - tp, for any integer z < k. We define g(x) = 1(perm(¢,)), i.e., the
number to which 1 is mapped by the permutation represented by the ladder which
has the first x bars of £.

We now prove the following statements (i) and (ii) are satisfied for i = 1,...,d—
1: (i) g(p;) =i+ 1 and (ii) ¢; does not occur between the (p; + 1)th character and
the (pi+1 — 1)th character in £.

First, we prove (i) for i« = 1. By the definition of p;, t; does not occur between
the first character and the (p; —1)th character in ¢. Therefore, g(1) = g(2) =--- =
g(p1 —1) =1 and g(p1) = 2. Hence, for i = 1, (i) holds.

Next, we prove that if (i) holds for some ¢ € {1,...,d — 1}, (ii) holds for i.
Assume that (i) holds for some i € {1,...,d — 1}. Suppose that ¢; occurs between
the (p; + 1)th character and the (p;4+1 — 1)th character in ¢. Let ¢ be the position
where the first ¢; occurs between the (p; + 1)th character and the (p;y1 — 1)th
character in ¢. Since neither ¢; nor ¢;;; occurs between the (p; + 1)th character
and (¢ — 1)th character in ¢, g(p;) = g(pi+1) =---=g(¢—1) =i+ 1 hold by the
assumption g(p;) = i+1. Since the gth character of £ is t;, perm(¢,;) = perm({y,—1)7;
holds. Let m = perm(¢,—1), and a and b be the integers such that ar = i and
br = i + 1. By the definition of g, b = 1 and a > 1. Therefore, multiplying
7w by 7; decreases its inversion by 1. However, since £ is minimum, by Lemma 3,
inv(perm(¢y—1)) = ¢—1 and inv(perm(¢;)) = ¢q. This is a contradiction. Therefore,
t; does not occur between the (p; + 1)th character and the (p;+1 — 1)th character
in /.
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Finally, we prove that if both (i) and (ii) hold for some i € {1,...,d — 2}, (i)
holds for i 4+ 1. Assume that both (i) and (ii) hold for some i € {1,...,d — 2}. By
this assumption and the definition of p;41, neither ¢; nor ¢;11 occurs between the
(pi + 1)th character and the (p;1 — 1)th character. Therefore, g(p;) = g(p; +1) =
-+ = g(pit1 — 1) = i + 1. Since the p;1th character is t;11, g(piv1) = g(piv1 —
1) +1=i+2.

We proved that both (i) and (ii) are satisfied for ¢ = 1,...,d — 1. Since (ii)
holds for i = 1,...,d — 1, we obtain the statement of the lemma immediately. [

We consider a minimum ladder £ = agtiaqtos ... tg_1ag—1 where ag, ..., qq_1
satisfy the condition of Lemma 11. Let §; be the string which is obtained by
removing all of ¢1,...,¢;_1 from «;, and ; be the string which is obtained by
removing all of ¢;,9,...,t,—1 from «;. For any i, any j (< i) and any j' (> i+ 1),
o ~ Bivis tiBi ~ Bity, vitjr ~ tjv;, and B;yj ~ «v;5; hold. Therefore,

aptiontean ... tg_1oq—1 ~ Bovoti1Biyit2Bey2ts - ta—1Bd—17d-1
~ BoBr---Ba—1tita - ta—17071 - Vd—1-

This transformation is called S-y decomposition of ladder ¢ (see Figure 5(b)).
We call the bars tits---t4_1 in the middle of ¢ diagonal bars. Note that all of
Bos -y Bd—1,705- - -,Yd—1 are uniquely determined by Lemma 11. We introduce
another normal form of a ladder based on -y decomposition.

Definition 12. Let ¢ be a minimum ladder, 7 = perm(¢) and d = 1x. Then, ¢ is
a diagonal normal form (d-normal, for short) if £ = t4, ---te,t1ta - tg_1ty, -ty
for some integers k and k' and the following conditions are satisfied: (i) for any
ie{l,....k}, a; € {2,...,n— 1}, (ii) the ladder tg, - - -4, is normal, (iii) for any
i€ {l,....k'}, bie{l,...,d—2}, and (iv) the ladder ty, - --t3,, is normal.

We now prove that the number of equivalence classes C,, equals to that of
d-normal ladders in Lemmas 13 and 14 similar to Lemmas 5 and 7. similar to
Lemma 5.

Lemma 13. For any ladder ¢, there exists a d-normal ladder in Cy(£).

Proof. For any ladder /¢, suppose that £ is decomposed into £ = By - - - Bg_1t1ta - -
ta—17Y07Y1 - - Yd—1, where d = 1(perm(¢)). By Lemma 5, there exist normal lad-
ders /g and [, such that g ~ BoB1---Bg—1 and £y ~ yoy1---7v4—1. The ladder
lgtity - - -tg_1ly is d-normal and lgtity - - - tg_14y € Cn(f). O

Lemma 14. For any two distinct d-normal ladders €,0' € L, Cy(£) # Cy ().

Proof. Suppose that ¢ ~ ¢, and let £ = aptiaitoas -+ - tg_10g—1 and £ = agtiotaal - - -
tg—1,_1, where d = 1(perm(¢)). Then, suppose that ¢ and ¢’ are decomposed into

U~ Bofy - Ba—itita - -ta_17071 - Ya—1 and £ ~ By - By _qtite - ta_ 1oL Voo
respectively.
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We now prove Sof1 -+ Ba—1 ~ BuB1 -+ By and o1+ Ya—1 ~ YV - Vgo1- 16
is enough to show the case when ¢ = swap(/, z) for some z, namely, the following
cases (i) and (ii): (i) a; = of fori € {1,2,...,p—1,p+1,...,d—1}, ap = " tzt,”
" for some strings o and o and some integers z and y, and (ii)
a=a) forie{l,2,....,p—2,p+1,...,d -1} and oy, ; = ap_1t, and tza), = o

! "
and a, = a'tytya

for some integer x # p — 1.

In the case of (i), this clearly holds because -y decompositions of ¢ and ¢’ are
the same. In the case of (ii), both 8; = /8] and ~; = ~; hold for ¢ € {1,2,...,p —
2,p+1,...,d=1}. Ifw € {l,...,i—2}, then B, | = Bp1, B, = Bp, Vp1 =
Vp—1tz and t;, = vp. Therefore, BB -+ Ba—1 ~ BBy -+ By_y and Yov1 -+ Ya—1 ~
Yov1 Vy_q hold. Ifw € {i+1,...,d—1}, then 8, 1 = Bp_1ts, to 8, = Bp, Vp1 =
Yp-1 and v, = . Therefore, BB+ Ba—1 ~ BBy By, and Yoy Y1 ~
VOV Va1

Hence, by Lemmas 5 and 7, for normal ladders /g and fg such that {5 ~
BoBi -+ Ba—1 and Ly ~ BBy -+ B, {g = ¢z holds, and for normal ladders ¢, and
(. such that €y ~ yoy1 -+ vq—1 and Ly ~ () -7, £y = £y holds. Therefore,
for d-normal ladders ¢’ and ¢ such that ¢ ~ ¢ and ¢ ~ ¢', ¢ = ¢""" holds. O

We fix our target permutation 7 in the rest of this section. We will count min-
imum ladders for w. By Lemmas 13 and 14, it is enough to count all d-normal
ladders. Let d = 1w. Consider a d-normal ladder ¢ = ¢1t1---t4_1¢2 such that
perm({) = m, where {1 = t4, -+ -1y, and ly = ty, ---tp,,. Note that a; > 2 and
b; < d — 2 for each i. We now construct a ladder ¢4, —1tq,—1 - ta,—1t, oy - - th, s
which has n — 1 lines and is obtained by removing diagonal bars from ¢ and
shifting ¢; to the left (see Figure 5(c)). To distinguish ¢} = ¢4, —1tay—1- " ta,—1
from /9, we insert the special character ¢ into ¢}fs between ¢} and ¢y as ¢|dl,
which we call an r-ladder. Note that ¢} is normal iff ¢; is normal. Since a map
ta; = tau b1 tag—1te, - -tbk, = tay—1tas—1 - ta,—10ty, thy - -tbk, is a one-to-one cor-
respondence, the number of all r-ladders is equal to the number of all minimum
d-normal ladders.

We define the permutation v, over {1,...,n — 1} by

+ 1)m if (x4 1)w < d;
TP = .
(z4+1)mr—1 if(z+1)7 > d.
By a simple calculation, perm(ta, —1tay—1 - tay—1te o, - - tp,,) = P if and only if

perm(ty, -+ - ta t1 - tqg_1ty, -ty ) = 7. Therefore, the number of all r-ladders for
¥ is equal to that of all minimum d-normal ladders for 7.
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We enumerate all r-ladders for i, by the following recurrence relations:

W) ifi=n-—1;
L ifk=1land1<i<n-2

{st;|s € U;Hl Sj(k 2 } otherwise,
S* = {s5]s e S™,

() ifi >d—1;
V(k) B {6t;} ifk=1land1<i<d-—2;
P ) {sstise U2ty

U{st; |5 € UZH (k= 1)} otherwise.

We introduce multisets of permutations similar to COUNTLADDER.

w ifi=n—1;
P = {1, ifk=1and1<i<n-—2
(WL PY ) )\ DE2) otherwise,
() ifi=n—1;
Q(k) . 1{7.2} i if/{zlandlgign—z
i - n— -1
(W= P )
\ (UZH Q (k=1) )) 1) \ D%=2)  otherwise,
Dk _ {7} it k= 0;

ifk>1.

{Uz:f

Lemma 15. For anyi € {1,...

(ng). support)

,n—2}, any integer k and any permutation T over

{1,...,n—1},
ng)(f) _ {L{S |s€S ), perm(s) =7} if inv(7ir) =k; (1)
otherwise,
(k) /= i |{S | S € V( ), perm(s) = 7_I‘}| if 1nv( ) k;
= {0 otherwise. @)

Proof. We can obtain the statement similar to Lemma 9.

O

By the above discussion, ((Lﬂ?;f ng)) O] (Lﬂ?;f ng)))(¢ﬂ) is the number of min-

imum d-normal ladders for 7, where k = inv(t)

an algorithm DIAGCOUNTLADDER to compute Pf;k), ng
ders.

Theorem 16. For a given integer n and a permutation T,

= inv(m) —

(d —1). We present

) and count minimum lad-

DIAGCOUNTLADDER (1,

7 ) returns the number of minimum d-normal ladders for @ with n lines correctly.
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Algorithm 3 DIAGCOUNTLADDER(n, )
d+ 1x
D1 — @, D2 — @
fori=1,...,n—2do
Pi 100y Qi< 1y
end for
P,+0Q,«+0
for k=2,...,inv(r) —d+ 1 do
D+ 0, Pyuym < Py
fori=1,...,n—2do
Psum — Psum W Pi+1
P; (Psum : 7_1') \D2
D < D U (P;.support)
end for
Psum < Psum W Ql
fori=1,...,n—2do
Psum — Psum W Qi+1
Qi — (Psum : Ti) \ Dy
end for
Dy Dl, Dy + D
end for
return (-2 P;) & (=2 Q). numberof(is,)

Proof. After the end of the algorithm, P; and Q; corresponds to ng) and ng)

respectively, where k = inv(7m) —d+1. By Lemma 15, ((L-lj;:lz Pj)Lﬂ(Lﬂ?;f i) (¥r)
gives the number of minimum d-normal ladders for 7. O

4 Experiments

We implemented the 7DD vector manipulation system and added it to our 7DD
library. Using the enhanced library, we implemented COUNTLADDER and Di-
AGCOUNTLADDER algorithms described in the above sections by C++. We can
describe each manipulation of multisets of permutations in COUNTLADDER and
DiAcCouNTLADDER directly. The source code of COUNTLADDER is about 130
lines and that of DIAGCOUNTLADDER is about 150 lines except for the library
code.

Table 3 shows the number of minimum ladder lotteries for the reverse permu-
tation ey with n lines, i.e., primitive sorting networks which have an n-input and
n-output, and the running times of Yamanaka et al.’s algorithm [9, 10], COUNT-
LADDER and DIAGCOUNTLADDER. Their algorithm is implemented on a 3.0GHz
Xeon, 8GB memory, MacOS X computer, while our algorithms are performed
by a 2.4GHz Opteron calculation server with 256GB memory. For n = 13, the
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Table 3: The number of minimum ladders for the reverse permutation (or min-
imum primitive sorting networks) and the counting time by Yamanaka et al.’s
algorithm [10], COUNTLADDER and DIAGCOUNTLADDER.

Algorithm of [10] | COUNTLADDER | DIAGCOUNTLADDER

n | Bars Ladders Time (sec.) | Time (sec.) Time (sec.)
1 0 1 - - -

2 1 1 0 0.0 -

3 3 2 0 0.0 0.0

4 6 8 0 0.0 0.0

) 10 62 0 0.0 0.0

6 15 908 0 0.0 0.0

7 21 24698 0 0.0 0.1

8 28 1232944 0 1.0 0.3

9 36 112018190 25 14.6 4.1

10 45 18410581880 4230 232.1 62.0
11 95 5449192389984 1350409 4369.6 964.1
12 66 2894710651370536 - 109387.0 20172.6
13 78 | 2752596959306389652 - - 473314.0

computation time of DIAGCOUNTLADDER is 473,314 seconds (about 5 days). D1-
AGCOUNTLADDER is 1400 times as fast as Yamanaka et al.’s algorithm for n = 11,
but note that this is not quite a fair comparison because theirs enumerates all
ladders, while ours counts them.

Table 4 shows the number of 7DD nodes for P; and Q; (i = 1,...,n — 1)
when each loop in DIAGCOUNTLADDER ends and the computation time in each
loop in DIAGCOUNTLADDER for n = 13. The maximum number of 7DD nodes is
431,719,320 for k = 37.

5 Concluding Remarks

We presented algorithms based on multisets of permutations using a tDD vector to
count ladder lotteries. Our method may be applied to various problems. Bulteau
et. al. [2] showed that the sorting by transpositions problem, which is to compute
the minimum number of “transpositions” to transform some permutation into the
identity, is NP-hard. Their definition of “transposition” is to exchange a factor
with indices 4,...,5 — 1 and j,...,k — 1. Our method for a ladder lottery can be
extended for the sorting by transpositions directly.
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