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Abstract

Several graph libraries have been developed in the past few decades, but
they were designed to work with a few graphs even though the number of
subgraphs exponentially increases with graph size. In this paper, we develop
Graphillion, a software library for very large sets of graphs. Graphillion is not
established on a traditional representation of graphs. Instead, a graph set is
simply regarded as a “set of edge sets” ignoring vertices, which allows us to
employ powerful tools of a “family of sets” (a set of sets) and permits large
graph sets to be handled efficiently. We also utilize advanced graph enumera-
tion algorithms, which enables the simple family tools to understand the graph
structure. Graphillion is implemented as a Python library to encourage easy
development of its applications, without introducing significant performance
overhead. In experiments, we consider two case studies, a puzzle solver and a
power network optimizer, in which several operations and heavy optimization
have to be done over very large sets of constrained graphs (i.e., cycles or forests
with complicated conditions). The results show that Graphillion allows us to
manage an astronomical number of graphs with very low development effort.

1 Introduction

A graph is a representation of a set of edges, each of which connects a pair of

vertices. It is often used as a mathematical model for a variety of problems.

Researchers have developed many sophisticated graph libraries, but the design

was focused on handling a small number of graphs. Thus they cannot work with

∗takeru.inoue@ieee.org
†ERATO MINATO Discrete Structure Manipulation System Project, Japan Science and Tech-

nology Agency, Sapporo, Japan.
‡Graduate School of Information Science and Technology, Hokkaido University, Sapporo,

Japan.
§Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma,

Nara, Japan.

1



2 T. Inoue, H. Iwashita, J. Kawahara, and S. Minato

very large sets of graphs, even though the set can grow exponentially with graph

size since a graph with N edges induces 2N subgraphs. A graph library that could

efficiently manage very large and complex sets of graphs within a small amount

of memory would provide a novel way for powerful graph operations; e.g., an

optimizer that efficiently finds the best graph from a non-convex graph set, and a

graph database that can select all matched graphs from a very large set. To the

best of our knowledge, there is no library that has been designed to handle such a

large set of graphs.

In this paper, we introduce Graphillion, a software library optimized for very

large sets of graphs. Traditional graph libraries maintain each graph individually,

which causes poor scalability, while Graphillion handles a set of graphs collectively

without considering individual graph. Graphillion concentrates on edge-induced

subgraphs of a given graph G = (V,E), and a set of graphs is reduced into a

set of edge collections1, or a family of sets of edges more formally; i.e., a set

of graphs, {G1 = (V,E1), G2 = (V,E2)}, is regarded as a set of edge collections,

{G1 = E1, G2 = E2}. This reduction loses the properties of each vertex, but allows

programmers to apply a powerful theory on the family [8]. A set of collections can

be represented in a compressed form by sharing common parts of similar collections,

so a huge number of graphs can be stored in a small amount of memory. We also

employ efficient algebra called family algebra [6], in order to perform optimization,

selection, and modification on very large graph sets; the efficiency is due to the

fact that they can be executed without decompressing the data.

This family theory, of course, is unconcerned about graph structure like a tree or

a path, since it considers a graph to be just an edge collection with no structure.

We rectify this omission by employing the graph enumeration algorithm called

frontier-based search [13, 5, 4]. The algorithm lists all graphs that have a specified

structure, and then the listed graphs (edge collections) are handled by family

algebra. The number of graphs listed, of course, can be very enormous, but a

recent development in enumeration algorithms allows us to output the graphs in

compressed form without enumerating them one by one. This compressed form is

easily converted into the compressed form of the family theory [15], and so there

is no difficulty to adopt family algebra.

Graphillion is implemented in Python language because of its high productiv-

ity. Python is a high-level programming language with a rich set of libraries (or

“modules” in the Python terminology) including NumPy/SciPy (mathematical

computation) [17] and NetworkX (network analysis) [2]. Moreover, Python can

be extended by C or C++ for high-performance numerical computation, and it is

suited for scientific and engineering code [12]. However, Python objects must be

reinterpreted in every extended function call, and this overhead would be unac-

ceptable if a very large graph set were involved in the function call (e.g., Python’s

built-in set object can reinterpret all elements in some function calls). Graphillion,

1In order to describe a set of sets without confusion, the word collection is used to indicate an
“inner” set like an edge set, while set is used for an “outer” set like a graph set.
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Figure 1: Graphillion’s overview with a code example. The compressed graph set
objects are maintained in the C++ world, while only minimum necessary objects
are exposed to the Python world to reduce the overhead.

in contrast, deals with a whole graph set directly without considering individual

graphs, and so just a reference to the set is reinterpreted regardless of the number

of graphs in it. In this way, our graph set representation allows us to establish an

efficient computation scheme of graph sets via Python’s extension mechanism.

We evaluate the performance and productivity of Graphillion in experiments.

We first measure the performance of simple operations. The results show that

Graphillion needs only 500 MB of memory to process a very large set of 1037 trees

in 10 seconds (just one second for some operations). We then present two case

studies, a puzzle solver and a power network optimizer, and reveal that Graphillion

cuts the lines of code by 90 % with acceptable performance overhead. In the power

network optimization, our optimizer, which only needs a thousand lines of code,

searches a non-convex set of 1058 feasible graphs and finds the optimal one just in

one minute.

The rest of this paper is organized as follows. Section 2 gives an overview

of Graphillion. Sections 3 and 4 discuss the theoretical aspects of Graphillion.

Section 5 describes implementation, and Section 6 reports the experiments and

results. Section 7 summarizes related work, and Section 8 concludes the paper.

2 Overview

We describe below a design overview of Graphillion (Fig. 1), along with our goals,

high performance and high productivity.

• High performance. Graphillion processes very large sets of graphs effi-

ciently in terms of time and space. It is implemented as a Python module
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the universe (Fig. 2 (D)),

G = (V = Vu, E ⊆ Eu),

where only a set of edges E defines the graph, while a
set of vertices V remains unchanged. This simplifica-
tion puts some limitations on vertices; no vertex can
be removed, and vertices are never merged (no edge
can be contracted). We believe these limitations are
acceptable in most cases, because graphs are mainly
characterized by the edge structure, not vertices.

Our graph model puts no restriction on the type
of edges†, but we assume only simple undirected edges
that has no self-loop in this paper. Edges can be
weighted.

3.2 Representation of a Set of Graphs

A set of graphs G is represented by a family of subsets
of Eu (Fig. 2 (B, C)),

G ⊆ 2Eu ,

where 2Eu is the power set of Eu. A graph used in
Graphillion is defined by G ∈ 2Eu (Fig. 2 (D)).

The maximum size of a graph set, 2|Eu|, increases
exponentially with the size of universe. In order to
represent a graph set efficiently, we utilize a com-
pressed form of a family of sets, which is named a zero-
suppressed binary decision diagram, or a ZDD [7]. A
ZDD greatly compresses a very large family by sharing

†Edges can be either directed or undirected. They can
also have self-loops. Multiple edges can be placed between
a same pair of vertices if they are distinguishable. Edges
can be hyper edges, which include any number of vertices.

common parts among similar sets. We show an example
of the great compression capability brought by a ZDD
in Table 1, which presents the number of trees rooted
at a corner on a grid graph versus the amount of mem-
ory to store them in a ZDD (a theoretical value without
implementation overhead). The amount of memory in-
creases much more slowly than the number of trees††.

4. Creation and Manipulation of a Set of
Graphs

This section describes the creation of a graph set using
the frontier search and the manipulation of them based
on the family algebra.

4.1 Creation of a Set of Graphs

We build a ZDD representing a set of graphs, by us-
ing a graph enumeration algorithm called the frontier
search [6], [10]. The frontier search finds all graphs that
have a specified structure based on the dynamic pro-
gramming. It outputs the enumerated graphs in a com-
pressed form, which can be easily converted into a ZDD.
The time complexity is ruled by the size of compressed
form (slightly larger than that of ZDD), not the number
of graphs to be output.

The frontier search was originally limited to a triv-
ial structure like a tree or a path, but it has been
generalized to support various structures by introduc-
ing several fundamental parameters that define basic
graph properties such as connectivity and vertex de-
grees [5]. Table 2 shows examples of the parameters
that define spanning trees and paths between the two
vertices; more complicated structure can be specified
with these parameters.

The search space can be limited within a given
graph set; graphs not included in the given set are not
enumerated by the frontier search [4].

Simple graph sets can be created by ZDD’s prim-
itives without the frontier search; an empty set and
a power set are given by the ZDD’s primitives, and a
small graph set is also created by explicitly specifying
the graphs (edge sets).

4.2 Manipulation of a Set of Graphs

Several operations are defined for a family of sets, and
they can be efficiently performed over ZDDs [6], [7].
Surprisingly, these operations can be executed in a com-
pressed form without extracting the compression, and
so they are highly efficient. In this subsection, we de-
scribe the operations for optimization, selection, and
modification, in the context of graph sets.

††There is no rigorous theory to estimate the compression
ratio of binary decision diagrams, but it is also believed that
they work well in most practical data [15].
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Figure 2: Examples of our graph representation.

with C++ extensions. A set of graphs is represented in a compressed form

of a C++ object, which is created by frontier search (Fig. 1 (A)) and is

manipulated by family algebra (Fig. 1 (B)). Since only the reference of the

set is exposed to the Python world, the function call overhead is very small

and its impact is independent of the size of the C++ object. Only minimum

necessary graphs are extracted from the set through iterators, so there is no

need to restore all the graphs in the object (Fig. 1 (C)).

• High productivity. Graphillion makes it easy to develop applications that

deal with very large graph sets. Graphillion follows the programming inter-

face of the built-in set class in Python (Fig. 1 (B, C)), and so it is very

easily for Python programmers to use. Since we redesign family algebra to

suit graph sets, it is tractable to write complicated operations over graph

sets, such as optimization, selection, and modification. Since Python is a

general-purpose programming language with a rich set of modules, program-

mers can implement their tasks just using Python and they are freed from

the need to coordinate multiple programs in different languages. We evaluate

the productivity by the number of code lines in this paper.
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3 Representations of a Graph and the Set

This section formulates a graph set as a set of edge collections. Figure 2 shows an

example of the representation used in this section.

3.1 Representation of a Graph

We first introduce a special graph that defines our universe (Fig. 2 (A)),

U = (Vu, Eu).

A graph G used in Graphillion must be an edge-induced subgraph of the universe

(Fig. 2 (D)),

G = E ⊆ Eu,

where only edge collection E defines the graph, while vertices V are ignored. This

simplification puts a limitation on vertices; vertices without edges cannot be rec-

ognized. However, graphs are mainly characterized by edge structures in many

applications, making this limitation not a serious concern in most cases.

Our graph model puts no restriction on edge type 2, but this paper treats only

simple undirected edges with no self-loops for simplicity. Edges can be weighted.

3.2 Representation of a Set of Graphs

A set of graphs, G, is represented by a set of collections of Eu (Fig. 2 (B, C)),

G ⊆ 2Eu ,

where 2Eu is the power set of Eu. A graph used in Graphillion is defined by

G ∈ 2Eu .

The maximum size of a graph set, 2|Eu|, increases exponentially with universe

size. In order to represent a graph set efficiently, we utilize a compressed form of

a set of collections, which is named the zero-suppressed binary decision diagram,

or ZDD [8]. ZDD greatly compresses a very large set of collections by sharing the

common parts of similar collections. We show an example of the great compression

capability yielded by ZDD in Table 1, which presents the number of trees rooted

at a corner on a grid graph versus the amount of memory needed to store them

in ZDD (theoretical value ignoring implementation overhead). The amount of

memory increases much more slowly than the number of trees3.

2Edges can be either directed or undirected. They can also have self-loops. Multiple edges can
be placed between a same pair of vertices if they are distinguishable. Edges can be hyper edges,
which include any number of vertices.

3There is no rigorous theory that can estimate the compression ratio of binary decision dia-
grams, but it is believed that they will work well in most practical data applications [18].
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Table 1: Number of trees versus memory needed by ZDD

Grid size Number of trees Memory of ZDD [Byte]

2×2 10 990
3×3 750 9870
4×4 737354 61830
5×5 8965981766 335190
6×6 1334122533591284 2364750
7×7 2417510626051127173092 18168510
8×8 53140315312826650300530620174 56321790
9×9 14130434522304066557892213731297009012 207115950

Table 2: Creation methods for graph sets

Structure Parameters

tree a root vertex, spanning or not
forest root vertices, spanning or not
path terminal vertices, hamilton or not
cycle hamilton or not
clique size
connected component vertices to be connected

4 Creation and Manipulation of a Set of Graphs

This section describes the creation of a graph set using frontier search and the use

of family algebra to manipulate set contents.

4.1 Creation of a Set of Graphs

We build a ZDD representing a set of graphs by using a graph enumeration algo-

rithm called frontier-based search [13] 4, which integrates several advanced tech-

niques. Frontier search finds all graphs that have a specified structure based on

dynamic programming. It outputs the enumerated graphs in a compressed form

that is easily converted into a ZDD [15]. The time complexity is ruled by the size of

the compressed form (slightly larger than that of ZDD), not the number of graphs

being output.

Frontier search was originally limited to trivial structures like trees, but it has

been generalized to support various structures [5]. Table 2 shows the structures

supported by Graphillion.

4While this enumeration algorithm had no name originally, it was assigned the name in [10]
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Table 3: Selection operations for graph sets

Operation Definition

union G1 ∪ G2 = {G|G ∈ G1 ∨G ∈ G2}
intersection G1 ∩ G2 = {G|G ∈ G1 ∧G ∈ G2}
difference G1 \ G2 = {G|G ∈ G1 ∧G 6∈ G2}
symmetric difference G1 ⊕ G2 = (G1 \ G2) ∪ (G2 \ G1)
subgraphs G1 v G2 = {G1 ∈ G1|∃G2 ∈ G2(G1 ⊆ G2)}
supergraphs G1 w G2 = {G1 ∈ G1|∃G2 ∈ G2(G1 ⊇ G2)}
maximal graphs G↑ = {G1 ∈ G|G2 ∈ G ∧G1 ⊆ G2 → G1 = G2}
minimal graphs G↓ = {G1 ∈ G|G2 ∈ G ∧G1 ⊇ G2 → G1 = G2}

(A) membership query: e.g.,       is found in

{ } ! { }, = { } !!

(B) search: e.g., structure        is found in  

{ }, { } = { }

{ },

(C) graft: e.g., edges       are added to

{ }, = { },

{ },

Figure 3: Examples of graph set manipulation via family algebra.

The search space can be limited within a given graph set; graphs not included

in the given set are not enumerated by frontier search [4].

Simple graph sets can be created by ZDD’s primitives without frontier search;

an empty set and a power set are given by the ZDD’s primitives, and small graph

sets can be created by explicitly specifying the graphs (edge collections).

4.2 Manipulation of a Set of Graphs

Family algebra defines several operations on sets of collections, and the operations

can be efficiently performed over ZDDs [6]. Surprisingly, these operations can

be executed on the compressed data without decompression, so they are highly

efficient. In this subsection, we describe the operations for optimization, selection,

and modification, in the context of graph sets.

We begin with selection operations. Several selection operations are defined for

a set of collections, and their semantics make sense for graph sets without change.

The first four operations in Table 3 are ordinary set operations. Each graph in a
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Table 4: Modification operations for graph sets

Operation Definition

graft (join t) G t {E} = {G ∪ E|G ∈ G}
remove (meet u) G u {Ec} = {G ∩ Ec|G ∈ G}
flip (delta �) G � {E} = {G⊕ E|G ∈ G}

set is regarded as an opaque element without inner structure, and the operations

are performed over the sets. It is worth noting that intersection can be used for a

membership query; to test if graph G is in set G by checking (Fig. 3 (A)),

{G} ∩ G 6= ∅.

The other four operations in the table select graphs based on their structures.

They do what their names suggest (they are originally called subsets or maximal

sets in family algebra). The supergraphs operation can be used for search; to

explore G for graphs that include given structure G by (Fig. 3 (B)),

G w {G}.

We move to modification. All graphs in a set can be modified at once by slightly

modifying family algebra. Table 4 shows the modification operations (original

operation names in family algebra are shown in parentheses for reference). To

graft edge(s) E to all graphs in set G, we utilize join operation defined in the family

algebra, as shown in Table 4 (Fig. 3 (C)). Similarly, edge(s) E can be removed by

performing meet operation against the complement edge set Ec = Eu \E (i.e., Ec

are edges not to be removed in this context). The flip operation flips edge status

in all graphs.

Optimization is provided by a search algorithm of family algebra that finds a

maximum or minimum weighted edge collection (graph) in the set. Since this search

algorithm returns just a single best graph, we employ the difference operation to ob-

tain multiple graphs in descending (or ascending) order of weight; the search algo-

rithm is applied repeatedly while removing the previous best graph from the set by

the difference operation as follows.

for i = 1→ k do {find top-k graphs from G}
G = find max(G) {get best G from G}
{do something with G}
G = G \ {G} {remove G for the next iteration}

end for

Graphillion defines other operations like hitting sets [16], random sampling, and

counting graphs in a set, but we do not describe them due to space limits.
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5 Implementation

This section describes the implementation of Graphillion. Frontier search and fam-

ily algebra are implemented in C++, while the programming interface is written in

Python. This interface is based on Python’s set; e.g., the size query (len function

in Python), membership query (in operation), iterators (for operation), and gen-

eral set operations (union, etc.). We add graph-specific operations to this interface

like supergraphs, graft, and the graph-weight optimizers. Our implementation

requires 14,965 lines of code in C++ and 2,251 lines in Python.

A graph set object in Python maintains a reference to the corresponding ZDD

object of C++ (Fig. 1). The graph set object is very lightweight, since it has no

attribute other than the reference. The selection methods return a new graph set

object that refers to the associated ZDD object. The modification methods just

replace their reference with a new reference to the new ZDD object. The optimizers

are implemented as a Python iterator, which runs a loop step by step and yields

the best graphs one by one instead of extracting all of them at once.

Vertices and edges are simply indexed by integers in C++ to improve the ef-

ficiency, while any hashable object can be used as a vertex in Python for better

productivity5 (an edge is just a tuple of two vertex objects). Graphillion provides

a transparent mechanism to convert integers and objects by maintaining the map-

ping. The mapping is created automatically at universe registration, which must

be done at the beginning of the code. If edges not found in the universe are used,

an exception is raised.

In order to enhance productivity further, any type of graph object (e.g., Net-

workX graph) can be used in Graphillion. A graph object is transparently con-

verted into the Graphillion’s internal representation (an edge collection) by user-

defined converters. Programmers can use Graphillion as an enhancement tool for

their favorite graph modules simply by registering the converters.

6 Experiments

In this section, we first show the performance of Graphillion’s operations. We

then discuss two case studies, a puzzle solver and a power network optimizer, to

examine the tradeoff between performance and productivity. All experiments were

conducted with Python 2.7 and GCC 4.7 on Linux 2.6 using a single core in Intel

Xeon E31290 (3.60 GHz) with 32 GB of RAM.

6.1 Basic Performance

We evaluate the performance using a set of trees rooted at a corner on a grid

graph. The set size is shown in Table 1. The performance of creation is measured

5This is analogous to Python’s built-in set, which accepts any hashable object as an element
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Figure 4: CPU time and memory usage for the basic operations with and without
Graphillion. The operations are executed over trees rooted at a corner on a grid
graph. The grid size on the horizontal axis indicates N of the N ×N grid.

by building a set of the trees. The selection performance is evaluated by calcu-

lating the union of two sets of trees; trees in one set are rooted at a corner while

those in the other set are rooted at the diagonally opposite corner. The modifica-

tion performance is evaluated by grafting an edge to all trees. The optimization

performance is measured by finding the top-3 weighted trees with the maximizing

operation.

We measured the CPU time and the memory usage of these operations with

and without Graphillion. In the implementation without Graphillion, graphs are

created as NetworkX objects, and are stored in Python’s built-in set object (the

union operation is provided by the built-in set, but the other operations were

added by us). In order to evaluate Python’s overhead, we developed pure C++

implementation of the operations just for the experiments.

The results are shown in Fig. 4. The implementation without Graphillion could

not finish any operation for a 5×5 grid within an hour due to the very large number

of trees. Graphillion performs a little poorly on the small grids due to the overhead

of object mapping and conversion, but the overhead is negligible in the larger grids.

It finished all operations in less than 10 seconds with 500 MB of memory even for

the 9×9 grid, which has 1037 trees. Creation and optimization are slower than the

other operations, because they involve complicated search algorithms. Selection

requires twice as much memory than the others since it uses two sets of trees6, but

it is the fastest due to its simple operation.

6Selection requires 500 MB of memory, which is slightly larger than double the theoretical value
(207 MB), shown in Table 1, because of the unused slots in the hash table used to maintain ZDDs.
The flat regions seen in the memory usage for smaller grids are also due to the pre-allocated slots
of the hash table.
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Figure 5: An example of the Slitherlink problem (left) and its solution (right) on
6×8 grid; adjacent dots are connected with vertical or horizontal lines, and a cycle
is formed satisfying given hints, which indicate the number of lines surrounding it
while empty cells may be surrounded by any number of lines.
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Fig. 2 Examples of our graph representation.

the universe (Fig. 2 (D)),

G = (V = Vu, E ⊆ Eu),

where only a set of edges E defines the graph, while a
set of vertices V remains unchanged. This simplifica-
tion puts some limitations on vertices; no vertex can
be removed, and vertices are never merged (no edge
can be contracted). We believe these limitations are
acceptable in most cases, because graphs are mainly
characterized by the edge structure, not vertices.

Our graph model puts no restriction on the type
of edges†, but we assume only simple undirected edges
that has no self-loop in this paper. Edges can be
weighted.

3.2 Representation of a Set of Graphs

A set of graphs G is represented by a family of subsets
of Eu (Fig. 2 (B, C)),

G ⊆ 2Eu ,

where 2Eu is the power set of Eu. A graph used in
Graphillion is defined by G ∈ 2Eu (Fig. 2 (D)).

The maximum size of a graph set, 2|Eu|, increases
exponentially with the size of universe. In order to
represent a graph set efficiently, we utilize a com-
pressed form of a family of sets, which is named a zero-
suppressed binary decision diagram, or a ZDD [7]. A
ZDD greatly compresses a very large family by sharing

†Edges can be either directed or undirected. They can
also have self-loops. Multiple edges can be placed between
a same pair of vertices if they are distinguishable. Edges
can be hyper edges, which include any number of vertices.

common parts among similar sets. We show an example
of the great compression capability brought by a ZDD
in Table 1, which presents the number of trees rooted
at a corner on a grid graph versus the amount of mem-
ory to store them in a ZDD (a theoretical value without
implementation overhead). The amount of memory in-
creases much more slowly than the number of trees††.

4. Creation and Manipulation of a Set of
Graphs

This section describes the creation of a graph set using
the frontier search and the manipulation of them based
on the family algebra.

4.1 Creation of a Set of Graphs

We build a ZDD representing a set of graphs, by us-
ing a graph enumeration algorithm called the frontier
search [6], [10]. The frontier search finds all graphs that
have a specified structure based on the dynamic pro-
gramming. It outputs the enumerated graphs in a com-
pressed form, which can be easily converted into a ZDD.
The time complexity is ruled by the size of compressed
form (slightly larger than that of ZDD), not the number
of graphs to be output.

The frontier search was originally limited to a triv-
ial structure like a tree or a path, but it has been
generalized to support various structures by introduc-
ing several fundamental parameters that define basic
graph properties such as connectivity and vertex de-
grees [5]. Table 2 shows examples of the parameters
that define spanning trees and paths between the two
vertices; more complicated structure can be specified
with these parameters.

The search space can be limited within a given
graph set; graphs not included in the given set are not
enumerated by the frontier search [4].

Simple graph sets can be created by ZDD’s prim-
itives without the frontier search; an empty set and
a power set are given by the ZDD’s primitives, and a
small graph set is also created by explicitly specifying
the graphs (edge sets).

4.2 Manipulation of a Set of Graphs

Several operations are defined for a family of sets, and
they can be efficiently performed over ZDDs [6], [7].
Surprisingly, these operations can be executed in a com-
pressed form without extracting the compression, and
so they are highly efficient. In this subsection, we de-
scribe the operations for optimization, selection, and
modification, in the context of graph sets.

††There is no rigorous theory to estimate the compression
ratio of binary decision diagrams, but it is also believed that
they work well in most practical data [15].
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Figure 6: An example of Slitherlink solution by Graphillion. Here, we define
G1 6w G2 = G1 \ (G1 w G2). For the hint of “3”, the solutions must include (be
supergraphs of) three edges around the hint (2nd line), but must not include more
edges (3rd line). Similarly, the hint of “1” is processed (4th and 5th lines). Finally,
cycles are found by frontier search (7th line).

6.2 Puzzle Solver

The first case study is the Slitherlink puzzle7, which is a logic puzzle to find a

cycle that satisfies given hints (Fig. 5). We developed a Slitherlink solver in our

past work [19]; it was the fastest solver that could list all solution cycles. The

solver employs frontier search redesigned for Slitherlink; it has special algorithms

to process hints. The solver is written in 2,116 lines of C++ code.

We developed another solver with Graphillion, without frontier search dedicated

for Slitherlink. This new solver, first, enumerates subgraphs that satisfy the hints

(2nd to 5th lines of Fig. 6), and then runs frontier search over the hint-satisfying

subgraphs to select solution cycles (7th line of Fig. 6). Thanks to the generality

of Graphillion, the new solver is written just in 153 lines of Python. This is a 93

% reduction in code line number, and it is, in addition, written in easy Python,

not in complicated C++ (Table 5).

7http://www.nikoli.com/en/puzzles/slitherlink/
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Table 5: Lines of Code for Slitherlink Solvers

Implementation C++ Python

w/o Graphillion 2116 0
w/ Graphillion 0 153

0.01 

0.1 

1 

10 

100 

11x11 19x11 37x21 37x21 
(mod.) 

1 

10 

100 

1000 

10000 

100000 

11x11 19x11 37x21 37x21 
(mod.) 

dedicated solver 

Graphillion solver 

C
PU

 ti
m

e 
[s

ec
.]

M
em

or
y 

us
ag

e 
[M

 B
yt

e]

Grid size Grid size

Figure 7: CPU time and memory usage of the dedicated solver and the Graphillion
solver on Slitherlink problems.

We measure the CPU time and memory usage on three problems found in a

Slitherlink book [11], all of which have just a single solution. We also conduct

an experiment against a modified problem in which ten hints are randomly re-

moved to permit multiple solutions. Figure 7 shows the results. Both solvers

scaled similarly with problem size, and their memory usages were roughly com-

parable. The Graphillion solver is slightly outperformed in CPU time due to the

special algorithms in the dedicated solver, but the tradeoff between performance

and productivity is acceptable.

We can obtain top-k longest or shortest cycles with Graphillion’s iterators,

when the problem has multiple solution cycles. It took just another 0.24 seconds

to find the three longest cycles from among the 117059496 solutions in the modified

problem.

6.3 Power Network Optimizer

The second case study is power loss minimization in a distribution network; this is

a discrete non-convex optimization problem involving hundreds of variables [7]. A

power distribution network can be represented by a graph in which a vertex corre-

sponds to a town block or a power substation while an edge is a power line with a

switch (Fig. 8). The power flow is configured by changing the open/closed status
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Power substation
Town block
Power line w/ switch

Figure 8: An example of power distribution network, which is represented by a
graph; the power flow can be configured by the switches.

{ }, , , , ,

({ } ! { })
spanning forests

not including infeasible trees

={ }, ,

Figure 9: An example of optimization algorithms for power networks in Fig. 8;
feasible solutions are obtained as the spanning forests with no infeasible trees, and
then the optimal one is searched for (not shown in the figure).

of switches. It must be cycle-free to avoid short circuits, and must cover all blocks

to avoid blackouts; the power flow, as a consequence, forms a spanning forest, in

which each tree is rooted at a power substation. The flow also must satisfy com-

plicated electrical constraints on line capacity and voltage drop; roughly speaking,

very large or tall trees are forbidden. The network is operated to minimize resistive

line losses while satisfying these constraints.

In our past work [3], we developed a power loss optimizer that utilized fron-

tier search and family algebra in an ad-hoc manner without the unified concept

discussed in this paper. The loss optimizer first enumerates all spanning forests

rooted at substations by frontier search (1st line of Fig. 9). It then enumerates all

electrically-infeasible trees for each substation by conducting complicated power

calculations (2nd line of Fig. 9). Family algebra selects forests that do not include

the infeasible trees (3rd line of Fig. 9). Finally, the minimum-loss forest is found

from the selected feasible forests; since the search space consists of only the feasible

forests, the search algorithm does not need to consider the complicated constraints.

To handle the nonlinear nature of the power loss, a dedicated search algorithm had

been developed (that of family algebra was not used). Our past work implemented

a part of frontier search and of family algebra in 6,856 lines of C++ code, while

the complicated power calculations, including nonlinear optimization, was written

in 1,221 lines of Python code. Intermediate data are serialized into a file, which is

exchanged between the C++ program and the Python program.

We developed another power loss optimizer that implements the same algo-

rithms but employs Graphillion for frontier search and family algebra; we are
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Table 6: Lines of Code for Power Network Optimizers

Implementation C++ Python

w/o Graphillion 6856 1221
w/ Graphillion 0 1164
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Figure 10: CPU time and memory usage of power network optimizers with and
without Graphillion.

allowed to focus on the power calculation and the nonlinear optimization. Since

this optimizer is implemented as a single program, it does not need to exchange

intermediate data. It is written in 1,164 lines of Python code without C++. This

Python code is shorter than the original, because it does not require serialization

and object mapping. In total, we achieved a 86 % reduction in code line number,

and it is, in addition, written in easy Python, not complicated C++ (Table 6).

The two optimizers are compared for power distribution networks used in [3];

the largest network has 432 blocks (vertices) and 468 power lines (edges). The

results are shown in Fig. 10. Both implementations demonstrate comparable

performance in the CPU time and memory usage (the memory usage includes

both C++ and Python programs for the implementation without Graphillion).

The Graphillion optimizer was slightly faster due toits omission of data exchange,

while it required a bit more memory because of the full Python implementation.

This memory overhead is negligible compared to the productivity improvement,

which allows programmers to focus on their own problems without considering

complicated graph operations. Surprisingly, more than 1058 feasible forests were

handled with only 1.5 GB memory in the largest network. Graphillion needed just

one thousand code lines to find an optimal solution from a non-convex set of 1058

graphs in just one minute.
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Graphillion also can be used as a graph database of feasible forests. We issued

queries specifying an open/closed switch to select all the forests matched to the

queries, like Fig. 3 (B). Graphillion processed the queries within just 1.5 seconds

for a closed switch and within 0.5 seconds for an open switch in the largest network.

7 Related Work

There are several graph libraries like NetworkX [2] and Boost Graph Library [14].

These libraries are widely used for graph analysis. They are, however, designed

for a small number of graphs or a simple power set of edges; i.e., they can find

a shortest path just from a power set of edges without constraints. In contrast,

Graphillion can find shortest paths from large and complex sets of graphs, since it

can maintain such sets explicitly but efficiently.

We often use general optimizers like CPLEX8 for graph optimization. However,

they require us to describe the constraints in simple formulae, but many practical

problems are too complicated to permit this. The algebraic approach provided by

Graphillion sometimes works well as shown by the power network optimization,

which cannot be solved by general optimizers. In addition, general optimizers are

not designed to search for multiple solutions, while Graphillion provides iterators

that yield top-k solutions.

Graph databases [1] store multiple graphs and provide selection methods on

graph structure. However, they cannot store as many graphs as Graphillion can,

because they do not employ efficient graph set representation.

VSOP [9] employs family algebra as does Graphillion, but it provides an ab-

straction for combinatorial item sets, not graph sets. Frontier search is, of course,

not implemented in VSOP, and so it does not create graph sets of a given structure

efficiently. Since VSOP runs on its own interpreter, we cannot rely on Python’s

rich libraries.

8 Conclusions

In this paper, we have introduced Graphillion, which is a software library designed

for very large sets of graphs. Our representation of a graph set allows us to utilize

the theory of the “family of sets”, which can compress graph sets and manipulate

them efficiently. Graphillion is implemented in Python and provides a sophisti-

cated but easy to use interface. Experiments showed the excellent performance of

Graphillion. Two case studies revealed that programmers can handle very large

graph sets with just a small number of lines of code.

Future work includes a plug-in mechanism for operation customization, gener-

alized design for directed graphs and hyper graphs, and analysis of compression

ratio on graph set characteristics.

8http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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Since we would like to find out more applications for which Graphillion works

well, we make it publicly available online at Graphillion’s page9 and PyPI (Python

Package Index)10.
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