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Abstract

We study active learning of classes of recursive functions by asking value

queries about the target function f , where f is from the target class. That is, the

query is a natural number x, and the answer to the query is f(x). The complexity

measure in this paper is the worst-case number of queries asked. We prove that

for some classes of recursive functions ultrametric active learning algorithms can

achieve the learning goal by asking signi�cantly fewer queries than deterministic,

probabilistic, and even nondeterministic active learning algorithms. This is the

�rst ever example of a problem, where ultrametric algorithms have advantages

over nondeterministic algorithms.

1. Introduction

In traditional studies of learning of recursive functions [10, 13, 42, 43], concepts are
modeled as a set of stimulus and response pairs. Assuming that any concept associates
only one response with each possible stimulus, it can be viewed as a function from
stimuli to responses. Every string of ASCII symbols can be encoded in the natural
numbers. These strings include arbitrarily long �nite texts and are certainly su�cient
to express both stimuli and responses. So for a mathematical treatment of learning, it
su�ces to consider only the functions from natural numbers to natural numbers. Via
suitable encodings, these functions can represent a wide range of phenomena. Since
we shall be concerned only with e�ective learning procedures, the recursive functions
are used to model concepts.
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Inductive inference, the abstract study of generalization, has been studied inten-
sively. In Gold's [18] model of identi�cation in the limit, the learner is a determin-
istic algorithm called inductive inference machine (abbr. IIM), and the objects to
be learned are recursive functions. The source of information are growing initial
segments (x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)) of ordered pairs of the graph of the
target function f , where it is assumed that every pair (x, f(x)) appears eventually. As
a hypothesis space one can choose any Gödel numbering ϕ0, ϕ1, ϕ2, . . . of the set of all
partial recursive functions over the natural numbers (cf. Rogers [38]). If a number i is
such that ϕi = f then we call i a ϕ-program of f . An IIM, on input an initial segment
(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)), has to output a natural number in which is
interpreted as ϕ-program. An IIM identi�es f if the sequence (in)n∈N of all computed
ϕ-programs converges to a program i such that ϕi = f . Here N = {0, 1, 2, . . .} denotes
the set of all natural numbers. If an IIM identi�es some function f , then some form of
learning must have taken place, since, by the properties of convergence, only a �nite
part of the graph of f was known by the IIM at the (unknown) point of convergence.
The terms infer and learn will be used as synonyms for identify.

Every IIM M learns some set of recursive functions which we denote by EX(M).
The family of all such sets, over the universe of e�ective algorithms viewed as IIMs,
serves as a characterization of the learning power inherent in the Gold model. This
family is symbolically denoted by EX (short for explanatory) and it is de�ned rigor-
ously by EX = {U | ∃M(U ⊆ EX(M)}. In many studies of inductive inference the
family EX is set-theoretically compared with the families that arise from considering
other models. In this way, one parameter of the learning process can be examined
in isolation (cf., e.g., [43] and the references therein). There are several well studied
derivatives of the Gold [18] model. One such derivative is �nite learning, where the
IIM either requests a new input and outputs nothing, or it outputs a program i, and
stops. Again we require that program i is correct for f , i.e., ϕi = f .

The models described so far are models of passive learning, since the IIM has no
in�uence on the order in which examples are presented. In contrast, the learning
model considered in the present paper is an active one. This model goes back to
Angluin [3] and is called query learning. In the query learning model the learner has
access to a teacher that truthfully answers queries of a prespeci�ed type. In this paper
we only consider value queries. That is, the query is a natural number x, and the
answer to the query is f(x). A query learner is an algorithmic device that, depending
on the answers already received, either computes a new value query or it returns a
hypothesis i and stops. As above, the hypothesis is interpreted with respect to a �xed
Gödel numbering ϕ and it is required that the hypothesis returned satis�es ϕi = f .
So active learning is �nite learning.

As in the Gold [18] model, we are interested in active learners that can infer whole
classes of recursive functions. The complexity measure is then the worst-case number

of queries asked to identify all the functions from the target class U . We refer to any
query learner as query inference machine (abbr. QIM).
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Note that value queries are just the simplest type of query. Various authors studied
many di�erent query languages extending this simplest type of query (cf., e.g., [15,
17, 16, 26]).

Automata theory and complexity theory have considered several natural general-
izations of deterministic algorithms, namely, nondeterministic and probabilistic algo-
rithms. In many cases these generalized algorithms allow for computations having
a complexity that is strictly less than their deterministic counterpart. Such general-
ized algorithms attracted considerable attention in learning theory, too. Many papers
studied learnability by nondeterministic algorithms [1, 8, 14, 41] and probabilistic
algorithms [20, 25, 31, 32, 33, 36, 37].

In the following we use P , R and P2, R2 to denote the set of all partial recur-
sive functions and of all recursive functions of one respectively two variables over N,
respectively. Furthermore, we formally de�ne what a Gödel numbering is. Any func-
tion ψ ∈ P2 is called a numbering. Moreover, let ψ ∈ P2, then we write ψi instead of
λx.ψ(i, x) and set Pψ = {ψi | i ∈ N} as well as Rψ = Pψ∩R. A numbering ϕ ∈ P2 is
called a Gödel numbering (cf. Rogers [38]) i� Pϕ = P , and for any numbering ψ ∈ P2,
there is a compiler c ∈ R such that ψi = ϕc(i) for all i ∈ N.

De�nition 1. We say that a nondeterministic QIM learns a function f if

(1) there is at least one computation path such that the QIM produces a correct result

on f , i.e., program j such that ϕj = f ;

(2) at no computation path the QIM produces an incorrect result on f .

Probabilistic algorithms can be represented by rooted trees (cf. Hromkovi£ [21]).
The leaves of the tree are the output nodes and the probability to reach a leaf is
computed in the usual way.

De�nition 2. We say that a probabilistic QIM produces a result m with a probability
p if the sum of the probabilities of all leaves which correctly produce the result m is no

less than p.

De�nition 3. We say that a probabilistic QIM learns a function f with a probability p
if

(1) the sum of all probabilities of all leaves which produce a correct result on f , i.e.,

a number j such that ϕj = f , is no less than p.

(2) at no computation path the QIM produces an incorrect result on f .

Recently, Freivalds [11] introduced a new type of indeterministic algorithms called
ultrametric algorithms. An extensive research on ultrametric algorithms of various
kinds is currently performed by him and his co-authors (cf. [4, 23]). So, ultrametric
algorithms are a very new concept and their potential still has to be explored. This is
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the �rst paper showing a problem, where ultrametric algorithms have advantages over
nondeterministic algorithms. Ultrametric algorithms are very similar to probabilistic
algorithms but while probabilistic algorithms use real numbers r with 0 ≤ r ≤ 1

as parameters, ultrametric algorithms use p-adic numbers as the parameters. As
it turns out the usage of p-adic numbers as amplitudes and the ability to perform
measurements to transform amplitudes into real numbers are inspired by quantum
computations and allow for algorithms not possible in classical computations. Slightly
simplifying the description of the de�nitions, one can say that ultrametric algorithms
are the same as probabilistic algorithms, only the interpretation of the probabilities
is di�erent.

The choice of p-adic numbers instead of real numbers is not quite arbitrary. Os-
trowski [35] proved that any non-trivial absolute value on the rational numbers Q is
equivalent to either the usual real absolute value or a p-adic absolute value. This
result shows that using p-adic numbers was not merely one of many possibilities to
generalize the de�nition of deterministic algorithms but rather the only remaining
possibility not yet explored.

The notion of p-adic numbers is widely used in science. String theory [40], chem-
istry [28] and molecular biology [9, 24] have introduced p-adic numbers to describe
measures of indeterminism. Indeed, research on indeterminism in nature has a long
history. Pascal and Fermat believed that every event of indeterminism can be de-
scribed by a real number between 0 and 1 called probability. Quantum physics intro-
duced a description in terms of complex numbers called amplitude of probabilities and
later in terms of probabilistic combinations of amplitudes most conveniently described
by density matrices. Using p-adic numbers to describe indeterminism allows to ex-
plore some aspects of indeterminism but, of course, does not exhaust all the aspects
of it.

There are many distinct p-adic absolute values corresponding to the many prime
numbers p. These absolute values are traditionally called ultrametric. Absolute val-
ues are needed to consider distances among objects. We are used to rational and
irrational numbers as measures for distances, and there is a psychological di�culty to
imagine that something else can be used instead of rational and irrational numbers,
respectively. However, there is an important feature that distinguishes p-adic numbers
from real numbers. Real numbers (both rational and irrational) are linearly ordered,
while p-adic numbers cannot be linearly ordered. This is why valuations and norms

of p-adic numbers are considered.

The situation is similar in Quantum Computation (see [34]). Quantum amplitudes
are complex numbers which also cannot be linearly ordered. The counterpart of
valuation for quantum algorithms is measurement translating a complex number a+bi

into a real number a2 + b2. Norms of p-adic numbers are rational numbers. To make
the paper as self-contained as possible, we continue with a short description of p-adic
numbers.
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2. p-adic Numbers and Ultrametric Algorithms

Let p be an arbitrary prime number. A number a ∈ N with 0 ≤ a ≤ p− 1 is called
a p-adic digit. A p-adic integer is by de�nition a sequence (ai)i∈N of p-adic digits. We
write this conventionally as · · · ai · · · a2a1a0, i.e., the ai are written from left to right.

If n is a natural number, and n = ak−1ak−2 · · · a1a0 is its p-adic representation,
i.e., n =

∑k−1
i=0 aip

i, where each ai is a p-adic digit, then we identify n with the p-adic
integer (ai), where ai = 0 for all i ≥ k. This means that the natural numbers can be
identi�ed with the p-adic integers (ai)i∈N for which all but �nitely many digits are 0.
In particular, the number 0 is the p-adic integer all of whose digits are 0, and 1 is the
p-adic integer all of whose digits are 0 except the right-most digit a0 which is 1.

To obtain p-adic representations of all rational numbers, 1
p
is represented as · · · 00.1,

the number 1
p2

as · · · 00.01, and so on. For any p-adic number it is allowed to have
in�nitely many (!) digits to the left of the �p-adic� point but only a �nite number of
digits to the right of it.

However, p-adic numbers are not merely a generalization of rational numbers. They
are related to the notion of absolute value of numbers.

If X is a nonempty set, a distance, or metric, on X is a function d from X ×X to
the nonnegative real numbers such that for all (x, y) ∈ X×X the following conditions
are satis�ed.

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x),

(3) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

A set X together with a metric d is called a metric space. The same set X can
give rise to many di�erent metric spaces. If X is a linear space over the real numbers
then the norm of an element x ∈ X is its distance from 0, i.e., for all x, y ∈ X and α
any real number we have:

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,

(2) ‖α · y‖ = |α| · ‖y‖,

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Note that every norm induces a metric d, i.e., d(x, y) = ‖x − y‖. A well-known
example is the metric over Q induced by the ordinary absolute value. However, there
are other norms as well.

A norm is called ultrametric if Requirement (3) can be replaced by the stronger
statement: ‖x+ y‖ ≤ max{‖x‖, ‖y‖}. Otherwise, the norm is called Archimedean.
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De�nition 4. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any nonzero

integer a, let the p-adic ordinal (or valuation) of a, denoted ordp a, be the highest

power of p which divides a, i.e., the greatest number m ∈ N such that a ≡ 0 (mod pm).

For any rational number x = a/b we de�ne ordp x =df ordp a − ordp b. Additionally,

ordp x =df ∞ if and only if x = 0.

For example, let x = 63/550 = 2−1 · 32 · 5−2 · 71 · 11−1. Thus, we have

ord2 x = −1

ord3 x = +2

ord5 x = −2

ord7 x = +1

ord11 x = −1

ordp x = 0 for every prime p /∈ {2, 3, 5, 7, 11} .

De�nition 5. Let p ∈ {2, 3, 5, 7, 11, 13, . . .} be any prime number. For any rational

number x, we de�ne its p-norm as p−ordp x, and we set ‖0‖p =df 0.

For example, with x = 63/550 = 2−1325−27111−1 we obtain:

‖x‖2 = 2

‖x‖3 = 1/9

‖x‖5 = 25

‖x‖7 = 1/7

‖x‖11 = 11

‖x‖p = 1 for every prime p /∈ {2, 3, 5, 7, 11} .
Rational numbers are p-adic integers for all prime numbers p. Since the de�nitions

given above are all we need, we �nish our exposition of p-adic numbers here. For a
more detailed description of p-adic numbers we refer to [19, 27].

We continue with ultrametric algorithms. In the following, p always denotes a
prime number. Ultrametric algorithms are described by �nite directed acyclic graphs
(abbr. DAG), where exactly one node is marked as root. As usual, the root does not
have any incoming edge. Furthermore, every node having outdegree zero is said to be
a leaf. The leaves are the output nodes of the DAG.

Let v be a node in such a graph. Then each outgoing edge is labeled by a p-adic
number which we call amplitude. We require that the sum of all amplitudes that
correspond to v sums up to 1. In order to determine the total amplitude along a
computation path, we need the following de�nition.

De�nition 6. The total amplitude of the root is de�ned to be 1. Furthermore, let v

be a node at depth d in the DAG, let α be its total amplitude, and let β1, β2, · · · , βk
be the amplitudes corresponding to the outgoing edges e1, . . . , ek of v. Let v1, . . . , vk
be the nodes where the edges e1, . . . , ek point to. Then the total amplitude of v`,

` ∈ {1, . . . , k}, is de�ned as follows.

(1) If the indegree of v` is one, then its total amplitude is αβ`.

(2) If the indegree of v` is bigger than one, i.e., if two or more computation paths are

joined, say m paths, then let α, γ2, . . . , γm be the corresponding total amplitudes

of the predecessors of v` and let β`, δ2, . . . , δm be the amplitudes of the incoming

edges The total amplitude of the node v` is then de�ned to be αβ` + γ2δ2 + · · ·+
δmγm.
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Note that the total amplitude is a p-adic integer.

We refer the reader to the proof of Theorem 9 for an example.

It remains to de�ne what is meant by saying that a p-ultrametric algorithm pro-
duces a result with a certain probability. This is speci�ed by performing a so-called
measurement at the leaves of the corresponding DAG. Here by measurement we mean
that we transform the total amplitude β of each leaf to ‖β‖p. We refer to ‖β‖p as the
p-probability of the corresponding computation path.

De�nition 7. We say that a p-ultrametric algorithm produces a result m with a
probability q if the sum of the p-probabilities of all leaves which correctly produce the

result m is no less than q.

De�nition 8. We say that a p-ultrametric QIM learns a function f with a probabil-
ity q if

(1) the sum of the p-probabilities of all leaves which produce a correct result on f ,

i.e., a number j such that ϕj = f is no less than q,

(2) at no computation path the QIM produces an incorrect result on f .

3. Results

As explained in the Introduction we are interested in the number of queries a QIM
has to ask in the worst-case in order to infer all recursive functions from a prespeci�ed
class U . In order to study this problem we shall always assume the hypothesis space
to be a Gödel numbering ϕ (cf. [38]). This is no restriction of generality since all
natural programming languages provide Gödel numberings of recursive functions.

The complexity of learning recursive functions has been an important topic for
several decades [2, 12, 13, 29, 42, 43]. Furthermore, the problem to learn functions
from value queries has been intensively studied in various domains. We refer the
reader to Bshouty [7] for an overview. In the present paper we compare the query
complexity of deterministic, nondeterministic, probabilistic, and ultrametric QIMs to
one another.

Our results are somewhat unexpected. Usually, for various classes of problems,
nondeterministic algorithms provide the smallest complexity, deterministic algorithms
provide the largest complexity and probabilistic algorithms provide some medium
complexity. In [4, 11, 23] ultrametric algorithms also gave medium complexity some-
times better and sometimes worse than probabilistic algorithms. Our results in this
paper show that, for learning recursive functions from value queries, there are classes U
of recursive functions such that ultrametric QIMs have a smaller query complexity
than even nondeterministic QIMs. This is the �rst ever example of a problem, where
ultrametric algorithms have advantages over nondeterministic algorithms.
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Figure 1: The Fano Plane

To show these results we use a combinatorial structure called the Fano plane. It is
one of �nite geometries (cf. Meserve [30]). The Fano plane consists of seven points

0, 1, 2, 3, 4, 5, 6 and seven lines (0, 1, 3), (1, 2, 4), (2, 3, 5), (3, 4, 6), (4, 5, 0), (5, 6, 1),
(6, 0, 2). For any two points i, j with i 6= j, in this geometry there is exactly one
line that contains these points (cf. Figure 1). For any two di�erent lines in this
geometry there is exactly one point contained in these two lines. In our construction
the points 0, 1, 2, 3, 4, 5, 6 are interpreted as colored in two di�erent colors RED and
BLUE, respectively.

Lemma 1 (Meserve [30]). For an arbitrary coloring of the Fano plane there is at least

one line the 3 points of which are colored by the same color.

Lemma 2 (Meserve [30]). For any coloring of the Fano plane there cannot exist two

di�erent lines colored in opposite colors.

Proof. As explained above, for any two di�erent lines in the Fano plane there is exactly
one point contained in these two lines. So it is impossible to have two di�erent lines
colored in opposite colors.

Let ϕ be a Gödel numbering of P . We consider the following class U7 of recursive
functions. Each function f ∈ U7 is such that f ∈ R and:

(1) every f(x) where 0 ≤ x ≤ 6 equals either 2s or 3t, where s, t ∈ N, s, t ≥ 1,

(2) if 0 ≤ x1 < x2 ≤ 6, f(x1) = 2s and f(x2) = 2t, then f(x1) = f(x2),

(3) if 0 ≤ x1 < x2 ≤ 6, f(x1) = 3s and f(x2) = 3t, then f(x1) = f(x2),

(4) if f(0) = 2s and f(1) = 2s and f(3) = 2s, then s is a correct ϕ-program for f ,

(5) if f(1) = 2s and f(2) = 2s and f(4) = 2s, then s is a correct ϕ-program for f ,

(6) if f(2) = 2s and f(3) = 2s and f(5) = 2s, then s is a correct ϕ-program for f ,

(7) if f(3) = 2s and f(4) = 2s and f(6) = 2s, then s is a correct ϕ-program for f ,

(8) if f(4) = 2s and f(5) = 2s and f(0) = 2s, then s is a correct ϕ-program for f ,
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(9) if f(5) = 2s and f(6) = 2s and f(1) = 2s, then s is a correct ϕ-program for f ,

(10) if f(6) = 2s and f(0) = 2s and f(2) = 2s, then s is a correct ϕ-program for f ,

(11) if f(0) = 3t and f(1) = 3t and f(3) = 3t, then s is a correct ϕ-program for f ,

(12) if f(1) = 3t and f(2) = 3t and f(4) = 3t, then t is a correct ϕ-program for f ,

(13) if f(2) = 3t and f(3) = 3t and f(5) = 3t, then t is a correct ϕ-program for f ,

(14) if f(3) = 3t and f(4) = 3t and f(6) = 3t, then t is a correct ϕ-program for f ,

(15) if f(4) = 3t and f(5) = 3t and f(0) = 3t, then t is a correct ϕ-program for f ,

(16) if f(5) = 3t and f(6) = 3t and f(1) = 3t, then t is a correct ϕ-program for f ,

(17) if f(6) = 3t and f(0) = 3t and f(2) = 3t, then t is a correct ϕ-program for f .

Comment. In our construction of the class U7 the points 0, 1, 2, 3, 4, 5, 6 can be
interpreted as colored in two colors. Some points f(i) are such that f(i) = 2s (these
points are described below as RED) while some other points j are such that f(j) = 3t

(these points are described below as BLUE). The properties of the Fano plane ensure
that for every such coloring in two colors there exists a line such that the three points
on this line are colored in the same color, and there cannot exist two lines colored in
opposite colors.

De�nition 9. A partial coloring C of a Fano plane is an assignment of colors RED,

BLUE, NONE to the points of the Fano plane.

A partial coloring C2 is an extension of a partial coloring C1 if every point colored

RED or BLUE in C1 is colored in the same color in C2.

A partial coloring C of a Fano plane is called complete if every point is colored

RED or BLUE.

Lemma 3. Given any partial coloring C of the points in the Fano plane assigning

colors RED and BLUE to some but not all points such that no line contains three

points in the same color, there exists

(1) a complete extension of the given coloring C such that it contains a line with

three RED points, and

(2) a complete extension of the given coloring C such that it contains a line with

three BLUE points.

Proof. Color all the not colored points RED for the �rst function, and BLUE for the
second function.
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Lemma 4. Given any partial coloring C of points in the Fano plane assigning colors

RED and BLUE to some but not all points such that no line contains three points in

the same color, there exist numbers k∗, `∗ ∈ N and

(1) a function fRED ∈ U7 de�ned as f(x) = 2`∗ for all x colored RED in C such that

fRED contains a line with three RED points, and all the points 0, 1, 2, 3, 4, 5, 6

are colored RED or BLUE,

(2) a function fBLUE ∈ U7 de�ned as f(x) = 3k∗ for all x colored BLUE in C

such that fBLUE contains a line with three BLUE points, and all the points

0, 1, 2, 3, 4, 5, 6 are colored RED or BLUE.

Proof. Let red and blue be the subset of {0, 1, 2, 3, 4, 5, 6} which are colored RED and
BLUE, respectively. By the assumptions of the lemma we then have red ∩ blue = ∅
and red ∪ blue ⊂ {0, 1, 2, 3, 4, 5, 6}. Furthermore, so far there is no line in the Fano
plane that has all points colored in the same color.

To show Assertion (1), let a function h ∈ R be chosen such that for all `, x ∈ N

ϕh(`)(x) =

{
3` , if x ∈ blue ;
2` , otherwise .

The construction directly implies that ϕh(`) ∈ R for all ` ∈ N. By the �xed point
theorem (cf. Rogers [38]) there is a number `∗ ∈ N such that the equality ϕ`∗ = ϕh(`∗)
is satis�ed. Now, by Lemma 3 we know that the Fano plane has a line colored in RED,
say (i, j, k) (cf. the comment made after the de�nition of the class U7). In accordance
with our construction we conclude that

ϕ`∗(i) = ϕ`∗(j) = ϕ`∗(k) = 2`∗ .

Consequently, ϕ`∗ ∈ U7 and Assertion (1) is shown by setting fRED =df ϕ`∗ .

Assertion (2) can be shown mutatis mutandis.

Theorem 1. There is a deterministic QIM M that learns the class U7 with 7 queries.

Proof. The desired QIM M queries the points 0, 1, . . . , 6. After having received
f(0), f(1), f(2), . . . , f(6), it checks at which line all points have the same color, and
outputs the ϕ-program corresponding to this line. Note that by Lemmata 1 and 2
there is at least one such line and there cannot be two lines colored in di�erent colors.
By the de�nition of the class U7 one can directly output a correct ϕ-program for the
target function f .

In order to show Theorem 3 below we need Smullyan's double �xed point theorem
(cf. [38, 39]). So let us recall it here.

Theorem 2 (Smullyan [39]). Let ϕ be any Gödel numbering of P, and let h, s ∈ R2.

Then there are k∗, `∗ ∈ N such that simultaneously the equations ϕk∗ = ϕh(k∗,`∗) and

ϕ`∗ = ϕs(k∗,`∗) are satis�ed.
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Theorem 3. There exists no deterministic QIM learning U7 with 6 queries.

Proof. The proof is by contradiction. Using Smullyan's double �xed point theorem [38]
one can construct two functions f and f̃ such that both are in U7 but at least one of
them is not correctly learned by the QIM M . This is done as follows.

Suppose that such a QIMM exists. Of course, in order to learn functions from the
class U7 the QIM M should ask value queries for values in {0, 1, . . . , 6}. If any other
value query is made we de�ne the corresponding function values to be 0. Furthermore,
we assume without loss of generality that every query is made only one time.

By symmetry we can assume without loss of generality that the �rst value query
of M is 0. To answer it, let functions h, s ∈ R2 be chosen such that for all k, ` ∈ N

ϕh(k,`)(0) = 2k and ϕs(k,`)(0) = 2k .

We return 2k to the QIM M and set Q1 = {0}.

Next, let the second query of M be x2 for some x2 ∈ {0, 1, . . . , 6}\Q1. Now we de�ne

ϕh(k,`)(x2) = 2k and ϕs(k,`)(x2) = 2k ,

return 2k to the QIM M and set Q2 = {0, x2}.

If the third query of the QIM M is x3, where x3 ∈ {0, 1, 2, 3, 4, 5, 6} \ Q2 is such
that (0, x2, x3) form a line in the Fano plane then we de�ne

ϕh(k,`)(x3) = 3` and ϕs(k,`)(x3) = 3`

to avoid that this line gets three equally colored points. In this case we return 3`.

Otherwise, we de�ne

ϕh(k,`)(x3) = 2k and ϕs(k,`)(x3) = 2k ,

return 2k and set in both cases Q3 = {0, x2, x3}.

The remaining three queries of the QIM M are answered in the following way
(cf. Figure 1). If the next queried point x is such that no new line gets 3 equally
colored points, we de�ne

ϕh(k,`)(x) = 2k and ϕs(k,`)(x) = 2k ,

return 2k to the QIM M , and add x to the set of queried points.

If the queried point is such that some line can get 3 equally colored points, we
de�ne the value of the functions as

ϕh(k,`)(x) = 2k or ϕh(k,`)(x) = 3`

as well as

ϕs(k,`)(x) = 2k or ϕs(k,`)(x) = 3`
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to avoid this. Then we return the de�ned value and add the queried point to the set
of all already queried points.

Note that after these 6 queries the functions ϕh(k,`) and ϕs(k,`) are de�ned in the
same way for all `, k ∈ N and all 6 queried points in Q6.

To complete the proof we de�ne the functions ϕh(k,`) and ϕs(k,`) for the remaining
point x ∈ {0, 1, 2, 3, 4, 5, 6} \Q6 to be

ϕh(k,`)(x) = 2k and ϕs(k,`)(x) = 3`

and set ϕh(k,`)(y) = ϕs(k,`)(y) = 0 for all `, k ∈ N and all y ∈ N, where y > 6.

By construction, ϕh(k,`), ϕs(k,`) ∈ R for all `, k ∈ N. Now we apply Theorem 2.
Hence there are k∗, `∗ ∈ N such that simultaneously the equations ϕk∗ = ϕh(k∗,`∗) and
ϕ`∗ = ϕs(k∗,`∗) are satis�ed. So we have

ϕk∗(0) = ϕh(k∗,`∗)(0) = 2k∗

ϕ`∗(0) = ϕs(k∗,`∗)(0) = 2k∗

ϕk∗(x1) = ϕh(k∗,`∗)(x1) = 2k∗

ϕ`∗(x1) = ϕs(k∗,`∗)(x1) = 2k∗ ,

and so on. But by construction the function ϕk∗ must have a line (xi1 , xi2 , xi3) in the
Fano plane such that

ϕk∗(xij) = ϕh(k∗,`∗)(xij) = 2k∗ for j = 1, 2, 3 .

Consequently, we know that ϕk∗ ∈ U7.

Analogously, the function ϕ`∗ has a line (zi1 , zi2 , zi3) in the Fano plane such that

ϕ`∗(zij) = ϕs(k∗,`∗)(zij) = 3`∗ for j = 1, 2, 3 .

Therefore, we conclude that ϕ`∗ ∈ U7. So, we set f =df ϕk∗ and f̃ =df ϕ`∗ . As shown
above, the functions f and f̃ belong to U7 and coincide in their values on all points
queried by the QIM M . Hence, M must fail to learn f or f̃ , a contradiction.

Theorem 4. There is a nondeterministic QIM M learning U7 with 3 queries.

Proof. The QIMM starts with a nondeterministic branching of the computation into 7

possibilities corresponding to the 7 lines in the Fano plane. In each case, all 3 points
i, j, k are queried. If f(i), f(j), f(k) are not of the same color then the computation
path is aborted. If they are of the same color, e.g., f(i) = 2si , f(j) = 2sj , f(k) = 2sk ,
then the de�nition of the class U7 ensures that si = sj = sk and the QIMM outputs si
which is a correct program computing the function f .

Theorem 5. There is no nondeterministic QIM learning U7 with 2 queries.

Proof. By Lemma 4, there are two distinct functions in the class U7 with the same
values queried by the nondeterministic algorithm. The output is not correct for at
least one of them.
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In contrast to Theorem 3 we can show that 6 queries are already enough for a
probabilistic QIM to achieve successful learning via value queries with a probability
bigger than 1/2.

Theorem 6. There is a probabilistic QIM M learning U7 with probability 4
7
with 6

queries.

Proof. There are 7 possibilities to choose a subset of 6 points from the 7 points of
the Fano plane. So the desired probabilistic QIM M branches its computation in 7
branches corresponding to the 7 di�erent subset of size 6 of the points of the Fano
plane. In each branch all 6 points are queried. If the QIMM �nds a line (i, j, j) in the
Fano plane such that all points of it have the same color, e.g., f(i) = f(j) = f(k) = 3s,
it outputs s. By de�nition of the class U7 the result is a correct program computing
the function f . Otherwise, the QIM M aborts the computation path.

It remains to analyze the probability of success. In the worst-case there is only a
single monochromatic line (i, j, j) in the Fano plane. So, there are 4 subsets of size 6
containing the points of this line and there are 3 subsets of size 6 which miss at least
one point of this line. Hence, the probability of success is 4/7.

Next, we deal with the minimum number of queries needed by a probabilistic
QIM M to achieve a probability greater than 0.

Theorem 7. There is a probabilistic QIM M learning U7 with probability 1
7
with 3

queries.

Proof. The algorithm starts with branching its computation into 7 possibilities cor-
responding to the 7 lines in Fano plane. Each branch is reached with probability
1/7. In each branch, all 3 points i, j, k are queried. If f(i), f(j), f(k) are not of the
same color then the computation path is aborted. If they are of the same color, e.g.,
f(i) = f(j) = f(k) = 2s, then s is output. By de�nition of the class U7 the result is
a correct program computing the function f .

However, the situation for the remaining number of queries is not yet completely
analyzed. We may be interested to know what probability of success can be achieved
by asking 4 or 5 queries. So far, we have only the following theorem.

Theorem 8. There is a probabilistic QIM M learning U7 with probability 2
7
with 5

queries.

Proof. The desired QIM M will use its 5 queries to query in each branch two lines of
the Fano plane. Since any two lines of the Fano plane share one point, it is clear that
5 queries are su�cient to query two lines. As above, if a line (i, j, k) of the Fano plane
is found such that all points of it have the same color, e.g., f(i) = f(j) = f(k) = 2s,
then s is output. Otherwise the branch is aborted.
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There are 21 possibilities to choose any two lines of the Fano plane. Again, in the
worst-case there is only one line in the Fano plane such that all its points have the
same color. So we may choose this line and any other line of the remaining 6 lines.
This gives 6 successful branches, while the remaining 15 branches are aborted. Hence,
the probability of success is 6/21 = 2/7.

Theorem 9. For every prime number p, there is a p-ultrametric QIM M learning U7

with p-probability 1 with 2 queries.

Proof. The desired QIM M branches its computation path into 7 branches at the
root, where each branch corresponds to exactly one line of the Fano plane. The
corresponding nodes are denoted by `1, . . . , `7, respectively, in Figure 2 below.

We assign to each edge the amplitude 1/7. At the second level, each of these
branches is branched into 3 subbranches each of which is assigned the amplitude 1/3.
So far we have at level three 21 nodes denoted by v1, . . . , v21 (cf. Figure 2).

`1 `2 `3 `4 `5 `6 `7

1/7 1/7 1/7 1/7 1/7 1/7

1/31/31/3

1/31/3

1/31/3

1/3

1/31/3

1/3

1/31/3

1/3

1/31/31/3

1/31/3

1/3 1/3

1/7

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21

Figure 2: The �rst three levels of the DAG representing the computation of the QIM

For each of these nodes we formulate two queries. Let v be such that its father
node corresponds to the line containing the point i, j, k of the Fano plane, where we
order these points such that i < j < k. If v is the leftmost node then we query (i, j), if
v is the middle node then we query (j, k) and if v is the rightmost node then we query
(i, k). Every triple of nodes having the same father share a register, say rijk. Initially,
the register contains the value ↑ which stands for �no output.� The node activated
when reached in the computation path sends the following value to rijk. After having
received the answer to its queries, e.g., f(i) = 2s and f(j) = 3t then it writes 0 in
rijk, and if the values coincide, e.g., f(i) = 3t and f(j) = 3t, then it writes t in rijk.

Looking at any triple of nodes having a common father at the third level, then we
note that the following 8 cases may occur as answer. We use again the corresponding
colors, where R and B are used as shortcuts for RED and BLUE, respectively.

Thus, we need for each node at the third level 8 outgoing edges as the table above
shows. If the edge corresponds to a pair (R,R) or (B,B) then we assign the amplitude
1/2 and otherwise the amplitude −1/4. Note that sum of these amplitudes is again 1.

Finally, we join each triple as shown in table above into one node, e.g., the edges
corresponding to (B,B), (B,R), and (B,R) are joined. If the total amplitude of such
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(i, j) (j, k) (i, k) (i, j) (j, k) (i, k)

(B,B) (B,R) (B,R) (R,R) (R,B) (R,B)
(B,B) (B,B) (B,B) (R,R) (R,R) (R,R)
(B,R) (R,R) (B,R) (R,B) (B,B) (R,B)
(B,R) (R,B) (B,B) (R,B) (B,R) (R,R)

Figure 3: The 8 cases of possible answers for any triple of nodes having a common
father at the third level.

a node at the third level is di�erent from zero, then the node produces as output
the value stored in register rijk. Figure 4 shows the part of the DAG for the queries
performed for the �rst line of the Fano plane, i.e., for the line (0, 1, 3). So this part
starts at the nodes v1, v2 and v3 shown in Figure 2. For the sake of readability, we
show the queries asked at each node, i.e., (0, 1) at node v1, (1, 3) at node v2, and (0, 3)

at node v3. A blue edge denotes the case that both answers to the queries asked at
the corresponding vertex returned a value of f indicating that the related nodes of
the �rst line of the Fano plane are blue. This result is then propagated along the blue
edges. Analogously, a red edge indicates that both answers corresponded to a red node
of the �rst line of the Fano plane. If the answers returned function values indicating
that the colors of the queried nodes of the �rst line of the Fano plane have di�erent
colors then the edge is drawn in black. Blue and red edges have the amplitude 1/2

and the black edges have the the amplitude −1/4.

(0, 1) (1, 3) (0, 3)

Figure 4: The part of the DAG representing the computation of the QIM M for the
line (0, 1, 3) starting at the nodes of the third level

It remains to show that the QIM M has the desired properties. By construction,
at every computation path exactly two queries are asked.

Next, by De�nition 6 it is obvious that the total amplitude of each node at the
second level is 1/21. Next, we consider any node at the third level. If a triple (B,B),
(B,B), and (B,B) is joined then the total amplitude is

1

21
· 1

2
+

1

21
· 1

2
+

1

21
· 1

2
=

1

2 · 7
.

The same holds for (R,R), (R,R), and (R,R) (cf. De�nition 6). Figure 4 shows the
corresponding leaves in blue and red, respectively.
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If a triple has a di�erent form than considered above, e.g., (B,B), (B,R), and
(B,R) then, again by De�nition 6, we have for the total amplitude

1

21
· 1

2
− 1

21
· 1

4
− 1

21
· 1

4
= 0 .

One easily veri�es that all remaining total amplitudes are also 0. The corresponding
leaves are drawn in black in Figure 4. Finally, we perform the measurement. Clearly,
for each leaf which has a total amplitude 0 the measurement results in ‖0‖p = 0. For
the remaining nodes we obtain ‖ 1

2·7‖p which is 1 for every prime p such that p /∈ {2, 7}.
If p = 2 then we have ‖ 1

2·7‖2 = 2 and for p = 7 we directly get ‖ 1
2·7‖7 = 7.

By Lemma 1 there must be at least one line such that all nodes have the same
color, and by Lemma 2 it is not possible to have a line colored in RED and a line
colored in BLUE simultaneously. So at least one node has p-probability at least 1,
and the result output is correct in accordance with the de�nition of the class U7.

If there are several lines colored in the same color then distinct but correct results
may be produced, since any two lines share exactly one point. Thus, the resulting
p-probability is always no less than 1.

The idea of this paper can be extended to obtain even more spectacular advantages
of ultrametric algorithms over nondeterministic ones. In order to show this let us recall
the general de�nition of a �nite projective plane.

De�nition 10. A �nite projective plane of order n, where n ∈ N, n > 0, is a

collection of n2 + n+ 1 lines and n2 + n+ 1 points such that

(1) every line contains n+ 1 points,

(2) every point is on n+ 1 lines,

(3) any two distinct lines intersect at exactly one point, and

(4) any two distinct points lie on exactly one line.

So, the interesting question is whether or not there are in�nitely many numbers n
such that there is a projective plane of order n. It is known that for every prime
power q there exists a projective plane of order q (cf. [6]).

This allows us to construct a class Um of recursive functions similar to the class U7

above. The counterpart of Lemma 1 does not hold (cf. Figure 5) but this demands
only an additional requirement for the function in the class to have a line colored in
one color but not simultaneously two lines colored in opposite colors. Formally we
de�ne the class Um as follows. Let q be a prime power, let m =df q

2 + q+1, let Pm be
the �nite projective plane of order q obtained from the proof given in [6], and let ϕ
be any �xed Gödel numbering of P .

The class Um is the set of all functions f ∈ R satisfying the following properties:
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(1) for every x ∈ {0, 1, . . . ,m − 1} the value f(x) equals either 2s or 3t, where
s, t ∈ N and s, t ≥ 1,

(2) if 0 ≤ x1 < x2 ≤ m− 1, f(x1) = 2s and f(x2) = 2t then f(x1) = f(x2),

(3) if 0 ≤ x1 < x2 ≤ m− 1, f(x1) = 3s and f(x2) = 3t then f(x1) = f(x2),

(4) either there is a line (x1, . . . , xq+1) in the projective plane Pm such that f(x1) =

f(x2) = · · · = f(xq+1) = 2k and ϕk = f or there is a line (x1, . . . , xq+1) in the
projective plane Pm such that f(x1) = f(x2) = · · · = f(xq+1) = 3k and ϕk = f .

Next, let us provide an example showing that Lemma 1 does not generalize to all
prime powers q and the corresponding �nite projective planes Pm, wherem = q2+q+1.
Instead of drawing a geometrical �gure, we shall represent the �nite projective plane
by an (m×m)-incidence matrix A. The rows of this matrix represent the points and
the columns represent the points. Let A = (aij)i=1,...,m

j=1,...,m
; then entry aij = 1 if point i

is at line j and aij = 0 otherwise.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

P1 1 1 1 1 0 0 0 0 0 0 0 0 0
P2 1 0 0 0 1 1 1 0 0 0 0 0 0
P3 1 0 0 0 0 0 0 1 1 1 0 0 0
P4 1 0 0 0 0 0 0 0 0 0 1 1 1
P5 0 1 0 0 1 0 0 1 0 0 1 0 0
P6 0 1 0 0 0 1 0 0 1 0 0 1 0
P7 0 1 0 0 0 0 1 0 0 1 0 0 1
P8 0 0 1 0 1 0 0 0 1 0 0 0 1
P9 0 0 1 0 0 1 0 0 0 1 1 0 0
P10 0 0 1 0 0 0 1 1 0 0 0 1 0
P11 0 0 0 1 1 0 0 0 0 1 0 1 0
P12 0 0 0 1 0 1 0 1 0 0 0 0 1
P13 0 0 0 1 0 0 1 0 1 0 1 0 0

Figure 5: A coloring of a �nite projective plane of order 3 which does not have a
monochromatic line

Using an incidence matrix A the conditions of De�nition 10 directly translate into:

(1) A has constant row sum q,

(2) A has constant column sum q,

(3) the scalar product of any two distinct row vectors of A is 1,

(4) the scalar product of any two distinct column vectors of A is 1.
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So the additional problem arising for all prime powers q > 2 is to �nd a suitable
coloring on which the de�nition of the corresponding functions from Um can be based.

It is straightforward to generalize Theorem 1 and Theorem 4.

Theorem 10. Let q be any prime power, let m = q2 + q + 1, and let Um ⊆ R be the

corresponding class of recursive functions. Then there is a deterministic QIM M that

learns the class Um with m queries.

Proof. The desired QIM M queries the points 0, 1, . . . , m− 1. After having received
f(0), f(1), f(2), . . . , f(m− 1), it checks at which line all points have the same color,
and outputs the ϕ-program corresponding to this line. Note that by the de�nition of
the class Um there is at least one such line and there cannot be two lines colored in
di�erent colors. If there is more than one line at which all points have the same color
then the function values for the points on these monochromatic lines must coincide
(cf. Conditions (2) and (3) of the de�nition of the class Um). So, by the de�nition of
the class Um one can directly output a correct ϕ-program for the target function f .

Unfortunately, so far we cannot show that every deterministic QIM M needs m
queries to learn the class Um. However, we conjecture that there is no deterministic
QIM M that learns the class Um with m− 1 queries.

Theorem 11. Let q be any prime power, let m = q2 + q + 1, and let Um ⊆ R be the

corresponding class of recursive functions. Then there is a nondeterministic QIM M

learning Um with q + 1 queries.

Proof. The QIM M starts with a nondeterministic branching of the computation
into m possibilities corresponding to the m lines in the �nite projective plane Pm.
In each case, all q + 1 points i1, . . . , iq+1 of the line corresponding to the branch are
queried. If f(i1), . . . , f(iq+1) are not of the same color then the computation path is
aborted. If they are of the same color, e.g., f(i1) = 2k1 , . . . , f(iq+1) = 2kq+1 , then the
de�nition of the class Um ensures that ki1 = · · · = kq+1 and the QIM M outputs ki1
which is a correct program computing the target function f .

Note that the nondeterministic QIM M learning Um needs q2 less queries than the
deterministic QIM from Theorem 10.

Theorem 12. Let q be any prime power, let m = q2 + q + 1, and let Um ⊆ R be the

corresponding class of recursive functions. Then there is no nondeterministic QIM M

learning Um with q queries.

Proof. We show the theorem indirectly. Suppose to the contrary that there is a
nondeterministic QIM M learning Um with q queries. For the sake of presentation,
we illustrate the construction for the case that q = 3.
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First, we construct a suitable coloring of Pm. Here we use an idea from Jepsen [22].
We �x the point P1 and color it RED. Let L1, . . . , Lq+1 be the lines containing P1.
Now we color all points contained in L2, . . . , Lq+1 except P1 by BLUE, and the points
contained in L1 with RED. The de�nition of a �nite projective plane of order q ensures
that L1 and L2 have exactly one point in common. By our construction this is P1.
Thus L2 must contain q points not contained in L1. The same holds for L2 and L3,
i.e., L3 must have q points neither contained in L1 nor contained in L2. Iterating
this argument shows that Lq+1 must contain q points not contained in any of the lines
L1, . . . , Lq. Thus gives a total of q+1 points (contained in L1) and q times q points for
L2, . . . , Lq+1, i.e., q + 1 + q2 points. Hence, we must have colored all points. Figure 6
shows the constructed coloring for the case q = 3. By construction, this coloring has

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

P1 1 1 1 1 0 0 0 0 0 0 0 0 0
P2 1 0 0 0 1 1 1 0 0 0 0 0 0
P3 1 0 0 0 0 0 0 1 1 1 0 0 0
P4 1 0 0 0 0 0 0 0 0 0 1 1 1
P5 0 1 0 0 1 0 0 1 0 0 1 0 0
P6 0 1 0 0 0 1 0 0 1 0 0 1 0
P7 0 1 0 0 0 0 1 0 0 1 0 0 1
P8 0 0 1 0 1 0 0 0 1 0 0 0 1
P9 0 0 1 0 0 1 0 0 0 1 1 0 0
P10 0 0 1 0 0 0 1 1 0 0 0 1 0
P11 0 0 0 1 1 0 0 0 0 1 0 1 0
P12 0 0 0 1 0 1 0 1 0 0 0 0 1
P13 0 0 0 1 0 0 1 0 1 0 1 0 0

Figure 6: The constructed coloring of a �nite projective plane of order 3

exactly one monochromatic line, i.e., all points of line L1 are colored RED.

Since the QIMM is supposed to learn Um with q queries there must be at least one
branch in its computation where some subset of {0, 1, . . . , q} (corresponding to the
points P1, . . . , Pq+1) of size at most q is queried and where the QIM M then makes
the corresponding correct program as output. If the QIM M does not have such a
branch then we are already done.

Let i be a point from {0, 1, . . . , q} which is not queried. Now, we change the
color of point Pi+1 from RED to BLUE. Then we obtain a new coloring which has q
many lines colored BLUE. This follows again directly from the de�nition of a �nite
projective plane. But the values returned to the QIM M at the branch considered
before remain unchanged and so it must output the same program as before which is,
however, for the current coloring no longer correct. Hence, it violates Condition (2)
of De�nition 1, a contradiction.

Next, we turn our attention to probabilistic QIM.



20 Rūsiņš Freivalds and Thomas Zeugmann

Theorem 13. Let q be any prime power, let m = q2 + q + 1, and let Um ⊆ R be

the corresponding class of recursive functions. Then there is a probabilistic QIM M

learning Um with probability q2

q2+q+1
with m− 1 queries.

Proof. Since
(
m
m−1

)
= m, there are m possibilities to choose a subset of m− 1 points

from the m points of a �nite projective plane Pm. So the desired probabilistic QIMM

branches its computation into m branches corresponding to the m di�erent subset of
size m− 1 of the points of the plane Pm. In each branch all m− 1 points are queried.
If the QIM M �nds a line (i1, . . . , iq+1) in the plane Pm such that all points of it have
the same color, e.g., f(i1) = · · · = f(iq+1) = 3k, it outputs k. By de�nition of the
class Um the result is a correct program computing the function f . Otherwise, the
QIM M aborts the computation path.

So, it remains to analyze the probability of success. In the worst-case there is only
single monochromatic line (i1, . . . , iq+1) in the plane Pm. There are q2 subsets of size
m− 1 containing the points of this monochromatic line and there are m− q2 = q + 1

subsets of size m− 1 which miss at least one point of this line. Hence, the probability
of success is q2/(q2 + q + 1).

It should be noted that the probability established in Theorem 13 tends to 1 if m
tends to in�nity.

Next it is easy to see that Theorem 7 generalizes as follows. The proof is mutatis

mutandis the same.

Theorem 14. Let q be any prime power, let m = q2 + q + 1, and let Um ⊆ R be

the corresponding class of recursive functions. Then there is a probabilistic QIM M

learning Um with probability 1
m

with q + 1 queries.

Unfortunately, so far we could not determine the minimum number of queries
needed to achieve a probability exceeding 1/2.

So, it remains to �nd out whether or not p-ultrametric QIMs do also achieve an
advantage over nondeterministic QIM in the general case. Though so far we could not
completely solve this problem, we succeeded to achieve partial results. Let us start
by looking at the case that q = 3. Then we obtain the class U13 which is de�ned by
using the projective plane P13. We have 13 lines and each line consists of precisely
four points. However, as the following theorem shows, there is a p-ultrametric QIM
that learns U13 two queries.

Theorem 15. For every prime number p, there is a p-ultrametric QIM M learning

the class U13 with p-probability 1 with 2 queries.

Proof. The desired QIM M branches its computation path into 13 branches at the
root, where each branch corresponds to exactly one line of the projective plane P13. We
assign to each edge the amplitude 1/13. Now, the idea to reduce the number of queries
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necessary is as follows. First, instead of asking 4 queries as the nondeterministic QIM
did, we could ask the leftmost three points and the rightmost three points of the
corresponding line, respectively. Therefore, we branch the computation at the second
level into two subbranches each of which is assigned the amplitude 1/2. In the left
branch the leftmost three points are considered and in the right branch the rightmost
three points of the corresponding line are considered. Thus, at the second level we
have a total of 26 nodes.

Since we already know how to replace 3 queries by 2 queries, at the third level each
branch is branched into three subbranches. That is, the sub-DAG shown in Figure 4
is plugged in here. The amplitudes assigned to the edges in the sub-DAGs are the
same as before. So for each line we have two branches which consist of the plugged
in sub-DAGs. Each of these sub-DAGs has 8 leaves. However, only two leaves has a
total amplitude which is not zero, i.e., the blue leave and the red leave.

Now, we join the two corresponding blue leaves and the two corresponding red
leaves. Here each outgoing edge has the amplitude 1. Finally, the new leave outputs
the value stored in register ri`j`k`

, where the subindex ` indicates the always the left
register is used. Figure 7 shows the corresponding sub-DAG for the �rst line. As
shown in Figure 5, the �rst line contains the points P1, P2, P3, P4. For the sake of
presentation, these points are denoted by 1, 2, 3, 4 for short in Figure 7.

1/2 1/2

1/3 1/3
1/3 1/3

1/3 1/3

1 11
1

(1, 2) (2, 3) (1, 3) (2, 3) (3, 4) (2, 4)

`1

Figure 7: The part of the DAG representing the computation of the QIM M for the
line (0, 1, 3, 4) starting at the node of the second level

The labels at the new edges show the new amplitudes.

It remains to show that the QIM M has the desired properties. By construction,
at every computation path exactly two queries are asked.

In accordance with De�nition 6 we directly see that each node at the second level
has the total amplitude 1/13 and the total amplitude of each node at the third level
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is1/26. Therefore, each node at the fourth level has the total amplitude 1/78. By
De�nition 6 we thus obtain for the blue nodes and the red nodes at the �fth level the
following total amplitude

1

78
· 1

2
+

1

78
· 1

2
+

1

78
· 1

2
=

1

4 · 13
.

All the black nodes at the �fth level have the total amplitude 0, since for every black
node there are always two black edges pointing to it and either one blue edge or one
red edge entering it. Thus, we have

1

78
· 1

2
− 1

78
· 1

4
− 1

78
· 1

4
= 0 .

Finally, the blue node and the red node at level six have the total amplitude 1
2·13 . Fi-

nally, we perform the measurement. Clearly, for each leaf which has a total amplitude
0 the measurement results in ‖0‖p = 0. For the remaining leaves we obtain ‖ 1

2·13‖p
which is 1 for every prime p such that p /∈ {2, 13}. If p = 2 then we have ‖ 1

2·13‖2 = 2

and for p = 13 we obtain ‖ 1
2·13‖7 = 13.

By construction there must be at least one line such that all nodes have the same
color, and there is exactly one monochromatic line in the projective plane P13 used
to de�ne the class U13 (cf. Property (4) of the De�nition of Um). So at least one
node has p-probability at least 1. Furthermore, since two points are queried twice,
it cannot happen that the leftmost three points are blue (or red) and the rightmost
three points are red (or blue). Therefore, the result output is correct by the de�nition
of the class U13.

We note that Theorem 15 directly generalizes to the class U21, i.e., for the case
that q = 22. In this case the projective plane P21 has 21 lines and 21 points and
each line contains exactly 5 points. Consequently, we can use exactly the same proof
as we did for the class U13, since the leftmost three points and the rightmost three
points still share one point which is then queried twice. That is, we directly obtain
the following corollary.

Corollary 1. For every prime number p, there is a p-ultrametric QIM M learning

the class U21 with p-probability 1 with 2 queries.

Consequently, it seems that this idea can be pushed even further. If q = 5 then
in the projective plane P31 each line has exactly 6 points. One could then try to ask
the leftmost 4 pints and the rightmost 4 points and to use Theorem 15 to reduce 4
queries to 2 queries. However, it is not clear how far such a recursive application
may be applied. The obvious di�culty is based on the construction of the classes
Um on projective planes Pm. Since we only know projective planes to exist if q is a
prime power, the recursive application may stop somewhere and to determine the full
potential of the ideas developed so far is a future research subject.
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4. Conclusions

In this paper we have studied active learning of classes of recursive functions from
value queries. We compared the query complexity of deterministic, nondeterministic,
probabilistic, and ultrametric QIM and showed the somehow unexpected result that p-
ultrametric QIM can learn classes of recursive function with signi�cantly fewer queries
than nondeterministic, probabilistic QIM can do.

The situation resembles quantum computation. In quantum computation we also
�nd the usage of amplitudes and of measurements to transform amplitudes into real
numbers. Quantum computation is famous for algorithms unimaginable in classical
implementation. For instance, there exists a quantum query algorithm computing the
Boolean function x1⊕x2 asking only one query but computing the binary xor-function
function with probability 1. The essence of this algorithm is the quantum parallelism
of the computation process (cf. Bernstein and Vazirani [5]). One computation path
queries the value of x1, the other computation path queries the value of x2, and the
addition of the amplitudes results in the probability 1 for the correct result and in
the probability 0 for the wrong result.

Our main result (Theorem 9) is based on the same idea. So, it remains to explore
further problems for which ultrametric algorithms can achieve a substantial advantage
over nondeterministic algorithm or probabilistic algorithms.
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