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Abstract

Many important problems of graph enumeration and indexing can be solved by
frontier-based methods, which construct ZDDs in a breadth-first manner from the top
to the bottom. We present new techniques toward an efficient framework to deal with
the frontier-based methods. Ad hoc parts of the algorithm are encapsulated using the
recursive specifications that represent properties to be compiled into a ZDD. In this
framework, we can apply the ZDD node deletion rule on the fly, while conventional
methods does not take it into account. Operations on the recursive specifications,
which allow us to combine multiple properties without constructing ZDD structure
for each property, are also introduced. These techniques are applicable to existing
frontier-based methods and accelerates even Knuth’s sophisticated path enumeration
algorithm doubly.

1 Introduction

Ordered binary decision diagrams (BDDs) and zero-suppressed BDDs (ZDDs) are impor-
tant data structures for representing Boolean functions and families of sets on computers
[1][2][3]. They have originally become popular in problems of computer-aided design for
digital systems (CAD), such as logic synthesis and verification. Their range of applica-
tions are still expanding.

There are many open source and in-house BDD packages which have been used in
such traditional applications as CAD problems. They are general-purpose packages for
manipulating a collection of BDDs [4][5], allowing us to create primitive BDDs (vari-
ables and constants) and to construct complex BDDs by applying operations repeatedly
to existing ones. They usually traverse given BDDs in a depth-first manner and construct
the resulting BDD in a bottom-up way. Breadth-first BDD manipulation algorithms have
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been also proposed [6][7][8][9]. They are designed to have the same functionality with
ordinary BDD packages and to accelerate them by increasing memory access locality.

Graph enumeration and indexing problems are also important applications of BDDs
and ZDDs, which include enumeration/indexing of paths, cycles, connected components,
trees, forests, cut sets, partitioning, cliques, colorings, tilings, and matching. They are
tightly related to various real-life problems, such as geographic information systems, de-
pendency analysis, and demarcation problems. Each problem is solved implicitly by con-
struction of a monolithic ZDD representing a family of all instances, where each instance
(path, cycle, etc.) is represented by a set of graph edges or vertices. Some of them can be
constructed efficiently by conventional bottom-up ZDD operations; others are covered by
frontier-based methods, which construct result ZDDs directly from the root to the terminal
nodes.

Coudert introduced a ZDD based framework for solving graph and set related opti-
mization problems [10]. It includes a bottom-up construction algorithm of the ZDD that
represents all maximal cliques of a given graph. Sekine et al. proposed top-down BDD
construction algorithms for computing Tutte polynomial and all spanning trees of a given
graph [11]. They also showed that the BDD for all spanning trees can be used to obtain a
BDD for all forests and a BDD for all paths between two vertices [12]. Knuth introduced
an algorithm to construct a ZDD representing all paths between two vertices in a top-down
way [3, exercise 225 in 7.1.4]. His algorithm is so efficient that a ZDD representing

227449714676812739631826459327989863387613323440
paths on a 15× 15 grid graph is constructed within a few minutes. Cycles, Hamiltonian
paths, and path matching of a given graph can also be computed by similar algorithms
[3][13].

We present new techniques toward an efficient ZDD framework to deal with frontier-
based methods. Our approach applies the ZDD node deletion rule on the fly, while con-
ventional methods does not take it into account. We also introduce top-down ZDD con-
struction algorithms for a combination of multiple properties. They do not construct in-
termediate ZDDs for all the properties, which may blow up and become bottleneck in
conventional methods.

This paper is organized as follows. Basics of BDDs and ZDDs, including top-down
construction methods and Knuth’s algorithm, are reviewed in Section 2. Our top-down
construction framework is introduced in Section 3, which contains a new method to speedup
the construction. Section 4 describes the operations and techniques on our framework that
can be chosen for more efficient computation. Experimental results in Section 5 shows
practicality of our framework and techniques. We then conclude the paper in Section 6.

2 Preliminaries

2.1 BDDs and ZDDs

Binary decision diagrams (BDDs) [14][1] and zero-suppressed BDDs (ZDDs) [2] are la-
beled directed acyclic graphs derived by reducing binary decision tree graphs, which rep-
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(a) Binary decision tree (b) BDD (c) ZDD

Figure 1: Diagrams for f (x1,x2,x3) = x1x2x3 + x1x3

resent decision making processes through binary input variables. As illustrated in Fig-
ure 1, there are two kinds of terminal nodes, 0-terminal and 1-terminal, which represent
the output binary value. Every nonterminal node is labeled by an input variable and has
two outgoing edges, namely 0-edge and 1-edge, which are drawn as dotted and solid ar-
rows respectively. The 0-edge (1-edge) points to the node called 0-child (1-child), which
represent a state after the decision that 0 (1) is assigned to the variable. When the root
node of a BDD/ZDD for Boolean function f is labeled by variable x, its 0-child and
1-child represent fx=0 and fx=1 respectively; it corresponds to the Shannon expansion:
f = x fx=0 + x fx=1. In this paper, we also write it as f = (x ? fx=0 : fx=1), implying struc-
ture of the diagram.

We only deal with ordered BDDs/ZDDs in this paper, where input variables are indexed
as x1, . . . ,xn according to their total order. The index of the input variable of a nonterminal
node is just called the index of the node, and the index of a terminal node is assumed to be
n+1 for convenience. The index of any node is properly smaller than that of its children.

Figure 2 and Figure 3 show the reduction rules of BDDs and ZDDs respectively. Equiv-
alent nodes, which have the same indices and the same 0- and 1-child nodes, can be shared
both in BDDs and in ZDDs (Figure 2a and Figure 3a). A node with edges to the same des-
tination can be deleted in BDDs (Figure 2b). In contrast, a node with a 1-edge directly
pointing to the 0-terminal node can be deleted in ZDDs (Figure 3b). If x has a smaller
index than the top variable of f , fx=0 = fx=1 = f in BDDs while fx=0 = f and fx=1 = 0 in
ZDDs. An entire BDD/ZDD can be reduced completely by applying the reduction rules
from the bottom (index n) to the top (index 1) as follows:

REDUCE( f )
1: for i = n to 1 do
2: for all node p at index i in the diagram rooted by f do
3: for all b ∈ {0,1} do
4: apply reduction rules to the b-child of p;
5: end for
6: end for
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(a) Sharing (b) Deletion

Figure 2: BDD reduction rules

(a) Sharing (b) Deletion

Figure 3: ZDD reduction rules

7: end for
8: return reduced node for f .

BDDs and ZDDs are efficient data structures for representing not only Boolean func-
tions but also families of sets. A set of n items can be represented by input variables
x1, . . . ,xn, where xi ∈ {0,1} indicates if the i-th item is contained in the set. The diagrams
in Figure 1 can be considered as {{x1,x2},{x2,x3},{x3}} in that sense. Paths from the root
to the 1-terminal in BDDs and ZDDs, called 1-paths, correspond to item sets included in
the family. ZDDs have the interesting property that every 1-path represents an individual
set, while a 1-path may represent multiple sets in BDDs, because of the difference of their
node deletion rules. ZDDs are especially suitable for representing families of sparse item
sets. If the average appearance rate of each item is 1%, ZDDs are possibly up to 100 times
more compact than BDDs. Such situations often appear in real-life problems.

2.2 Operations on BDDs/ZDDs

We can build up complex BDDs/ZDDs for various functions and sets by combinations of
their rich algebraic operations such as Boolean operations and family algebra [3]. They
use divide-and-conquer scheme based on the Shannon expansion, which is accelerated
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by the memo cache that avoids recomputation of the same subproblems. The following
algorithm outlines a typical depth-first implementation of binary operations:

DF BINARYOPERATION(�, f ,g)
1: if f �g has a terminal value, return it;
2: if f �g = h is in the memo cache, return h;
3: x← the top variable of f and g;
4: h0← DF BINARYOPERATION(op, f |x=0,g|x=0);
5: h1← DF BINARYOPERATION(op, f |x=1,g|x=1);
6: h← (x ? h0 : h1);
7: apply reduction rules to h;
8: put f �g = h into the memo cache;
9: return h.

This algorithm constructs a reduced diagram recursively from the bottom to the top.

Binary operations on BDDs/ZDDs can be implemented also in a breadth-first manner.
We create a new node immediately after dividing the problem; the new node is incomplete
as its descendants are not determined yet. The algorithm is outlined as follows:

BF BINARYOPERATION(�, f ,g)
1: let i0 be the top index of f and g;
2: create a new node h and label it as 〈i0, f ,g〉 ;
3: for i = i0 to n do
4: for all node r labeled 〈i, p,q〉 do
5: for all b ∈ {0,1} do
6: p′← p|xi=b; q′← q|xi=b;
7: if p′ �q′ has a terminal value then
8: set it to the b-child of r;
9: else

10: i′← the top index of p′ and q′;
11: find or create node r′ labeled 〈i′, p′,q′〉;
12: set r′ to the b-child of r;
13: end if
14: end for
15: end for
16: end for
17: return REDUCE(h).

This algorithm constructs a diagram from the top to the bottom. Incomplete nodes are
labeled by its index and two operands of the subproblems, in order to share nodes for the
same subproblems. The operand information of each node can be removed when its child
nodes are fixed. Since the top-down phase does not fully reduce the diagram, the reduction
algorithm is applied as a post-process.
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(a) G3,3 (b) Paths between v1 and v9

Figure 4: Path enumeration on G3,3

2.3 Top-Down Construction

Single-pass BDD/ZDD construction from the root to the terminals, which we call top-
down construction in this paper, is another way to build a complex BDD/ZDD structure. It
is known that some important graph problems can be solved efficiently using such methods
[11][12][3].

Node sharing must be performed on the fly during top-down construction in order to
avoid explosion of the diagram. Multiple nonterminal nodes with the same index can be
shared if and only if they take the same output values for all combinations of the rest of
input values. Since this condition is not always easy to be determined on the fly, it is
checked in a false-negative way by comparing the labels generated at some reasonable
cost. They are so designed that multiple nonterminal nodes are equivalent if their labels
are equivalent; the converse is not necessarily true because unshared nodes can be left for
the final reduction phase.

Knuth introduced an interesting algorithm in his book, named SIMPATH, which con-
structs a ZDD representing a set of paths (ways to go from a point to another point without
visiting any point twice) in an undirected graph [3][15]. For example, a 3× 3 grid graph
(G3,3) in Figure 4a has 12 paths between v1 and v9 as shown in Figure 4b. The input to
the algorithm is an undirected graph G = (V,E) where V = {v1, . . . ,vm} is a set of vertices
and E = {e1, . . . ,en} is a set of edges. The output is a ZDD representing all the set of
edges that form paths between v1 and vm.

In the SIMPATH algorithm, edge selections from E = {e1, . . . ,en} are decided one by
one in the order of indices. At each step of the algorithm, a set of selected edges represents
path fragments and each vertex has one of the three states:

• not included in any path fragment,

• an endpoint of a path fragment,

• an intermediate point of a path fragment.

The label for a nonterminal node is defined to be 〈i,mate〉 where 1 ≤ i ≤ n and mate is a
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partial map from V to V ∪{0}:

mate[v] =


v if vertex v is untouched so far,
u if vertices u and v are endpoints,
0 if vertex v is an intermediate point.

For simplicity of the algorithm, mate is maintained as if there were a built-in path between
v1 and vm and we were enumerating all the virtual cycles that include it. The current set
of selected edges is accepted when:

• a virtual cycle is formed and no other path fragment remains,

and it is rejected when:

• a virtual cycle is formed and some other path fragment remains, or

• an edge to an intermediate point is added, or

• the final chance to attach an edge to some endpoint is not taken.

In order to check the above conditions, we need mate entries only for frontier, which is
a set of vertices contiguous with both decided and undecided edges. When vertex v is
entering the frontier, a table entry mate[v] = v is created except for mate[v1] = vm and
mate[vm] = v1. The entry for mate[v] is deleted after v has left the frontier.

Figure 5 illustrates the result of SIMPATH for G3,3, where the 0-terminal node is omitted
and mate is drawn graphically on each node. Circles and lines represent vertices in the
frontier and path fragments among them respectively. An isolated open circle represents a
vertex not included in any path fragments (mate[v] = v). An isolated filled circle represents
an intermediate point of some path fragment (mate[v] = 0). Note that the ZDD node
deletion rule is only used at edges to the 1-terminal node.

3 Top-Down ZDD Construction Framework

In this section, we introduce a framework of implementing top-down construction algo-
rithms for ZDDs. The basic idea is to define a common interface to ad hoc parts of the
algorithms. Although we describe techniques for ZDDs hereafter, many of them are also
applicable to BDDs.

3.1 Recursive Specifications

We define that a configuration is a node label used in a top-down construction algorithm,
composed of a pair 〈i,s〉 of node index i (1 ≤ i ≤ n) and other information s. We assume
that 〈n+1,0〉 and 〈n+1,1〉 are pre-defined configurations for the 0- and 1-terminals re-
spectively.

A recursive specification of a ZDD is a definition of the following pair of functions:
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Figure 5: ZDD structure constructed by SIMPATH
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• ROOT() takes no argument and returns a root configuration, or a configuration of
the root node;

• CHILD(〈i,s〉 ,b) takes configuration 〈i,s〉 of a node and branch b ∈ {0,1} as argu-
ments, and returns a new configuration for the b-child of the node.

A recursive specification can be viewed as a blueprint of a ZDD since it implicitly rep-
resents a unique diagram structure in a compact form. Many interesting top-down ZDD
construction algorithms, including SIMPATH, can be adapted in this framework.

For example, let us consider a ZDD representing a family of all combinations of k
items out of n items where node index i corresponds to the i-th item for 1 ≤ i ≤ n. We
define a set of configurations for nonterminal nodes as

{ 〈i,s〉 | 1≤ i≤ n, 0≤ s≤ k }

where i is the item index for the next decision and s is the number of items included before
that node. The current item set is rejected immediately when s > k, and accepted when
s = k and no more undecided item remains. Its recursive specification Combn,k is defined
as follows:

Combn,k.ROOT()

1: return 〈1,0〉;

Combn,k.CHILD(〈i,s〉 ,b)
1: s← s+b;
2: if i = n and s = k, return 〈n+1,1〉; // 1
3: if i = n or s > k, return 〈n+1,0〉; // 0
4: return 〈i+1,s〉.

Figure 6 shows the ZDD specified by Comb5,2 before and after reduction. In this case, it is
not very difficult to define the recursive specification that directly represents the reduced
ZDD structure:

Comb′n,k.ROOT()

1: return 〈1,0〉;

Comb′n,k.CHILD(〈i,s〉 ,b)
1: s← s+b;
2: if s = k, return 〈n+1,1〉; // 1
3: if s+n− i < k, return 〈n+1,0〉; // 0
4: return 〈i+1,s〉.

The current item set is rejected as soon as we find that the remaining items are too few to
make the k-combination. It is accepted as soon as s = k is satisfied without taking all the
remaining items.
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(a) Before reduction (b) After reduction

Figure 6: ZDD structure for Comb5,2

3.2 General Top-Down ZDD Construction Algorithm

Provided that the recursive specifications are given, the top-down ZDD construction can
be processed by a common algorithm shown below; let S be a recursive specification and
n be the number of its input variables:

CONSTRUCT(S)
1: 〈i0,s0〉 ← S.ROOT();
2: create a new node r and label it as 〈i0,s0〉;
3: for i = i0 to n do
4: for all node p labeled 〈i,s〉 for some s do
5: for all b ∈ {0,1} do
6: 〈i′,s′〉 ← S.CHILD(〈i,s〉 ,b);
7: if 〈i′,s′〉 corresponds to a terminal node then
8: set it to the b-child of p;
9: else

10: find or create node p′ labeled 〈i′,s′〉;
11: set p′ to the b-child of p;
12: end if
13: end for
14: end for
15: end for
16: return REDUCE(r).

This algorithm searches all reachable configurations of S from the root to the terminals
in a breadth-first manner. Hash tables can be used to ensure one-to-one correspondence
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between configurations and ZDD nodes. Their entries should be disposed properly be-
cause memory size for a configuration might be much larger than that for a ZDD node.
Assuming that the hash table operations and evaluations of the recursive specification are
constant time operations, this algorithm runs in linear time against the number of reach-
able configurations.

3.3 Parallelizing the Construction Algorithm

We can parallelize the loop at lines 4–14 of CONSTRUCT based on the fact that the tasks
are independent except for the hash table operations at line 10. One can use thread-safe
hash table for this purpose; or can divide the hash table into the multiple ones that manage
disjoint subsets of possible configurations. The following algorithm makes use of the
latter idea:

PARCONSTRUCT(S)
1: 〈i0,s0〉 ← S.ROOT();
2: let d be a dummy node;
3: insert 〈s0,d,0〉 to bucket[i0][1];
4: for i = i0 to n do
5: for all k ∈ {1, . . . ,m} do // in parallel
6: for all

〈
s, p̂, b̂

〉
∈ bucket[i][k] do

7: find or create node p labeled 〈i,s〉;
8: set p to the b̂-child of p̂;
9: if p is newly created then

10: for all b ∈ {0,1} do
11: 〈i′,s′〉 ← S.CHILD(〈i,s〉 ,b);
12: if 〈i′,s′〉 corresponds to a terminal node then
13: set it to the b-child of p;
14: else
15: k′← bucket number for 〈i′,s′〉;
16: insert 〈s′, p,b〉 to bucket[i′][k′];
17: end if
18: end for
19: end if
20: end for
21: end for
22: end for
23: let r be the 0-child of d;
24: return REDUCE(r).

In the above algorithm, configurations are grouped into m buckets; bucket[i][k] works as
a task queue for node index i ∈ {1, . . . ,n} and bucket number k ∈ {1, . . . ,m}. Since tasks
for the same configurations are always stored in the same bucket, different buckets can be
processed in parallel without caring about thread-safeness of the hash tables. The number
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of buckets m should be larger enough than the number of parallel threads for better load
balancing, and should be smaller enough than the average number of nodes for each index
for less overhead costs. The reduction algorithm in 2.1 also can be parallelized in similar
ways.

4 Operations on Recursive Specifications

4.1 Lookahead

In general, any reduced/unreduced ZDD can be represented by a recursive specification;
the index might be increased by more than one in the CHILD function when we take
the zero-suppress rule aggressively into account. It improves the performance of ZDD
construction, while it may worsen simplicity of the recursive specification. It would be
pleased if an optimized specification can be generated automatically from an easy-to-
understand description for humans.

The lookahead operation wraps a given recursive specification and makes the one that
represents a smaller and logically equivalent ZDD. It skips redundant configurations of
the original specification in terms of the zero-suppress rule.

LOOKAHEAD(S).ROOT()

1: return S.ROOT();

LOOKAHEAD(S).CHILD(〈i,s〉 ,b)
1: 〈i′,s′〉 ← S.CHILD(〈i,s〉 ,b);
2: while i′ ≤ n and S.CHILD(〈i′,s′〉 ,1) = 〈n+1,0〉 do
3: 〈i′,s′〉 ← S.CHILD(〈i′,s′〉 ,0);
4: end while
5: return 〈i′,s′〉.

Figure 7 shows the result of SIMPATH for G3,3 combined with the lookahead. In com-
parison with the original result (Figure 5), the number of nonterminal nodes is reduced
from 52 to 29. This example also shows that the lookahead operation do not always re-
move all redundant nodes, because they do not care the node sharing and do not backtrack
for the node deletion.

4.2 Composition

Let us suppose that there are two properties represented by recursive specifications and we
want to compute the ZDD that represents the intersection of the properties. It is achieved
easily by constructing two ZDDs from the specifications and by applying the intersection
operation on ZDDs.

In this section, we present an alternative to this approach, in which we first composite
the two specifications and then construct a ZDD. It has the advantage of robustness when
an intermediate ZDD may blow up while the final ZDD should be compact.
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Figure 7: ZDD constructed by SIMPATH with the lookahead
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Let S and T be recursive specifications and “�” be some binary operator such as “∨”
or “∧”. Here we consider a binary operation on S and T , namely S�T , such that

CONSTRUCT(S�T ) = CONSTRUCT(S) � CONSTRUCT(T ) .

It can be defined as follows:

(S�T ).ROOT()

1: 〈i,s〉 ← S.ROOT();
2: 〈 j, t〉 ← T.ROOT();

3: return
{
〈n+1,s� t〉 if i = j = n+1,
〈min(i, j),〈i,s, j, t〉〉 otherwise.

(S�T ).CHILD(〈k,〈i,s, j, t〉〉 ,b) // k = min(i, j)

1: 〈i,s〉 ←


〈i,s〉 if k < i and b = 0,
〈n+1,0〉 if k < i and b = 1,
S.CHILD(〈i,s〉 ,b) otherwise;

2: 〈 j, t〉 ←


〈 j, t〉 if k < j and b = 0,
〈n+1,0〉 if k < j and b = 1,
S.CHILD(〈 j, t〉 ,b) otherwise;

3: return
{
〈n+1,s� t〉 if i = j = n+1,
〈min(i, j),〈i,s, j, t〉〉 otherwise.

In case the operation is set intersection, or logical AND when the ZDDs are interpreted
as Boolean functions, we can optimize it by taking more advantage of the zero-suppress
rule:

(S∩T ).ROOT()

1: return (S∩T ).SYNC(S.ROOT(), T.ROOT()).

(S∩T ).CHILD(〈i,〈s, t〉〉 ,b)
1: return (S∩T ).SYNC(S.CHILD(〈i,s〉 ,b), T.CHILD(〈i, t〉 ,b)).

(S∩T ).SYNC(〈i,s〉 ,〈 j, t〉)
1: while i 6= j do
2: if i < j, 〈i,s〉 ← S.CHILD(〈i,s〉 ,0);
3: if j < i, 〈 j, t〉 ← T.CHILD(〈 j, t〉 ,0);
4: end while
5: if i = n+1, return 〈n+1,s∧ t〉;
6: return 〈i,〈s, t〉〉.

Lines 1–4 of the SYNC subroutine skips the nodes that would have 1-edges to the 0-
terminal. It can be decided easily by checking if configurations derived from S and T
have different index numbers. We can go down through 0-edges until the indices are
synchronized. It is an interesting property of the combination of intersection operation
and zero-suppress rule.
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4.3 Wrapping and subsetting

We can wrap an existing ZDD structure in a recursive specification. The wrapper of ZDD
f is given as follows:

WRAP( f ).ROOT()

1: i← the top index of f ;
2: return 〈i, f 〉;

WRAP( f ).CHILD(〈i, f 〉 ,b)
1: f ′← the b-child of f ;
2: i′← the top index of f ′;
3: return 〈i′, f ′〉.

The same ZDD structure as f can be derived from WRAP( f ), that is:

CONSTRUCT(WRAP( f )) = f .

The wrapping technique extends the usefulness of the operations on recursive specifica-
tions. Let us suppose the situation where we have some ZDD f and want to restrict it by
a property represented by specification S. It can be computed as usual by the intersection
operation on ZDDs:

f ∩ CONSTRUCT(S) .

Using the wrapping technique, we can also compute it as the intersection on specifications:

CONSTRUCT(WRAP( f ) ∩ S) .

We call it subsetting technique on top-down ZDD construction, which is an alternative
that is worth trying when Construct(S) becomes the bottleneck in the usual method.

5 Experimental Results

Our top-down ZDD construction framework is implemented in C++. We measured single-
threaded performance of the algorithms on 2.67GHz Intel Xeon E7-8837 CPU with 1.5TB
memory running 64-bit SUSE Linux Enterprise Server 11.

5.1 Path Enumeration

First, we evaluated the efficiency of our framework in comparison with the original SIM-
PATH implementation [15], and measured improvements achieved by the lookahead and
subsetting techniques.

We experimented with graph examples listed in Table 1, where m is the number of
vertices, n is the number of edges, and #path is the number of paths to be enumerated
(paths between v1 and vm). We used complete graphs (Km), triangular grid graphs (Tα,β ),
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Table 1: Characteristics of graph examples
SIMPATH (sec.)

Graph m n #path Main Reduce
K17 17 136 3.55×1012 16.45 18.27
K18 18 153 5.69×1013 57.45 59.70
K19 19 171 9.67×1014 183.98 194.77
K20 20 190 1.74×1016 641.52 662.34
K21 21 210 3.31×1017 2106.68 2344.67
K22 22 231 6.61×1018 7201.05 7939.68

T11,11 121 320 4.35×1039 5.58 7.20
T12,12 144 385 6.81×1047 27.39 30.48
T13,13 169 456 6.33×1056 115.19 124.89
T14,14 196 533 3.50×1066 504.95 522.68
T15,15 225 616 1.15×1077 2168.47 2260.38
T16,16 256 705 2.24×1088 8868.41 9218.46
G13,13 169 312 6.45×1034 12.42 14.94
G14,14 196 364 6.95×1040 46.23 50.40
G15,15 225 420 2.27×1047 152.77 161.76
G16,16 256 480 2.27×1054 503.63 534.77
G17,17 289 544 6.87×1061 1644.86 1826.86
G18,18 324 612 6.34×1069 5598.11 5912.85
H22,23 506 726 2.20×1061 10.91 11.90
H24,25 600 864 4.90×1073 37.77 39.70
H26,27 702 1014 1.50×1087 136.18 129.32
H28,29 812 1176 6.28×10101 452.25 434.77
H30,31 930 1350 3.61×10117 1531.62 1486.30
H32,33 1056 1536 2.85×10134 4935.35 4864.38
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(a) Tα,β (b) Gα,β

(c) Hα,β

Figure 8: Grid graphs and their vertex order
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Figure 9: Sets of graph edges represented by Degree(G3,3,1,9)

square grid graphs (Gα,β ), and hexagonal grid graphs (Hα,β ) as benchmark examples. The
grid graphs and their vertex ordering rules are shown in Figure 8. The edge order (ZDD
variable order) is defined lexicographically with the vertex order: {vi,v j}≤ {vi′ ,v j′} if and
only if vi < vi′ or (vi = vi′ and v j ≤ v j′) where vi ≤ v j and vi′ ≤ v j′ . We have tested some
simple vertex ordering rules and have chosen the one that makes final ZDDs compact.

Table 1 also includes CPU time for the original SIMPATH implementation,1 which is
composed of the main program and the ZDD reduction program. The columns “Main” and
“Reduce” show their CPU time in seconds. Note that they hand over an unreduced ZDD
via text file, while our implementation performs both ZDD construction and reduction on
memory.

We wrote the recursive specification Path(G,v1,vm) that corresponds to the SIMPATH

algorithm. The parameter G = (V,E) is a target graph where V = {v1, . . . ,vm} is a set of
vertices and E = {e1, . . . ,en} is a set of edges. We also wrote the recursive specification
Degree(G,v1,vm) that represents constraints on vertex degrees (number of edges incident
to a vertex). If E ′ ⊆ E forms a path between vertices v1 and vm, vertices in graph G′ =
(V,E ′) must have a degree of 0 or 2 except that v1 and vm must have a degree of 1. That
condition is necessary but not sufficient for the set of edges to form a path. For example,
Figure 9 shows the 14 instances represented by Degree(G3,3,1,9), which include the 2
instances that do not actually form paths.

We compared a basic one-pass method (1P), that with lookahead (1P+L), a two-pass
subsetting method (2P), and that with lookahead (2P+L). The four methods are defined as
follows:

1P f ← CONSTRUCT(Path(G,v1,vm));

1P+L f ← CONSTRUCT(LOOKAHEAD(Path(G,v1,vm)));

2P g← CONSTRUCT(Degree(G,v1,vm));
f ← CONSTRUCT(WRAP(g) ∩ Path(G,v1,vm));

2P+L g← CONSTRUCT(LOOKAHEAD(Degree(G,v1,vm)));
f ← CONSTRUCT(WRAP(g) ∩ LOOKAHEAD(Path(G,v1,vm))).

Table 2 shows CPU time of the four methods. In comparison with the original SIM-
PATH implementation (Table 1), our implementation 1P looks reasonably fast. It shows
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Table 2: CPU time for path enumeration (sec.)
Graph 1P 1P+L 2P 2P+L

K17 18.68 13.86 11.06 11.09
K18 62.50 47.69 33.10 33.93
K19 210.82 169.54 103.84 109.43
K20 776.18 586.84 318.73 322.96
K21 2573.39 2083.32 1096.70 1024.71
K22 9683.19 7068.47 3839.62 3856.21

T11,11 5.32 3.44 4.66 4.86
T12,12 26.78 17.11 21.04 21.27
T13,13 115.23 78.26 84.69 85.66
T14,14 555.83 340.44 372.78 334.79
T15,15 2121.35 1610.42 1355.35 1357.32
T16,16 11185.38 6587.02 5499.10 5644.78
G13,13 10.53 6.53 6.13 5.71
G14,14 41.09 25.31 20.08 18.76
G15,15 159.97 91.54 64.80 60.34
G16,16 501.28 320.46 211.42 193.67
G17,17 1693.46 1067.76 681.77 636.42
G18,18 6398.75 3664.18 2296.25 2274.09
H22,23 6.07 3.63 3.94 3.47
H24,25 32.98 18.29 16.37 14.34
H26,27 124.76 70.37 55.55 47.81
H28,29 454.18 268.33 183.16 165.88
H30,31 1542.16 953.21 610.25 571.67
H32,33 5680.29 3275.21 2078.65 1934.34
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Figure 10: Speed ratio for path enumeration

that there is no noticeable overhead in our top-down construction framework. The look-
ahead and subsetting techniques accelerated top-down ZDD construction by a factor of 1.1
to 2.9. Figure 10 summarizes computation speed of methods 1P+L, 2P, and 2P+L relative
to the basic method 1P. While the fastest method is dependent on the example, we can
read that the subsetting technique is relatively effective in large examples.

Construction of ZDD g dominates CPU time in 2P and 2P+L because g is much smaller
than f . Table 3 compares ZDD size (the number of nonterminal nodes) of g and f . The
larger the graph is, the larger the size difference between g and f becomes. “Peak size” is
the ZDD size just before the reduction phase, which indicates the number of iterations run
in both construction and reduction phases. The lookahead and subsetting techniques have
effect to reduce 40 to 50 percent of the peak size. It is interesting that methods 1P+L and
2P does not show much difference in the peak size of f , even though the node deletion rule
is not checked explicitly in 2P. It means that the zero-suppress information was effectively
inherited from g in the subsetting method.

The total memory usage in megabytes is shown in Table 4. It is confirmed that the
lookahead and subsetting techniques are also effective to reduce memory usage.

5.2 Numberlink and Slitherlink Puzzles

Secondly, we have improved the ZDD-based solvers of Numberlink and Slitherlink intro-
duced in [13] using the lookahead and subsetting techniques. Examples of Numberlink
and Slitherlink are shown in Figure 11 and Figure 12 respectively. They are logic puzzles
that involve finding the paths or the cycle that satisfy given local and global properties

1We have slightly modified the programs in order to process larger input graphs on a 64-bit machine.



Efficient Top-Down ZDD Construction Techniques Using Recursive Specifications 21

Table 3: ZDD size in path enumeration
g f

Peak size Final size Peak size Final size
Graph 2P 2P+L 1P 1P+L 2P 2P+L

K17 3,383,182 1,446,371 1,415,798 31,687,586 16,776,941 17,913,664 16,685,440 15,469,186
K18 7,803,921 3,331,561 3,266,139 98,595,128 52,894,116 56,302,697 52,644,447 48,935,273
K19 17,916,021 7,638,950 7,498,891 309,329,033 168,011,957 178,326,054 167,320,943 155,922,881
K20 40,960,634 17,445,357 17,144,913 978,702,177 537,803,391 569,319,129 535,863,645 500,559,700
K21 93,303,788 39,699,692 39,055,059 3,122,714,316 1,734,809,580 1,832,020,786 1,729,287,871 1,619,050,484
K22 211,843,795 90,058,256 88,674,234 10,047,097,379 5,639,089,096 5,941,791,248 5,623,154,813 5,276,150,643

T11,11 3,454,359 1,678,273 1,534,383 13,365,043 6,909,231 7,648,691 6,909,231 6,432,417
T12,12 11,445,656 5,558,016 5,075,298 53,816,252 27,977,245 30,916,232 27,977,245 26,076,799
T13,13 37,584,679 18,243,715 16,642,341 215,875,876 112,786,898 124,439,778 112,786,898 105,238,888
T14,14 122,497,140 59,440,240 54,176,364 863,508,297 453,159,395 499,288,002 453,159,395 423,254,393
T15,15 396,720,695 192,448,119 175,277,115 3,446,706,536 1,816,007,604 1,998,415,097 1,816,007,604 1,697,726,218
T16,16 1,277,849,872 619,726,690 564,075,414 13,735,340,349 7,262,868,868 7,983,662,545 7,262,868,868 6,795,583,172
G13,13 1,952,762 983,037 971,773 26,894,640 15,032,057 16,178,631 15,032,057 13,803,430
G14,14 4,599,802 2,314,237 2,289,661 86,698,791 48,641,299 52,307,691 48,641,299 44,871,856
G15,15 10,702,842 5,382,141 5,328,893 277,581,568 156,253,978 167,908,407 156,253,978 144,759,636
G16,16 24,641,530 12,386,301 12,271,613 883,640,711 498,888,415 535,749,877 498,888,415 464,004,180
G17,17 56,213,498 28,246,013 28,000,253 2,799,256,918 1,584,605,112 1,700,699,101 1,584,605,112 1,479,128,501
G18,18 127,205,370 63,897,597 63,373,309 8,830,604,856 5,010,748,938 5,375,051,545 5,010,748,938 4,692,765,814
H22,23 1,895,414 1,004,539 897,019 20,985,221 12,431,317 13,117,268 12,431,317 10,686,910
H24,25 4,548,598 2,410,491 2,151,419 68,690,969 40,853,448 43,081,787 40,853,448 35,229,328
H26,27 10,751,990 5,697,531 5,083,131 222,730,862 132,929,717 140,105,957 132,929,717 114,956,610
H28,29 25,092,086 13,295,611 11,857,915 716,615,275 429,006,718 451,953,721 429,006,718 371,973,561
H30,31 57,917,430 30,687,227 27,361,275 2,290,741,210 1,375,126,756 1,448,070,796 1,375,126,756 1,195,179,926
H32,33 132,415,478 70,156,283 62,537,723 7,282,606,658 4,382,454,784 4,613,178,936 4,382,454,784 3,817,373,513

Figure 11: Numberlink problem and its solution

Figure 12: Slitherlink problem and its solution
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Table 4: Memory usage for path enumeration (MB)
Graph 1P 1P+L 2P 2P+L

K17 891 806 986 951
K18 2,701 2,717 3,447 3,187
K19 8,204 8,293 10,831 10,250
K20 26,173 26,275 33,392 32,031
K21 82,395 84,297 112,346 108,139
K22 254,359 272,999 367,226 357,666

T11,11 327 194 249 231
T12,12 1,273 713 905 820
T13,13 5,059 2,770 3,616 3,121
T14,14 20,075 10,855 13,202 12,086
T15,15 79,987 43,862 53,101 49,570
T16,16 318,664 184,504 224,682 205,607
G13,13 786 402 412 388
G14,14 2,277 1,212 1,287 1,202
G15,15 6,532 3,758 4,079 3,802
G16,16 20,721 11,927 13,017 12,125
G17,17 65,952 37,686 41,235 38,419
G18,18 206,430 118,760 129,699 120,904
H22,23 505 322 333 319
H24,25 1,652 990 1,045 986
H26,27 5,464 3,155 3,318 3,151
H28,29 16,639 10,422 10,640 10,081
H30,31 53,028 32,016 33,912 32,215
H32,33 168,351 101,819 107,812 102,273
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Table 5: Characteristics of Numberlink problems
Name Graph m n Description
BN64 G10,10 100 180 64th problem in [17]
BN79 G10,10 100 180 79th problem in [17]
BN85 G20,15 300 565 85th problem in [17]
BN99 G20,15 300 565 99th problem in [17]
C108 G36,20 720 1384 Vol. 108 in [18]

[16]. These experiments show case studies of designing efficient ZDD construction pro-
cedures on our framework.

5.2.1 Numberlink Solver

Numberlink is played on a grid with the following rules.

1. Connect pairs of the same hint numbers with a continuous line.

2. Lines go through the center of the cells, horizontally, vertically, or changing direc-
tion, and never twice through the same cell.

3. Lines cannot cross, branch off, or go through the cells with hint numbers.

4. Lines must cover all the cells.

It can be viewed as a problem of finding a path matching on grid graph G under hint h
where each cell corresponds to a vertex of G. It can be solved by an algorithm derived
from SIMPATH [13]. The output is the ZDD that represents the set of all solutions, which
must be a singleton if the problem is designed correctly.

We have experimented on Numberlink problems listed in Table 5. In the same way
as experiments in the previous section, we wrote the main algorithm as recursive speci-
fication Numlin(G,h), which gives the exact solutions, and also wrote the constraints on
vertex degrees (1 for vertices with hint numbers and 2 for others) as another recursive
specification Degree(G,h), which gives a superset of the solutions. We compared a basic
one-pass method (1P), that with lookahead (1P+L), a two-pass subsetting method (2P),
and that with lookahead (2P+L). The four methods are defined as follows:

1P f ← CONSTRUCT(Numlin(G,h));

1P+L f ← CONSTRUCT(LOOKAHEAD(Numlin(G,h)));

2P g← CONSTRUCT(Degree(G,h));
f ← CONSTRUCT(WRAP(g) ∩ Numlin(G,h));

2P+L g← CONSTRUCT(LOOKAHEAD(Degree(G,h)));
f ← CONSTRUCT(WRAP(g) ∩ LOOKAHEAD(Numlin(G,h))).
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Table 6: CPU time for solving Numberlink puzzles (sec.)
Name 1P 1P+L 2P 2P+L
BN64 0.02 0.01 0.02 0.02
BN79 0.03 0.02 0.03 0.03
BN85 72.69 42.19 32.93 27.14
BN99 79.95 42.47 38.72 28.97
C108 10092.48 5546.26 4653.71 3309.26

Table 7: Memory usage for solving Numberlink puzzles (MB)
Name 1P 1P+L 2P 2P+L
BN64 4 3 10 9
BN79 9 6 20 14
BN85 8,010 4,741 6,118 4,561
BN99 8,907 5,073 6,965 5,013
C108 817,969 467,968 644,967 474,646

In the methods 2P and 2P+L, g is used as a search space for the solutions.

Table 6 and Table 7 show CPU time in seconds and memory usage in megabytes re-
spectively. The lookahead and subsetting techniques were effective for the Numberlink
solvers to reduce CPU time and memory usage. Method 2P+L was the fastest and was
about three times as fast as the basic method 1L.

5.2.2 Slitherlink Solver

Slitherlink is played on a grid of dots with the following rules.

1. Connect adjacent dots with vertical or horizontal lines.

2. A single loop is formed with no crossing or branch.

3. Each hint cell indicates the number of lines surrounding it, while empty cells may
be surrounded by any number of lines.

It can be viewed as a problem of finding a cycle on grid graph G under hint h where each
dot corresponds to a vertex of G. It can be solved by an algorithm also derived from
SIMPATH [13]. The output is the ZDD that represents the set of all solutions, which must
be a singleton if the problem is designed correctly.

We have experimented on Slitherlink problems listed in Table 8. We made three re-
cursive specifications: Cycle(G) for enumerating all cycles in G, Hint(G,h) for the con-
straints defined by the hints, and Degree(G) for the constraints on vertex degrees (0 or 2 for
all vertices). Intersection of Cycle(G) and Hint(G,h) gives the solution, while Degree(G)

is expected to be an extra guide to get the solution. ZDD for ACycle(G) could not be
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Table 8: Characteristics of Slitherlink problems
Name Graph m n Description
BS68 G25,15 375 710 68th problem in [19]
BS77 G25,15 375 710 77th problem in [19]
BS89 G37,21 777 1496 89th problem in [19]
BS96 G37,21 777 1496 96th problem in [19]
S10 G37,21 777 1496 10th problem in [20]
C95 G46,32 1472 2866 Vol. 95 in [18]
C103 G46,32 1472 2866 Vol. 103 in [18]
C113 G46,32 1472 2866 Vol. 113 in [18]

constructed because G is fairly large in the Slitherlink problems. We compared a basic
one-pass method (1P), that with lookahead (1P+L), a two-pass subsetting method (2P),
that with lookahead (2P+L), a three-pass subsetting method (3P), and that with lookahead
(3P+L), using Hint(G,h) as the start points of the subsetting methods. The six methods
are defined as follows:

1P f ← CONSTRUCT(Hint(G,h) ∩ Cycle(G));

1P+L f ← CONSTRUCT(LOOKAHEAD(Hint(G,h) ∩ Cycle(G)));

2P g← CONSTRUCT(Hint(G,h));
f ← CONSTRUCT(WRAP(g) ∩ Cycle(G));

2P+L g← CONSTRUCT(LOOKAHEAD(Hint(G,h)));
f ← CONSTRUCT(WRAP(g) ∩ LOOKAHEAD(Cycle(G)));

3P g← CONSTRUCT(Hint(G,h));
g′← CONSTRUCT(WRAP(g) ∩ Degree(G));
f ← CONSTRUCT(WRAP(g′) ∩ Cycle(G));

3P+L g← CONSTRUCT(LOOKAHEAD(Hint(G,h)));
g′← CONSTRUCT(WRAP(g) ∩ LOOKAHEAD(Degree(G)));
f ← CONSTRUCT(WRAP(g′) ∩ LOOKAHEAD(Cycle(G)));

Table 9 and Table 10 describe CPU time in seconds and memory usage in megabytes
respectively. Method 2P+L was the fastest for most examples, while 3P+L was very ef-
ficient for C95. The results show that the lookahead and subsetting techniques were ef-
fective also in Slitherlink solvers and that it is not easy to find the best subsetting strategy
before trial.

6 Conclusion

First, we proposed an efficient top-down ZDD construction framework for solving graph
enumeration and indexing problems, in which the property is specified as a recursive spec-
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Table 9: CPU time for solving Slitherlink puzzles (sec.)
Name 1P 1P+L 2P 2P+L 3P 3P+L
BS68 0.02 0.02 0.02 0.02 0.02 0.02
BS77 0.04 0.04 0.02 0.02 0.02 0.01
BS89 1.92 1.11 0.85 0.52 1.79 1.16
BS96 6.60 3.43 2.34 1.43 12.21 7.59
S10 25.92 12.75 7.94 4.19 10.15 6.06
C95 12095.40 5209.64 2394.51 1284.40 1304.61 740.11
C103 6456.14 2400.81 1434.15 808.77 7830.46 4385.51
C113 713.80 341.19 285.49 155.98 393.05 243.67

Table 10: Memory usage for solving Slitherlink puzzles (MB)
Name 1P 1P+L 2P 2P+L 3P 3P+L
BS68 7 7 17 12 19 14
BS77 12 8 24 17 18 13
BS89 340 173 430 301 689 540
BS96 817 426 761 552 2,517 1,570
S10 2,247 1,113 1,382 936 2,025 1,273
C95 624,616 318,325 211,630 124,468 149,335 89,381
C103 364,887 178,929 139,410 84,036 739,841 441,777
C113 44,478 21,776 32,714 19,231 56,104 33,072
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ification.

The lookahead technique applies the zero-suppress rule on the fly, while conventional
methods does not take it into account during the top-down construction phase. Binary op-
erations on recursive specifications, which allow us to combine multiple properties without
constructing ZDD structure for each property, can be a strong alternative to the conven-
tional procedures that use operations on ZDDs. An improved algorithm for set intersec-
tion on recursive specifications also reduces CPU time and memory usage for constructing
ZDDs by skipping redundant states in the top-down construction phase. The subsetting
technique enables us to use an existing ZDD for restricting search space of top-down ZDD
construction.

The experimental results confirmed that our techniques actually improve time and
space for the top-down ZDD construction algorithms. The lookahead technique easily
fits for any application and produces good results in most cases. We can improve it further
by adding the subsetting technique especially for large examples, though it is not always
easy to find the best strategy of subsetting.
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