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Abstract

For the subgraph enumeration problem, there have been proposed very
efficient algorithms whose time complexities are far less than the number of
subgraphs. Although the number of subgraphs can increase exponentially with
the graph size, they exploit compressed representations to maintain enumer-
ated subgraphs compactly so as to reduce the time complexity. However, they
are designed for enumerating a specific type of subgraphs only, e.g., paths or
trees. In this paper, we propose a novel algorithm framework, called frontier-
based search, which generalizes these specific algorithms without losing their
efficiency. We believe that our frontier-based search will be used to resolve
various practical problems that include complicated subgraph enumeration.

1 Introduction

Enumerating all the subgraphs of a graph (or, more generally, object) satisfying

given conditions is one of the most fundamental problems in combinatorics and

graph theory. A few decades ago, several well-known algorithms were proposed for

subgraph enumeration problems [16, 19, 1]. Since these traditional enumeration

algorithms output subgraphs one by one, their time complexities are proportional

to the output size. The output size, however, can increase exponentially with the

graph size. Recently, several algorithms whose time complexities are significantly

smaller than the output size have been proposed [18, 12, 9]; these algorithms exploit

compressed representations such as binary decision diagrams (BDDs) [3] in order

to output the subgraphs in a compressed manner.
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Figure 1 is an example of s-t path enumeration that shows the key idea on the

use of compressed representation. Since traditional näıve algorithms output s-t

paths one by one (Figure 1 (b)), the time complexity of the algorithms depends

on the number of s-t paths, which exponentially increases as the size of the graph

grows. Regarding a path as a set of edges constituting the path, we find some paths

share a common subset of edges; e.g., the first and second paths share edges 12, 23,

36, 56, and 89 in Figure 1 (b). We merge such common edges if possible, as shown in

Figure 1 (c); in this compressed diagram, each path can be retrieved walking from

the left to the right. As shown in the figure, compressed representation requires

only 30 edges to represent all the paths (Figure 1 (c)), while näıve enumeration

includes 64 edges with many duplications (Figure 1 (b)). Recent enumeration

algorithms directly construct the compressed representation from the left to the

right, without detouring the näıve representation. If the compressed representation

is much smaller than the näıve representation, the time complexity can be reduced

a lot.

Subgraph enumeration algorithms can play a key role in practical problems in-

cluding logic puzzles [21], reliability evaluation [4], and network optimization [7].

Unfortunately, subgraph enumeration algorithms used in these problems are ded-

icated for their own problems, and so we have to develop yet another graph enu-

meration algorithm to deal with every new problem. In order to resolve several

practical problems, enumeration algorithms must be so flexible to search for variety

of complicated subgraphs, such as “forests such that each tree contains exactly one

of the specified vertices and the number of its edges is in the specified range.” Our

key contribution is generalization of algorithms that find common parts between

subgraphs so as to construct the compressed representation for various types of

constrained subgraphs, like Figure 1 (c).

In this paper, we propose a subgraph enumeration algorithm, called frontier-

based search, which enables us to enumerate various types of constrained subgraphs.

Frontier-based search supports several primitive constraints including a set of con-

nected vertices, degree of each vertex, acyclic or not, and the number of edges

used. Combinations of these primitive constraints allow us to specify various types

of complicated subgraphs. To recap, the frontier-based search has the following

features:

1. Unlike recent specific enumeration algorithms, frontier-based search supports

several primitive constraints, and allows us to specify various types of sub-

graphs by their combinations.

2. Unlike traditional näıve enumeration algorithms, frontier-based search inher-

its the excellent properties of recent subgraph enumeration algorithms, such

as great compression ability and efficient search strategy without backtracks

(the worst case complexity is not excellent theoretically, but frontier-based

search performs well practically if subgraphs have some structure).
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Figure 1: Enumerating all twelve v1-v9 paths on 3×3 grid graph näıvely and using
compressed representation. A path is represented by a set of edges; e.g., the first path “12,
23, 45, 47, 36, 56, 78, and 89” means path of {{v1, v2}, {v2, v3}, {v4, v5}, {v4, v7}, {v3, v6},
{v5, v6}, {v7, v8}, and {v8, v9}}.

The organization of the paper is as follows. In Section 2, we analyze the Sim-

path enumeration algorithm [9, exercise 225 in Section 7.1.4], in order to clarify

requirements to frontier-based search. In Section 3, we propose the frontier-based

search that enumerates various subgraphs, and also present some examples of sub-

graphs which can be treated. Section 4 shows several experimental results. Related

work is shown in Section 5.

2 Analyzing Simpath

Simpath is an enumeration algorithm designed for all the s-t paths on a given

graph. It is proposed by Knuth, and the implementation is highly-optimized.

This section unravels the secret of efficiency, and summarizes requirements to our

frontier-based search.
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2.1 Outline

Simpath enumerates all the s-t paths on a given undirected graph; this graph is

called the universe and is denoted by Guni = (Vuni, Euni), where Vuni is a set of ver-

tices and Euni is a set of edges. Let n = |Vuni|, m = |Euni|, Vuni = {v1, . . . , vn}, and
Euni = {e1, . . . , em}. An s-t path is a subgraph ({v′1, v′2, . . . , v′l+1}, {e′1, e′2, . . . , e′l})
of Guni such that v′1 = s, v′l+1 = t, v′i ∈ Vuni for all i, e

′
i = {v′i, v′i+1} ∈ Euni for all

i, and vi ̸= vj for all i and j with i ̸= j.

Simpath constructs the directed acyclic graph which is the compressed repre-

sentation to compactly represent all the s-t paths on Guni (see Figure 2). We call it

the decision diagram (DD) 1 and denote by D = (N,A). We describe the property

which D has to possess, and then we outline the construction process of D. To

avoid confusing Guni with D, we address elements in Vuni and Euni as a vertex and

an edge, respectively, whereas ones in N and A as a node and an arc, respectively.

Also, we call a path on D a route.

D has a root node, denoted by nroot, which is labeled e1 and which has just two

arcs, called a 0-arc and a 1-arc (this property is different with Figure 1 (c), which

has only a single type of arcs). The 0-arc and the 1-arc mean not selecting and

selecting e1, respectively. Each arc points at a node labeled e2, or a special node,

called a terminal node, which is labeled 0 or 1. Similarly, for each i = 1, . . . ,m−1,

a node labeled ei has a 0-arc and a 1-arc, each of which points at a node labeled

ei+1 or a terminal node. Both arcs of any node labeled em have to point at 0 or

1. For each route from nroot to 1 in D, labels of nodes whose 1-arc is included in

the route have to constitute an s-t path on Guni.

Although arbitrary binary tree with appropriate terminals satisfies the require-

ments of the DD described above (e.g., Figure 2 (b)), the number of nodes of the

binary tree for a graph with m edges can increase exponentially as m grows. If

there exist two nodes labeled ei whose subtrees are identical, we need not to main-

tain both of them. More precisely, for nodes n1 and n2 in a DD, n1 and n2 are

identical if R(n1) = R(n2) holds, where R(n̂) is the set of edge sets corresponding

to all the route from n̂ to 1. In this case, the operation of keeping n1, discarding

n2 and modifying the destination of each arc which points at n2 into n1 does not

change the set of s-t paths which the DD represents. We call this operation node

sharing. The DD in Figure 2 (c) is obtained by repeatedly applying node sharing

to the binary tree in Figure 2 (b) as far as possible. Observe that it satisfies the

requirements of the DD.

We directly construct the DD such as Figure 2 (c) in a top-down and breadth-

first manner without making the broad binary tree such as Figure 2 (b). We first

create nroot, a 0-arc and a node labeled e2, and connect nroot with the node using

the 0-arc. We also create a 1-arc and a node labeled e2, and connect nroot with the

node using the 1-arc. Similarly, for i = 1, . . . ,m− 1, we create nodes labeled ei+1

1The DD which we will construct is known as a zero-suppressed ordered binary decision diagram
(ZDD) [11]. Note that it may not be reduced.
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Figure 2: Example of the DDs representing all the s-t paths on a graph. (a) An example
of an universe. There are two s-t paths, {e1, e4} and {e2, e3, e4} on the graph. (b) The
broad binary tree representing the set of the paths. 0-arcs and 1-arcs are depicted as dotted
and solid lines, respectively. (c) The DD obtained from (b) by repeating node sharing.
Observe that by selecting either 1-arc, 0-arc, 0-arc and 1-arc, or 0-arc, 1-arc, 1-arc and
1-arc in this order, we reach 1 from nroot.

after creating all the nodes labeled ei. When making a node labeled ei+1, we check

whether there is an existing node which is identical with the node or not, and we

perform node sharing if found. Note that deciding whether nodes n1 and n2 are

identical has to be carried out without constructing children of n1 and n2, which

will be discussed in Section 2.2. This is the key technique that makes Simpath

very efficient.

The pseudocode of Simpath can be written as shown in Algorithm 1. In Line 5-

13, for x = 0, 1, the x-arc of n̂ is made to point at a new node, an existing node or a

terminal, as follows. In Line 5, CheckTerminal(n̂, i, x) decides whether the desti-

nation of the x-arc of n̂ is a terminal (0, 1) or not. In Line 8, UpdateInfo(n′, i, x)

updates the information of n′, as will be described later. Line 9 searches an exist-

ing node n′′ which is identical to n′. If it is found, n′ is discarded and let the x-arc

of n̂ point at n′′. In Line 12, the new node n′ is added to Ni+1, where Nj denotes

the set of nodes labeled with ej . In Algorithm 1, we put processes depending on

s-t paths into UpdateInfo and CheckTerminal functions. By rearranging Sim-

path in this way, we find that other enumeration algorithms designed for different

graph types also can be written in the same manner with different specifications

of UpdateInfo and CheckTerminal.

2.2 Finding Child Nodes

In this subsection, we analyze the two functions, UpdateInfo andCheckTerminal,

which are specialized to handle s-t paths. In order to find child nodes without con-

structing the subtree, each node maintains some values with respect to which edges
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Algorithm 1: ConstructDD

1 N1 ← {nroot}. Ni ← ∅ for i = 2, . . . ,m+ 1.
2 for i← 1 to m do
3 foreach n̂ ∈ Ni do
4 foreach x ∈ {0, 1} do // process for the 0/1-arc

5 n′ ← CheckTerminal(n̂, i, x) // Returns 0, 1, or nil.

6 if n′ = nil then // n′ is neither 0 nor 1.
7 Copy n̂ to n′.
8 UpdateInfo(n′, i, x)
9 if there exists n′′ ∈ Ni s.t. n′′ is identical to n′ then

10 n′ ← n′′

11 else
12 Ni+1 ← Ni+1 ∪ {n′}

13 Create the x-arc of n̂ and make it point at n′.

have been selected from the root. We design the values as follows. For node n̂, let

E be the set of edges corresponding to one route from nroot to n̂ and let G be the

subgraph induced by E. We store the degree of v in G to the variable n̂.deg[v],

and also store the component identifier of v to the variable n̂.comp[v], where the

component identifier is an integer in {1, 2, . . . , n} such that n̂.comp[v] = n̂.comp[w]

if and only if v and w are in the same connected component in G (in the original

Simpath, the degree and component identifier are implicitly encoded into a single

integer named “mate”, but we describe them explicitly for generalization).

We maintain these values just for verticies incident to both a processed edge

and an unprocessed one. We call a set of these vertices frontier (Figure 3).

More precisely, for each i = 1, . . . ,m − 1, we define the i-th frontier Fi by Fi =(∪
j=1,...,i ej

)
∩
(∪

j=i+1,...,m ej

)
2. We also define F0 = Fm = ∅. For a node la-

beled with ei (i = 1, . . . ,m), we maintain n̂.deg[v] and n̂.comp[v] for only each

vertex v in Fi−1. Two nodes n1 and n2 labeled ei are considered as identical if

n1.deg[v] = n2.deg[v] and n1.comp[v] = n2.comp[v] for every v ∈ Fi−1 [21].

The pseudocode of UpdateInfo(n′, i, x) is shown as Algorithm 2. It updates

n̂.deg and n̂.comp. In Line 15, we also update the component identifier in comp for

all nodes of ei as follows. For i ∈ {1, . . . , n}, let c(i) be the minimum vertex index

in the ith connected component (i.e., its component identifier is i). If the ith com-

ponent does not exist, c(i) =∞. Then, we update them so that c(1), c(2), . . . , c(n)

are sorted in the ascending order. Although any node does not have the values of

n̂.deg[v] and n̂.comp[v] if v is not in the frontier, UpdateInfo works because it

references the values of n̂.deg and n̂.comp only on the frontier.

CheckTerminal(n̂, i, x) is shown as Algorithm 3. When the destination of

2In the graph theory, an edge is defined by the set of vertices to which the edge is incident,
i.e., ei is equivalent to, for example, {v, w}. Thus,

∪
j=1,...,i ej represents the set of vertices to

which at least one of e1, . . . , ei is incident.
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Figure 3: Two identical states (a) and (b), in which edges in the left-hand side of dotted
oval have been processed and bold edges have been determined to use.

an arc is being decided (in Line 5-13 in Algorithm 1), if any s-t path cannot be

constructed, the destination should be 0. Considering subgraph G, once one of the

following conditions is satisfied, G cannot be an s-t path even if adding some edges

to G: (i-1) the degree of s or t in G exceeds 1, (i-2) a branch of the s-t path occurs

(i.e., the degree of a vertex except for s and t exceeds 2) in G, and (ii) a cycle occurs

in G. In Line 2-4, we check whether (ii) holds or not. We also check whether (i-1)

and (i-2) hold or not in Line 7-11. If a vertex u is an endpoint of ei and u ̸∈ Fi, u

is no longer referred after processing ei by the definition of the frontier. Therefore,

the degree of u is fixed. In Line 12-16, we check the degree constraint of s-t path,

i.e., whether the degrees of s and t are exactly one or not, and whether those of

the other vertices are zero or two, or not. If we are processing the last edge em
and (i-1), (i-2) and (ii) do not hold, an s-t path has been completed (Line 18).

The UpdateInfo and CheckTerminal functions are performed locally, that

is, they do not need to traverse the DD. Our frontier-based search must inherit

this property even if it will be generalized. The computation time of them is

proportional to the number of vertices in the frontier. That of finding an identical

node is also proportional to the frontier size if nodes are stored using a hash.

Therefore, Line 5-13 in Algorithm 1 can be executed in O(w) time, where w =

maxi |Fi|. We denote the number of nodes in the constructed DD D by |D|. Hence,

the computation time of Simpath is O(w · |D|), which may be exponential in n

theoretically. However, our experiments in Sec. 4 show that D often represents

O(a|D|) s-t paths for some constant a, which indicates that the computation time

of Simpath may be significantly smaller than the number of s-t paths.

2.3 Requirements to Frontier-based Search

At the last of this section, we summarize the requirements to our frontier-based

search.

1. The frontier-based search can follow Algorithm 1 even if it is generalized,
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Algorithm 2: UpdateInfo(n̂, i, x) for Simpath

1 Let ei = {v, w}.
2 foreach u ∈ {v, w} such that u ̸∈ Fi−1 do // u is entering the frontier.

3 n̂.deg[u]← 0
4 n̂.comp[u]← j such that u = vj // The initial component identifier is

the index of u.

5 if x = 1 then
// Increment the degrees of vertices v and w.

6 n̂.deg[v]← n̂.deg[v] + 1
7 n̂.deg[w]← n̂.deg[w] + 1

// The two components are connected.

8 cmin ← min{n̂.comp[v], n̂.comp[w]}
9 cmax ← max{n̂.comp[v], n̂.comp[w]}

10 foreach u ∈ Fi do
11 if n̂.comp[u] = cmax then
12 n̂.comp[u]← cmin

13 foreach u ∈ {v, w} such that u ̸∈ Fi do // u is leaving the frontier.

14 Forget n̂.deg[u] and n̂.comp[u].

15 Renumber n̂.comp so that c(1), c(2), . . . , c(n) are sorted in the ascending order,
where c(i) is the minimum vertex v′ satisfying n̂.comp[v′] = i.

since we find that it is a common framework seen in several enumeration

algorithms using compressed representation. It is enough to generalize Up-

dateInfo and CheckTerminal functions

2. UpdateInfo and CheckTerminal functions have to perform their opera-

tions locally without traversing DDs. Because this is the key property that

makes the enumeration algorithms efficient.

3 Frontier-based Search for Various Subgraphs

3.1 Definition

The main reason why Simpath can quickly construct a DD is to efficiently decide

identicalness of nodes using the values deg and comp stored in nodes. It is impor-

tant that an s-t path is a graph characterized only by the degree of each vertex and

whether having a cycle or not, and that these properties can be locally checked

during the edge selection process.

Although Simpath is designed for enumerating s-t paths, the property of s-t

path appears only in the CheckTerminal and UpdateInfo functions. There-

fore, by changing the behavior of these functions we can construct DDs which

represent various subgraphs such as spanning trees and matchings as long as they

perform locally. We focus on subgraphs of Guni induced by some edge set, that is,
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Algorithm 3: CheckTerminal(n̂, i, x) for Simpath

1 Let ei = {v, w}.
2 if x = 1 then
3 if n̂.comp[v] = n̂.comp[w] then // v and w belong to the same connected

component.

4 return 0 // A cycle occurs (check (ii)).

5 Copy n̂ to n′.
6 UpdateInfo(n′, i, x).
7 foreach u ∈ {v, w} do
8 if (u = s or u = t) and n′.deg[u] > 1 then // Check (i-1).

9 return 0

10 else if (u ̸= s and u ̸= t) and n′.deg[u] > 2 then // Check (i-2).

11 return 0

12 foreach u ∈ {v, w} such that u ̸∈ Fi do // u is leaving the frontier.

13 if (u = s or u = t) and n′.deg[u] ̸= 1 then // Check (i-1).

14 return 0

15 else if (u ̸= s and u ̸= t) and n′.deg[u] ̸= 0 and n′.deg[u] ̸= 2 then // Check

(i-2).

16 return 0

17 if i = m then // The processing of the last edge has been done.

18 return 1 // An s-t path has been completed.

19 return nil // Not terminal

subgraphs G such that G = (dom(E), E) with an edge set E ⊆ Euni, where for a

set of pairs of vertices X, dom(X) =
∪

{x,y}∈X{x, y}.

Using deg and comp, the DD representing subgraphs G of Guni specified by the

following properties can be constructed as same as shown in Sec. 2:

(i) the degrees of each vertex in G,

(ii) whether G has a cycle or not.

We make a node n̂ maintain the value n̂.cycle which represents whether graphs

correspond to n̂ have a cycle. If n̂.cycle = 1, the graphs have a cycle; otherwise

(if n̂.cycle = 0) not.

In addition to the above, we can treat two properties related to connected

components using comp. One is whether for each given pair of vertices (v, w), v

and w belong to the same component or not. To decide it, for a node n̂, we store

the set of vertices which is included in the connected component whose number is

x into n̂.vset[x]. Note that we store the set of only vertices that we would like to

pay attention to into n̂.vset[x]. By introducing vset, we can specify the following

property:
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(iii) whether for each specified pair of vertices (v, w), v and w belong to the same

component or not.

The other is the number of connected components. Line 12 in Algorithm 3 is a

conditional branch for deciding whether u is no longer incident to any unprocessed

edge. Then, if the connected component identifier which u belongs to is different

from that of any vertex in the frontier Fi, there is no chance in which it is connected

with vertices in the frontier after this moment. That is, the connected component

is decided. For a node n̂, let n̂.cc be the number of connected component. By

introducing cc, we can specify the following property:

(iv) the number of connected components which G has.

Furthermore, by making a node n̂ maintain the number of edges n̂.noe, we can

specify the following:

(v) the number of edges which G has.

To describe the above conditions, we define some notation for G = (dom(E), E).

We define by dG(v) the degree of v in G. If v ∈ Vuni \dom(E), we define dG(v) = 0.

Let cG be the number of connected components in G except for isolated vertices,

and qG be the 0/1-variable that represents G having a cycle or not. That is, if G

has a cycle, qG = 1; otherwise, qG = 0. The subscript of G is omitted when it is

clear from the context.

We introduce the notation D,P, S,C,Q, T to formally describe the condition of

(i) through (v). For every vertex v, D(v) denotes the set of possible values of dG(v).

C and Q denote the sets of possible values of cG and qG, respectively. Note that

C ⊆ {0, 1, . . . , n}. P denotes the set of vertex pairs each of which has to be included

in the same component. S denotes the set of vertex pairs each of which must not

be included in the same component. T denotes the set of possible values of the

number of edges in G. By using the above notation, we define G(D,P, S,C,Q, T )

by

G(D,P, S,C,Q, T ) = {G = (dom(E), E) | E ⊆ Euni, dG(v) ∈ D(v) for each v,

cG ∈ C, qG ∈ Q, v and w are included in the same

component for each {v, w} ∈ P, x and y are included

in distinct components for each {x, y} ∈ S, |E| ∈ T}.

Let us describe our algorithm, called frontier-based search, to construct the

DD representing G(D,P, S,C,Q, T ). The framework of the method is similar to

Simpath. In particular, the pseudocode of the algorithm is the same as Algorithm 1

except for the behavior of the UpdateInfo and CheckTerminal functions. The

UpdateInfo and CheckTerminal functions for frontier-based search are shown
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in Algorithm 4 and 5, respectively. The details are described as the comments in

the pseudocode.

If some of D,P, S,C,Q, T are specific values, some variables in nodes are not

needed. Specifically, if for all v ∈ Vuni, D(v) = {0, 1, . . . , n}, then we need not to

remember n̂.deg. If Q = {0, 1}, P = S = ∅ and C = {0, 1, . . . , n}, then we need

not to remember n̂.comp. If P = S = ∅, then we need not to remember n̂.vset. If

C = {0, 1, . . . , n}, then we need not to remember n̂.cc. If 0 ∈ Q (i.e., we allow an

acyclic graph), we need not to remember n̂.cycle. If T = {1, . . . ,m}, we need not

to remember n̂.noe.

The generalized versions of UpdateInfo and CheckTerminal are still per-

formed locally. Line 5 and 21 in Algorithm 5 need O(|S|) and O(|P |) com-

putation time by a straightforward implementation, respectively. However, we

can reduce it to O(|Fi|) by storing pairs of the connected component identifiers

{comp[v], comp[w]} for each pair in {v, w} ∈ P ∪ S into each node. Hence, the

computation time of frontier-based search is still O(w · |D|). Note that the num-

ber of nodes in D constructed by frontier-based search may be larger than that

of nodes constructed by Simpath because more variables are stored in nodes and

hence distinct nodes increase.

3.2 Several examples

In this section, we show that frontier-based search can deal with a various kind of

subgraphs by specifying D,P, S,C,Q and T in the previous section. We describe

several examples of subgraphs and how to obtain its DD by giving D,P, S,C,Q

and T .

s-t path and Hamiltonian s-t path

Although the DD representing all s-t paths can be constructed by Simpath

described in Sec. 2, we construct it also by frontier-based search shown in Sec. 3.

If D,P, S,C,Q, T are given as follows, G(D,P, S,C,Q, T ) corresponds to all the

s-t paths on Guni, where s and t are vertices on Guni:

• D(s) = D(t) = {1}, D(v) = {0, 2} for any v ∈ Vuni \ {s, t},

• P = {{s, t}}, S = ∅,

• C = {1, . . . , n},

• Q = {0},

• T = {1, . . . ,m}.

This means that the degrees of s and t have to be one, that of all the vertices

except for s and t have to be zero or two, qG has to be zero (i.e., there is no cycle),
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Algorithm 4: UpdateInfo(n̂, i, x) for frontier-based search

1 Let ei = {v, w}.
2 foreach u ∈ {v, w} such that u ̸∈ Fi−1 do // u is entering the frontier.

3 n̂.deg[u]← 0
4 n̂.comp[u]← j such that u = vj // The initial component identifier is

the index of u.
5 if u ∈ dom(P ) ∪ dom(S) then
6 n̂.vset[j]← {u} such that u = vj

7 if x = 1 then
8 n̂.noe← n̂.noe+ 1 // Increment the number of edges

// Increment the degrees of vertices v and w.
9 n̂.deg[v]← n̂.deg[v] + 1

10 n̂.deg[w]← n̂.deg[w] + 1
11 if n̂.comp[v] = n̂.comp[w] then // A cycle is detected.

12 n̂.cycle← true

13 else
// The two components are connected.

14 cmin ← min{n̂.comp[v], n̂.comp[w]}
15 cmax ← max{n̂.comp[v], n̂.comp[w]}
16 foreach u ∈ Fi do // u is included in the next frontier.

17 if n̂.comp[u] = cmax then
18 n̂.comp[u]← cmin

19 n̂.vset[cmin]← n̂.vset[cmin] ∪ n̂.vset[cmax]

20 foreach u ∈ {v, w} such that u ̸∈ Fi do // u is leaving the frontier.

21 f ← false

22 foreach z ∈ Fi do
23 if n̂.comp[u] = n̂.comp[z] then
24 f ← true

25 if f = false then // There is no vertex which belongs to the same

component as u in the next frontier.

26 n̂.cc← n̂.cc+ 1

27 Forget n̂.deg[u] and n̂.comp[u].

28 Renumber n̂.comp so that c(1), c(2), . . . , c(n) are sorted in the ascending order,
where c(i) is the minimum vertex v′ satisfying n̂.comp[v′] = i.

and s and t have to belong to the same connected component. cG and the number

of edges can take arbitrary values, which means that the nodes in DD need not

maintain cc and noe. The variable cycle is not also needed because 1 ̸∈ Q. Each

node maintains only variables deg and comp.

A Hamiltonian s-t path is an s-t path which includes all the vertices on Guni.

Only the degree constraints of the vertices except for s and t are different from the

case of s-t path. That is,

• D(s) = D(t) = {1}, D(v) = {2} for any v ∈ Vuni \ {s, t}.
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Algorithm 5: CheckTerminal(n̂, i, x) for frontier-based search

1 Let ei = {v, w}.
2 if x = 1 then
3 if 1 ̸∈ Q and n̂.comp[v] = n̂.comp[w] then // A cycle is forbidden and v

and w belongs to the same connected component.

4 return 0

5 if There exists {x, y} ∈ S such that x ∈ n̂.vset[n̂.comp[v]] and
y ∈ n̂.vset[n̂.comp[w]] then // x and y will be in the same component.

6 return 0

7 Copy n̂ to n′.
8 UpdateInfo(n′, i, x).
9 if n′.deg[v] > max{j | j ∈ D(v)} or n′.deg[w] > max{j | j ∈ D(w)} then // The

degree of v or w exceeds all of the possible values.

10 return 0

11 foreach u ∈ {v, w} such that u ̸∈ Fi do // u is leaving the frontier.

12 if n′.deg[u] ̸∈ D(u) then // The degree condition is not satisfied.

13 return 0

14 f ← false

15 foreach z ∈ Fi do
16 if n′.comp[u] = n′.comp[z] then
17 f ← true

18 if f = false then // There is no vertex which belongs to the same

component as u in the next frontier.

19 if n′.cc > max{j | j ∈ C} then // The number of connected

components exceeds all of the possible values.

20 return 0

21 if There exist {v′, v′′} ∈ P such that v′ ∈ n′.vset[n′.comp[u]] and
v′′ ̸∈ n′.vset[n′.comp[u]] then // u and v′ are in the same component,

but v′ and v′′ are in distinct components.

22 return 0

23 if i = m then // The processing of the last edge has been done.

24 if n′.cc ̸∈ C then // The component condition is not satisfied.

25 return 0

26 else if n′.noe ̸∈ T then // Check the number of edges.

27 return 0

28 else if 0 ̸∈ Q and n′.cycle = false then
29 return 0

30 else
31 return 1 // All the constraints are satisfied.

32 return nil // It is not the terminal.
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Trees and forests

A spanning tree on Guni is a subgraph of Guni such that all the vertices belong

to the same connected component and it has no cycle. If D,P, S,C,Q, T are given

as follows, G(D,P, S,C,Q, T ) corresponds to all the spanning trees on Guni:

• D(v) = {1, . . . , n} for any v ∈ Vuni,

• P = {{v, w} | v, w ∈ Vuni, v ̸= w}, S = ∅,

• C = {1},

• Q = {0},

• T = {1, . . . ,m}.

This means that for any v, the degree of v is at least one, every pair of vertices

belongs to the same connected component, c(G) has to be one, and q(G) has to be

zero.

Let r1, . . . , rℓ be vertices on Guni. A rooted spanning forest whose roots are

r1, . . . , rℓ is a forest of Guni such that it has no cycle, the number of connected

components is m, each connected component has exactly one of r1, . . . , rℓ, and each

vertex belongs to one of m components. If D,P, S,C,Q, T are given as follows,

G(D,P, S,C,Q, T ) corresponds to all the rooted spanning forests whose roots are

r1, . . . , rℓ on Guni:

• D(v) = {1, . . . , n} for any v ∈ Vuni,

• P = ∅, S = {{ri, rj} | 1 ≤ i < j ≤ ℓ},

• C = {ℓ},

• Q = {0},

• T = {1, . . . ,m}.

Let R be a set of vertices on Guni. An R-Steiner tree is a tree including all

the vertices in R. If D,P, S,C,Q, T are given as follows, G(D,P, S,C,Q, T ) corre-

sponds to all the R-Steiner trees on Guni:

• D(v) = {0, . . . , n} for any v ∈ Vuni,

• P = {{r, r′} | r ∈ R, r′ ∈ R}, S = ∅,

• C = {1},

• Q = {0},

• T = {1, . . . ,m}.
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Since on the R-Steiner tree, all the vertices in R belong to the same connected

component, we specify P = {{r, r′} | r ∈ R, r′ ∈ R}. C = {1} means that the

number of connected components has to be just one, the Steiner tree itself. Note

that since the isolated vertices should be ignored to count the number of connected

components in this case, we must modify Algorithm 5 slightly (we omit the detail).

Matching

A matching on Guni is a subgraph such that the number of edges incident to each

vertex is at most one. If D,P, S,C,Q, T are given as follows, G(D,P, S,C,Q, T )

corresponds to all the matchings on Guni:

• D(v) = {0, 1} for any v ∈ Vuni,

• P = ∅, S = ∅,

• C = {1, . . . , n},

• Q = {0},

• T = {1, . . . ,m}.

In addition to these subgraphs, we can obtain the DD representing various

subgraphs by giving D,P,C, S,Q, T . More examples are shown in Table 1.

4 Experiments

We show that frontier-based search significantly outperforms traditional näıve algo-

rithms in enumerating spanning trees by numerical experiments. Then, we present

that the running time of frontier-based search is almost the same as that of Knuth’s

Simpath algorithm, which is dedicated for s-t path. Some other experiments were

carried out to show that frontier-based search can treat many kinds of subgraphs.

We introduce three classes of graphs Gℓ, Mℓ and Wℓ, which is given as the

universes. Gℓ is the ℓ × ℓ grid graph. Mℓ is a graph generated from a real-

world map of Nara city by the following way: First, we obtained a map near JR

Nara station from OpenStreetMap [15], and converted it to the well-known text

format using osm2wkt [10]. The well-known text format can be easily converted

to the inner format of our program. Then, we cut it so that both its width and

height are ℓ meters and JR Nara station are located at the center. We remove

all the vertices whose degree is at most two. Wℓ is a small-world graph generated

from a random small-world graph generation model, called the Watts-Strogatz

model [20], with parameter N = ℓ, K = 4 and β = 0.2. We made use of the

connected watts strogatz graph method in NetworkX library [14], which tries

to repeatedly generate a graph until connected one is obtained. The numbers of

their vertices and edges are shown in Table 2.
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Table 1: Subgraphs

Type Parameters

s-t path D(s) = D(t) = {1}, D(v) = {0, 2} for any v ∈ Vuni \ {s, t}
P = {{s, t}}, S = ∅,
C = {1}, Q = {0}, T = {1, . . . ,m}

Hamiltonian s-t path D(s) = D(t) = {1}, D(v) = {2} for any v ∈ Vuni \ {s, t}
P = {{v, w} | v, w ∈ Vuni, v ̸= w}, S = ∅
C = {1}, Q = {0}, T = {1, . . . ,m}

Multiple paths D(v) = {0, 1, 2} for any v ∈ Vuni,
P = ∅, S = ∅,
C = {1, . . . , n}, Q = {0}, T = {1, . . . ,m}

Single cycle D(v) = {0, 2} for any v ∈ Vuni,
P = {{v, w} | v, w ∈ Vuni, v ̸= w}, S = ∅,
C = {1}, Q = {1}, T = {1, . . . ,m}

Multiple cycles D(v) = {0, 2} for any v ∈ Vuni,
P = ∅, S = ∅,
C = {1, . . . , n}, Q = {1}, T = {1, . . . ,m}

Hamiltonian cycle D(v) = {2} for any v ∈ Vuni,
P = {{v, w} | v, w ∈ Vuni, v ̸= w}, S = ∅,
C = {1}, Q = {1}, T = {1, . . . ,m}

Spanning tree D(v) = {1, . . . , n} for any v ∈ Vuni,
P = {{v, w} | v, w ∈ Vuni, v ̸= w}, S = ∅,
C = {1}, Q = {0}, T = {1, . . . ,m}

Rooted spanning forest D(v) = {1, . . . , n} for any v ∈ Vuni,
P = ∅, S = {{ri, rj} | 1 ≤ i < j ≤ ℓ} with roots r1, . . . , rℓ,
C = {1, . . . , ℓ}, Q = {0}, T = {1, . . . ,m}

R-Steiner tree D(v) = {1, . . . , n} for any v ∈ Vuni,
P = {{ri, rj} | ri, rj ∈ P}, Q = ∅
C = {1}, Q = {0}, T = {1, . . . ,m}

Matching D(v) = {0, 1} for any v ∈ Vuni,
P = ∅, S = ∅,
C = {1, . . . , n}, Q = {0}, T = {1, . . . ,m}

Perfect matching D(v) = {1} for any v ∈ Vuni,
P = ∅, S = ∅,
C = {1, . . . , n}, Q = {0}, T = {1, . . . ,m}

Edge cover D(v) = {1, . . . , n} for any v ∈ Vuni,
P = ∅, S = ∅,
C = {1, . . . , n}, Q = {0, 1}, T = {1, . . . ,m}

k-clique D(v) = {0, k − 1} for any v ∈ Vuni,
P = ∅, S = ∅,
C = {1}, Q = {0, 1}, T = {k(k − 1)/2}
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Table 2: Given universes and the numbers of their vertices and edges.

Graph # of Vertices # of Edges

Gℓ ℓ2 2ℓ2 − 2ℓ

M200 7 12

M300 19 33

M400 27 43

M500 56 89

M600 78 124

M700 100 161

M800 123 199

Wℓ ℓ 2ℓ

Table 3: Experiment for spanning tree. Read is the algorithm in [16].

Graph # of FBS Read # of
Nodes FBS Time Time subgraphs

G2 16 0.00 0.00 4

G3 270 0.01 0.01 192

G4 2303 0.01 0.184 100352

G5 15704 0.02 1082.88 5.57568× 108

G6 97265 0.03 T/O 3.25655× 1013

G7 571576 1.06 T/O 1.98724× 1019

G8 3251489 10.00 T/O 1.26231× 1026

G9 18093572 67.06 T/O 8.32663× 1033

G10 99101715 435.35 T/O 5.69432× 1042

M200 629 0.01 0.00 392

M300 4789 0.02 27.84 1.76180× 107

M400 37290 0.02 493.24 2.33645× 108

M500 343769770 1096.74 T/O 2.43278× 1018

W20 44476 0.02 1775.10 1.10039× 109

W30 1198102 2.05 T/O 5.56887× 1013

W40 777244510 2186.42 T/O 2.12187× 1018

We implemented frontier-based search (Algorithm 1, 4 and 5) in C++, and

compiled it using g++ compiler with -O3 optimize option. The source code is

available in https://github.com/junkawahara/frontier-experiment. All the

experiments were performed by a 2.3GHz Xeon E5-2630 computer with 128GB

memory.

We first compared frontier-based search with a conventional back-track algo-

rithm [16] for enumerating all the spanning trees on a given universe, whose com-

putation time is proportional to the number of solutions. The experimental results

for the cases where the universes are Gℓ, Mℓ and Wℓ for some ℓ’s are shown in

Table 3. The back-track algorithm could not count the number of the spanning

trees of G6, which is about 3× 1013, whereas our algorithm succeeded in counting

that of G9, which is about 8× 1033.

Secondly, we compared frontier-based search with Simpath for s-t path with

the universes Gℓ, Mℓ and Wℓ. Simpath is written in C language and compiled
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Table 4: Number of ZDD nodes, the running time and the number of solutions of frontier-
based search (FBS) and Simpath for s-t path. Note that both algorithms can calculate
the exact number of solutions although it is shown as the floating point in the table.

Graph # of FBS # of Simpath # of
Nodes FBS Time Nodes Simpath Time subgraphs

G8 78640 0.00 64894 0.07 7.89360× 1011

G9 274740 0.01 224147 0.16 3.26660× 1015

G10 937672 0.02 757715 0.44 4.10442× 1019

G11 3143949 0.07 2519890 1.38 1.56876× 1024

G12 10396094 2.03 8274264 4.59 1.82413× 1029

G13 33997610 8.03 26894642 15.31 6.45280× 1034

G14 110180128 29.08 86698793 51.36 6.94507× 1040

G15 354414745 106.72 277581570 167.73 2.27450× 1047

M400 685 0.00 2422 0.06 8288

M500 2548855 0.07 1439642 2.06 7.17999× 107

M600 6913381 4.09 14321860 10.03 2.01115× 1011

M700 626023359 406.05 851773581 528.07 8.30693× 1014

W40 4257554 1.01 2463005 1.43 1.26506× 109

W50 42777545 16.01 40631960 24.49 1.60426× 1011

W60 373660835 166.06 185212263 113.84 4.21309× 1013

W70 2152647207 1495.73 2080507887 1394.71 6.76810× 1015

using gcc compiler with -O3 option. In the case of Gℓ, we let the start of the path

s be a corner of the grid, in the case of Mℓ, we let s be the node corresponding to

the JR Nara station, and in the case of Wℓ, we let s be a node randomly chosen.

We let the goal of the path t be the farthest node from s (if there are the two or

more farthest nodes, one of them is randomly chosen). The edges in each universe

are ordered in a breadth-first manner from s.

Table 4 shows the running times of both algorithms. This result shows that

our algorithm is comparable with Simpath; surprisingly, it is slightly faster for

other than W60 and W70. We can conclude that frontier-based search has been

generalized from Knuth’s algorithm without greatly losing the efficiency. Note

that since frontier-based search directly stores the values as deg and comp into

nodes, while Simpath encodes such values as “mate,” the memory requirement of

frontier-based search during the computation is larger than that of Simpath.

Finally, we show the results for Hamiltonian s-t path, rooted spanning forest,

R-Steiner tree and matching. In the case of rooted spanning forest and R-Steiner

tree, we let the roots of Gℓ be the four corner vertices on the grid, and those of

Mℓ and Wℓ be four nodes randomly chosen. The results are shown in Tables 5-8.

Note that these computation can be done by only changing parameters.

Each node in DD requires 16 bytes memory space to store it if we erase variables

in the node after its children have been created. Therefore, the total required

memory for constructed DD can be approximately estimated by the number of

nodes multiplied by 16.
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Table 5: Experiment for Hamiltonian s-t path. Note that there is no Hamiltonian s-t
path on Gℓ when ℓ is even.

Graph # of FBS # of
Nodes FBS Time subgraphs

G9 103627 0.00 2.68830× 109

G11 1149169 0.03 1.44578× 1015

G13 11430100 3.02 1.73376× 1022

G15 117635724 39.04 4.62865× 1030

M400 351 0.00 60

M500 95949 0.01 576

M600 59215 0.02 12528

M700 26778648 30.41 214020

W40 2209511 0.08 102740

W50 8266019 7.09 2.68762× 106

W60 64801681 75.37 3.135491× 107

W70 47685927 130.08 1.794379× 108

Table 6: Experiment for rooted spanning forest.

Graph # of FBS # of
Nodes FBS Time subgraphs

G6 228871 0.06 2.95470× 1015

G7 1377790 3.07 3.59946× 1021

G8 7946770 25.09 4.22129× 1028

G9 44595187 172.06 4.84433× 1036

M300 11089 0.02 2.69631× 108

M400 92536 0.03 3.10111× 1010

M500 859422296 2952.04 1.47339× 1021

W20 106542 0.03 9.92928× 1009

W30 2977619 6.03 1.54711× 1015

5 Related Work

An algorithm for constructing the DD representing all the spanning trees has al-

ready been proposed by Sekine et al. [18], which is similar to our frontier-based

search. The purpose of their paper is not to enumerate all the spanning tree but

to compute the Tutte polynomial. However, the constructed DD for computing

the polynomial can be seen as the representation of all the spanning tree. Sekine

and Imai [17] counts the number of s-t paths in a given graph by using the DD

representing all the spanning tree and modifying it. The efficiency of the algorithm

is not superior to that of Simpath. Motter and Markov [13] develop an algorithm

called a compressed breadth-first search algorithm for CNF-SAT. The DD which

appears in their paper is similar to ours constructed in this paper.

In fact, we can regard the DD constructed by frontier-based search as BDDs or

Zero-suppressed BDDs (ZDDs) [11]. In [2], a general branch-and-bound algorithm

for discrete optimization is proposed. In this algorithm, the search space is rep-

resented by BDDs that the algorithm constructs. Hooker [5] considers a relation
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Table 7: Experiment for Steiner tree.

Graph # of FBS # of
Nodes FBS Time subgraphs

G6 94571 0.04 1.93747× 1015

G7 561319 1.06 3.51350× 1021

G8 3213376 10.02 7.72562× 1028

G9 17952618 68.03 2.05461× 1037

M300 4672 0.01 1.38721× 108

M400 37217 0.02 4.93532× 109

M500 343769770 1130.37 2.43278× 1018

W20 44190 0.02 6.49571× 109

W30 1195399 2.06 8.66131× 1014

W40 763758988 2168.72 8.31267× 1019

Table 8: Experiment for matching.

Graph # of FBS # of
Nodes FBS Time subgraphs

G5 1105 0.01 2.81069× 106

G10 178937 0.07 2.17214× 1027

G15 14000121 82.08 4.13975× 1062

G20 830734329 9106.00 1.94786× 10112

M500 64903 0.03 2.39934× 1014

M600 465162 1.05 1.19158× 1020

M700 10593099 39.07 7.95097× 1025

M800 565761693 110.36 8.47895× 1031

W50 662114 1.06 1.46547× 1014

W60 1615444 4.02 9.90674× 1016

W70 4299561 12.06 5.72795× 1019

W80 20706108 67.06 3.70771× 1022

between dynamic programming and the BDDs constructed by an algorithm similar

to frontier-based search.

6 Conclusion

We have seen that frontier-based search constructs DDs representing various sub-

graphs by specifying the degrees of some vertices, components which some vertices

belong to, the number of components, and whether having a cycle or not. We also

have carried out some experiments to show the effectiveness of our algorithm.

There are at least two another implementation on frontier-based search. One

is a Python/C++ library provided by Inoue [6], which can allow us to treat DDs

without knowing behavior of the algorithm. The other is a C++ implementation

by Iwashita et al. [8], using more advanced techniques called subsetting.

Since a DD constructed by frontier-based search satisfies requirements of ZDD,

many properties of ZDD are useful when we exploit a constructed DD. One of the
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most important property is that we can compute a new set from two sets by set

operations such as union and intersection using ZDDs. Using this property, it is

possible to eliminate subgraphs which do not satisfy another condition from the

DD constructed by frontier-based search (see [7] for example). We believe that our

frontier-based search can be used to solve various graph problems.
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