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(Abstract) Given an undirected graph G, we consider enumerating all Eulerian

trails, that is, walks containing each of the edges in G just once. We consider

achieving it with the enumeration of Hamiltonian paths with the zero-suppressed

decision diagram (ZDD), a data structure that can efficiently store a family of

sets satisfying given conditions. First we compute the line graph L(G), the graph

representing adjacency of the edges in G. We also formulated the condition when

a path in L(G) corresponds to a trail in G because every trail in G corresponds to

a path in L(G) but the converse is not true. Then we enumerate all Hamiltonian

paths in L(G) satisfying the condition with ZDD by representing them as their

sets of edges.

1 Introduction

In the graph theory, an Eulerian trail of a graph G is a walk that contains each

of the edges in G just once (definitions given in Sect. 2). It is known that we

can easily judge whether a connected undirected graph G has an Eulerian trail:

G has an Eulerian trail if and only if it has no or just two vertices of odd degree

(Sect. 2). In addition, it is known that we can obtain an Eulerian trail of G in a

simple manner called Fleury’s algorithm [19]. However, it is considered difficult to

enumerate all Eulerian trails: its time complexity is proved to be “#P-complete”

(roughly speaking, time complexity “P-complete” for each trail) [3, 6, 15].

In this paper we consider efficient enumeration of Eulerian trails, especially by

way of enumerating Hamiltonian paths. A Hamiltonian path of a graph G is a

walk that contains each of the vertices in G just once. Although enumerating

all Hamiltonian paths is not so easy either, many approaches have been proposed

to enumerate all Hamiltonian paths [10, 13, 14, 17, 18], and we especially focus on
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the algorithm using zero-suppressed binary decision diagram (ZDD) [16] with the

advantage described next.

We enumerate all Eulerian trails in a graph G as follows: First we compute the

line graph L(G) so that every Eulerian trail in a simple graph G correspond to

a Hamiltonian path in L(G). In addition, we discuss the condition when a path

in L(G) corresponds to a trail in G because not all paths in L(G) correspond to

trails in G (Sect. 3). Then we enumerate Hamiltonian paths in L(G) satisfying the

condition with the algorithm based on the zero-suppressed binary decision diagram

(ZDD) [16]. ZDD efficiently store a family of sets, where we represent every path as

a set of edges (Sect. 4.1). Another advantage of ZDD is that it can also efficiently

exclude paths satisfying a given condition, which we use to exclude Hamiltonian

paths in L(G) not corresponding to Eulerian trails in G. Experimental results

show that Eulerian trails in a given graph can be enumerated if the line graph has

120 edges or less, or more edges for certain type of graphs.

2 Definitions

We denote by (V,E) the graph whose set of vertices is V and whose set of edges

is E, respectively. For an undirected graph G, it is called simple if there exists at

most one edge between every pair of vertices and there does not exist any loop (an

edge whose two ends are the same vertex).

For an undirected graph G, a pair of a sequence of vertices (v1, v2, . . . , vm) and

a sequence of edges (e1, e2, . . . , em−1) is called a walk if the two ends of ei are vi
and vi+1 for i ∈ {1, 2, . . . ,m − 1}. We call a sequence of either vertices or edges

also a walk if there exists the other sequence satisfying the condition above.

A walk is called to be closed if its sequence of vertices (v1, v2, . . . , vm) satisfies

v1 = vm. A trail is a walk whose edges in the sequence are distinct. A path is a walk

whose vertices in the sequence are distinct (except for the precondition v1 = vm if

the walk is closed). Note that any path is also a trail. A closed path is called a

cycle.

For a connected undirected graph G, it is called a semi-Eulerian graph (or an

Eulerian graph) if there exists a trail (or a closed trail) containing all edges in G.

Such a trail is called an Eulerian trail. Similarly, for a connected undirected graph

G, it is called a semi-Hamiltonian graph (or a Hamiltonian graph) if there exists a

path (or a cycle) containing all vertices in G. Such a path is called a Hamiltonian

path. [19]

Let us review a well-known property for (semi-)Eulerian graphs: a connected

undirected graph G is Eulerian if and only if the degrees of its vertices are all even,

and G is semi-Eulerian if and only if the degrees of its vertices are all even except

for just two vertices of odd degrees [7, 19].
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Figure 1: An example of a line graph. In the line graph in the figure, characters on
edges represent the vertices in the original graph where the edges in the original
graph are adjacent (see the “label” defined in Definition 2).

3 Representing Eulerian trails as Hamiltonian paths in
the line graph

3.1 Line graph

Given a connected undirected simple graph G, we use its line graph L(G) so that

every Eulerian trail in G gives a Hamiltonian path in L(G). The line graph L(G)

is a graph characterizing the adjacency of the edges in G as follows: L(G) has

vertices corresponding one-to-one to the edges in G, and there exists an edge in

L(G) between the two vertices u and v if and only if two edges corresponding to

u and v are adjacent in G [4, 7]. An example is shown in Fig. 1. In this paper we

define it formally as follows:

Definition 1. Given two undirected graphs G = (V,E) and G′ = (V ′, E′), G′ is

called the line graph of G, denoted by L(G), if

• V ′ corresponds to E one-to-one, that is, there exists a bijection l : E → V ′,

and

• For any v′1, v
′
2 ∈ V ′, E′ has an edge between v′1 and v′2 if and only if l−1(v′1), l

−1(v′2) ∈
E are adjacent in G.

It is easily proved that, given a trail t in G, traversing the vertices in L(G) in

the order of corresponding edges in t gives a path in L(G). An example is shown

in Fig. 2.

Property 1. Let G = (V,E), L(G) = (V ′, E′), and t be a trail in G whose

sequence of edges is (e1, e2, . . . , em) (ei ∈ E). Then the sequence of vertices in

L(G): (l(e1), l(e2), . . . , l(em)) (l(ei) ∈ V ′) is a path in L(G).

We extend the definition of l: for a trail t in G, we denote by l(t) the path above

in L(G).



4 H. Hanada, S. Denzumi, Y. Inoue, H. Aoki, N. Yasuda, S. Takeuchi and S. Minato

Figure 2: An example of a trail in a graph and the corresponding path in the line
graph.

Proof. Because t is a trail, for any i ∈ {1, 2, . . . ,m−1}, two edges ei and ei+1 are ad-

jacent and therefore two vertices l(ei) and l(ei+1) are connected from the definition

of the line graph. Thus (l(e1), l(e2), . . . , l(em)) is a walk in L(G). In addition, be-

cause e1, e2, . . . , em are distinct from the fact that t is a trail, l(e1), l(e2), . . . , l(em)

are also distinct. (Recall that l is a bijection.) This means (l(e1), l(e2), . . . , l(em))

is a path in L(G).

In Property 1, if t contains all edges in G, then l(t) contains all vertices in L(G).

As a result,

Property 2. Let t be a Eulerian trail in a (semi-)Eulerian graph G. Then l(t) is

a Hamiltonian path in L(G). (This implies L(G) is a (semi-)Hamiltonian graph.)

The fact that L(G) is a (semi-)Hamiltonian graph if G is a (semi-)Eulerian

graph is already discussed in 1960s [2, 8]. Especially, the condition when L(G) is

Hamiltonian is described as follows:

Property 3. [2] For a graph G = (V,E), L(G) is Hamiltonian if and only if

G is sequential, where G is called sequential if there exists a permutation of E:

(e1, e2, . . . , em) (ei ∈ E, m = |E|) such that ei and ei+1 are adjacent for all i ∈
{1, 2, . . . ,m} (treat em+1 = e1).

Note that, although the result above is for Hamiltonian cycles and closed Eule-

rian trails, it is easily extended for non-closed ones.

G is sequential if G is Eulerian but the converse does not always hold. As a

result, enumerating all Hamiltonian paths in L(G) is excessive for representing all

Eulerian trails in G. Thus, to enumerate Eulerian trails in G by the Hamiltonian

paths in L(G), we have only to exclude such excessive paths. However, the con-

dition of exclusion has not been clarified as far as the authors know, although it

is known in 1963 at latest that no exclusion is needed if G is directed1, that is,

Hamiltonian paths in L(G) correspond one-to-one to Eulerian trails in G in case G

is directed [10]. In the next section we clarify the condition for undirected graphs,

although it may be already proved by others.
1In this paper we omit the definition of the line graph of a directed graph. See the reference.
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Figure 3: An example of a path in a line graph of a simple graph that does not
have a corresponding trail in the original graph.

3.2 The condition when a path in a line graph represents a trail
in the original graph

Let us assume G is a connected undirected simple graph and consider when a path

p in L(G) does not correspond to an trail in G (not limited to Hamiltonian and

Eulerian). An example is shown in Fig. 3. In this case, three successive edges in

G shares a vertex and thus it is not a trail in G.

The following discussion assures only such a case makes a path in L(G) does

not correspond to an trail in G if G is simple. First, to characterize the edges in

L(G), we define their labels as follows:

Definition 2. For a simple graph G and an edge e′ = (u′, v′) (e ∈ E′, u, v ∈ V ′)

in the line graph L(G) = (V ′, E′), we define the label of e′, denoted by λ(e′), by

the only vertex in G where the two edges in G: l−1(u′) and l−1(v′) are adjacent.

Note that, because no two edges in a simple graph G exist between the same

pair of vertices, the vertex for the label must be unique. In case G is not simple,

an edge in L(G) may have two labels (e.g. Fig. 1 in Sect. 3.1).

From the definition of the label, in case three successive edges in G share a

vertex like in Fig. 3, the labels in the corresponding two edges in L(G) must be

the same. We can formulate the fact as follows:

Theorem 1. Let G = (V,E) be a connected undirected simple graph and p be a

path in L(G) = (V ′, E′). Then the followings are equivalent: (A) there exists a trail

t in G such that p = l(t) and (B) the same edge label does not appear successively

in the sequence of edges for p.

Proof. Let p has a subpath v′1
e′1→ v′2

e′2→ v′3 (v
′
i ∈ V ′, e′i ∈ E′). Then, l−1(v′1), l

−1(v′2), l
−1(v′3) ∈

E are connected in G as follows:

(X) In case the labels of e′1 and e′2 are the same, the three edges l−1(v′1), l
−1(v′2), l

−1(v′3) ∈
E shares the vertex of the label. Thus these three edges are connected at a

vertex in G (Case 1 in Fig. 4).
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Figure 4: All possible cases of three edges in a simple graph.

(Y) In case the labels of e′1 and e′2 are different,

(Y1) If the two edges l−1(v′1) and l−1(v′3) are adjacent in G, then there exists

an edge between v′1 and v′3 in L(G), where its label is different from the

other two. Thus the three edges yield a cycle (Case 2 in Fig. 4).

(Y2) If the two edges l−1(v′1) and l−1(v′3) are not adjacent in G, then they

yields a non-cycle path (Case 3 in Fig. 4).

From the consideration, we prove (A) and (B) are equivalent.

Proof of (A) ⇒ (B): Suppose p, a path in L(G), has two successive edges with

the same label, that is, there exist a subpath v′1
e′1→ v′2

e′2→ v′3 in L(G) with

λ(e′1) = λ(e′2). In this case l−1(v′1), l
−1(v′2) and l−1(v′3), three edges in G,

must be adjacent with the form of (X) among (X), (Y1) and (Y2) above. This

contradicts the precondition that (l−1(v′1), l
−1(v′2), l

−1(v′3)) is a subtrail in

G.

Proof of (B) ⇒ (A): Let p be a path in L(G) without any two successive edges

with the same label. Then, for any three successive vertices in p, correspond-

ing three edges in G must take the form of (Y1) or (Y2). This implies no

branching edges exist in the sequence of edges and thus the whole p corre-

sponds to a trail in G.

4 Enumerating Hamiltonian paths in the line graph
corresponding to Eulerian trails

4.1 Representing Hamiltonian paths by zero-suppressed binary
decision diagram

As an algorithm of enumerating Hamiltonian paths satisfying given conditions, we

use the method based on the zero-suppressed binary decision diagram (ZDD) [16],
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Figure 5: An example of ZDD. This ZDD represents the family of five sets {‘c’, ‘d’},
{‘b’, ‘c’, ‘d’}, {‘a’}, {‘a’, ‘d’} and {‘a’, ‘c’}.

a data structure originally for representing binary functions and also for storing

families of sets. A famous algorithm for the enumeration with ZDD is proposed

by Knuth [12], called SIMPATH in his website [11]. First we show the outline of

ZDD.

Definition 3. [16] Given a sequence of boolean variables A = (a1, a2, . . . , an) :

{0, 1}n and a boolean function f(a1, a2, . . . , an) : {0, 1}n → {0, 1}, zero-suppressed
binary decision diagram (ZDD) for f is a minimal directed acyclic graph (DAG)

such that:

• Every vertex is named one of the followings: an element of A, “0-terminal”

or “1-terminal”. There exists just one vertex named a1, “0-terminal” or

“1-terminal”.

• Every vertex has two outgoing edges named “0-edge” and “1-edge”. No edge

connects from ai to aj with i ≥ j.

• f(a1, a2, . . . , an) takes 1 for the arguments defined by paths from a1 to “1-

terminal” in the diagram as follows: for every path above, ai (i = 1, 2, . . . , n)

takes 1 if there exists a vertex named ai which is a source of “1-edge” in the

path, otherwise ai takes 0. For the other arguments f(a1, a2, . . . , an) takes 0.

ZDD can represent a family of sets by regarding A as the universal set, the

assignments for variables a1, a2, . . . , an as the existence of the elements in a set,

and the function value f(a1, a2, . . . , an) as taking 1 if the set is contained in the

family or 0 otherwise. ZDD is invented as a variant of BDD (binary decision

diagram) [1] so that the diagram becomes smaller when f takes zero for most of

the elements in A, that is, the number of sets stored in the family is much fewer

than 2n (the number of all possible sets). An example is shown in Fig. 5.

As stated in the definition, ZDD must be minimal, that is, the nodes in ZDD

must be removed or merged as long as the resulted binary function is not changed.

Concretely, we apply the operations in Fig. 6 to make the ZDD minimal [16].
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Figure 6: The reduction rules of ZDD [16]. The first one is to remove excessive
node: in case there is a node whose 1-edge is connected to 0-term, remove the node
and connect its parent to its destination of 0-edge. The second one is to merge two
nodes contributing to the same binary function.

We use a ZDD whose universal set is the edges in L(G), and let the family of

edges represent the Hamiltonian paths in L(G) corresponding to Eulerian paths in

G (satisfying Theorem 1). Because paths, different from trails, are distinguished by

the set of edges (not sequences of edges), paths are much easier to be represented

by ZDD than trails. In addition, it is also efficient to apply set operations like

“excluding sets (paths) containing certain elements (edges)” for the sets in ZDD,

applying the condition of Theorem 1 is expected to be easy. An example is shown

in Fig. 7.

4.2 Algorithm for enumerating Eulerian trails

Summarizing the discussions, the following algorithm enumerates all Eulerian trails

in a connected undirected (semi-)Eulerian graph G.

1. Make G simple without changing the number of the Eulerian trails in it so

that Theorem 1 can be applied. Precisely,

• In case there exist a pair of vertices with two or more edges between

them, split each of the edges into two by inserting a vertex except for

arbitrary one edge.

• In case there exist a loop edge (Sect. 2), split it into three by inserting

two vertices2.

2. Add some vertices and edges to G so that the start and goal vertices of

Hamiltonian paths in L(G) is made unique, without changing the number of

the Eulerian trails in it. Precisely,

• In case G is semi-Eulerian, for each of the two vertices with odd degree,

create a dummy vertex and an edge to connect to the vertex of odd

2In this case we treat two ends of the loop edge are distinguished: for example, we distinguish
the two cases of traversing the edge ‘7’ in Fig. 1 clockwisely or counterclockwisely. The algorithm
for treating them not distinguished is not developed yet.
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Figure 7: An example of ZDD representation of Hamiltonian paths satisfying The-
orem 1 in a line graph. In the figure of (D), unspecified ZDD edges are regarded
as being connected to 0-terminal. (For example, the destination of 0-edge for ‘B6’
is 0-terminal.

degree unless the degree is 1. This assures the start and goal edges of

the Eulerian trails in G being unique, that is, the start and goal vertices

of the Hamiltonian paths in L(G) being unique (See Fig. 8).

• In case G is Eulerian, determine a start and goal (the same) vertex in G,

then create two dummy vertices and two edges connected to the vertex.

(The set of trails may change by the vertex.) As a result, G becomes

semi-Eulerian.

3. Create L(G) from G. Simultaneously, classify all edges in L(G) by their

labels.

4. Construct the constraint of Theorem 1 given to ZDD. Since the constraint

must be given by sets of edges rather than sequences of the edges (Sect. 4.1),

we describe it as follows: “For every pair of adjacent edges in L(G) with the

same label, they does not appear simultaneously in a path.”

5. Enumerate all Hamiltonian paths in L(G) satisfying the constraint for the

start and goal edges with the SIMPATH method.
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Figure 8: An example of a vertex and an edge additions for a semi-Eulerian graph
to assure the start/goal vertices in L(G) made unique. In this case, because the
degree of the vertex ‘D’ is 3, an odd number larger than 1, we add a dummy vertex
‘*’ and an edge ‘9’.

5 Experiment

5.1 Setting

We implemented the algorithm of Sect. 4.2 with Graphillion [9], a Python library

for graphs and their paths based on ZDD in the manner in Sect. 4.1.

We enumerated the Eulerian trails in the four types of graphs in Tables 1 and

2. Because the line graph L(G) has d(d − 1)/2 edges for each vertex of degree

d in G, the time and space for the computation are expected to grow much for

increasing vertex degree even if the number of edges in G is not so increased.

Thus we experimented graphs with constant maximum degree (Ring, Diamond)

and increasing degree (Bunch, Complete). As seen in Table 2, the number of edges

in Bunch and Complete are multiplied by Θ(k) after the conversions to the line

graphs.

We measured the computation times of the enumeration; times for setting up

graph structures (converting given graphs to their line graphs, adding dummy ver-

tices for making them simple and unique the start and goal vertices) and obtaining

paths which are Hamiltonian and satisfying the condition of Theorem 1. The

experiment was conducted on a computer with the CPU “AMD A4-5000 APU”

(clock: 1.5GHz) and 4GB RAM. The running time for each graph is limited to one

hour.
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Table 1: Graphs examined in the experiment
Name Structure #Vertices #Edges Maximum degree

Ring(k) Fig. 9 2k + 2 4k + 1 4
Diamond(k) Fig. 10 2k(k + 1) + 2 4k2 + 2 4
Bunch(k) Fig. 11 2 k k

Complete(k) Fig. 12 k
k(k − 1)

2
k − 1

Table 2: The properties of the graphs after making the graph simple and adding
dummy vertices (Sect. 4.2).

Name #Vertices #Edges #LineGraphEdges Maximum degree

Ring(k) 3k + 3 5k + 2 13k + 1 4
Diamond(k) 2k(k + 1) + 2 4k2 + 2 4k(3k − 2) + 9 † 4
Bunch(k) k + 3 2k + 1 k(k + 2) ‡ k + 2 ‡

Complete(k) k + 2
k(k − 1)

2
+2

k3 − 3k2 + 6k − 2

2
k − 1

† The value is exceptional for k = 1. (Number of edges is 9 in the line graph
of Diamond(1).)

‡ The values become smaller by 1 for odd k.

Figure 9: The graph Ring(k) (k = 3)

Figure 10: The graph Diamond(k) (k = 3). The start and the goal is set at the
one of the four central vertices. This graph is a variant of Aztec diamond [5].
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Figure 11: The graph Bunch(k) (k = 5)

Figure 12: The graph Complete(k) (k = 5). Such a graph is called complete
graph [4, 7, 19]. It has Eulerian trails if and only if k is odd.

5.2 Result

We show the results of computation times and numbers of trails in Table 3. Table

4 describes the numbers of vertices and edges in the line graph.

From Table 4 with the three graphs Diamond(k), Bunch(k) and Complete(k),

it seems to be possible to enumerate Eulerian trails if there are about 120 edges

or less in the line graph. However, as shown by Ring(k), more edges would be

acceptable according to the shape of graphs. It is easily assumed, but yet to be

examined, that the Hamiltonian paths in L(Ring(k)) satisfying Theorem 1 are well

compressed by ZDD.

As for the computation times, they grow rapidly for increasing k except for

Ring(k) in almost linear against k. The time for Ring(k) is unexpectedly fast

because, in general, we need O(2n) time and space to compute ZDD for a universal

set of size n.

There remains the problem of what parameter is essential for fast computation.

From the property of ZDD, it is clear that the number of edges affects much.

However, we should examine other parameters from the result of Ring(k): in fact,

Eulerian trails in Ring(20) (102 vertices and 261 edges in the line graph) is much

easier to be computed than that in Diamond(5) (102 vertices and 269 edges in the

line graph).
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Table 3: Number of Eulerian trails and computation times (sec) of four types of
graphs

Ring(k) Diamond(k) Bunch(k) Complete(k)
k #trails time #trails time #trails time #trails time

1 6 0.0089 2 0.0073 1 0.0055 —
2 36 0.0131 160 0.0171 2 0.0070 —
3 216 0.0170 528640 0.0602 6 0.0086 2 0.0076
4 1296 0.0209 1.3× 1011 7.9481 24 0.0129 —
5 7776 0.0270 Memory out 120 0.0190 528 0.0214
6 46656 0.0306 720 0.0447 —
7 279936 0.0322 5040 0.0515 3.8× 108 94.1611
8 1679616 0.0398 40320 4.4528 —
9 10077696 0.0435 362880 0.4301 Time out
10 6.0× 107 0.0458 3628800 6.9748
11 3.6× 108 0.0549 39916800 11.2032
12 2.1× 109 0.0560 Memory out
13 1.3× 1010 0.0625
14 7.8× 1010 0.0653
15 4.7× 1011 0.0675

20 3.6× 1015 0.1027
30 2.2× 1023 0.1698
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Table 4: Numbers of vertices and edges in the line graph. Note that the num-
bers of vertices and edges are equivalent to #Edges and #LineGraphEdges in
Table 2, respectively. Underlined numbers denote the cases of failed computations
(memory-out or time-out).

L(Ring(k)) L(Diamond(k)) L(Bunch(k)) L(Complete(k))
k vertices edges vertices edges vertices edges vertices edges

1 7 14 6 9 3 2 —
2 12 27 18 41 5 8 —
3 17 40 38 93 7 14 5 8
4 22 53 66 169 9 24 —
5 27 66 102 269 11 34 12 39
6 32 79 13 48 —
7 37 92 15 62 23 118
8 42 105 17 80 —
9 47 118 19 98 38 269
10 52 131 21 120
11 57 144 23 142
12 62 157 25 168
13 67 170
14 72 183
15 77 196
...
20 102 261
30 152 391
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6 Conclusion

In this research we considered enumerating all Eulerian trails in an undirected

graph G. We focus on ZDD-based Hamiltonian path enumeration, which can

enumerate not only all Hamiltonian paths but also Hamiltonian paths satisfying

certain conditions. We consider converting G into the line graph L(G), where

every Eulerian trail in G corresponds to a Hamiltonian path in L(G) (Sect. 3.1).

In addition, because not all Hamiltonian paths in L(G) corresponds to Eulerian

trails in L(G), we formulated the condition by defining “labels” of the edges in

L(G) (Theorem 1 in Sect. 3.2). As a result of the experiment, we could enumerate

Eulerian trails in G if L(G) has 120 or less edges, although more edges can be

accepted for certain type of graphs.

We consider the following problems as future works: finding parameters of

graphs determining the computational time other than the number of vertices and

edges, and developing more memory-efficient data structure.
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