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Abstract

Many graph problems require us to find subgraphs satisfying constraints
such as no cycle, connected, degree-bounded and so on. Frontier-based search
is a framework to construct a compressed data structure ZDD storing all sub-
graphs satisfying constraints in a given graph. Since frontier-based search
processes edges one by one in a given order, we should determine an edge
order of a given graph as input for frontier-based search. The performance
of frontier-based search, including the size of a constructed ZDD, deeply de-
pends on what edge order is given. In this paper we propose a meta-heuristic
algorithm to determine a good edge order for frontier-based search. Since this
ordering problem is related to minimum path-width problem, our method can
also be considered as a method for minimum path-width problem. Experi-
mental results show our method is useful for both of frontier-based search and
minimum path-width problem.

1 Introduction

Graph is one of important discrete structure on both of theoretical and practical

areas of computer science. Many graph problems ask us to find “one” solution

that is optimal under some evaluation function. On the other hand, there are a

few results to find “all” solutions and store them, because practically the number

of solutions is huge, exponential to graph size in the worst case. However, if we

store all solutions, we can analyze and manipulate them much more: counting,

random sampling, extraction with criteria, and of course optimization.

Frontier-based search [11] is one of frameworks to enumerate all subgraphs of

a given graph with constraints. Frontier-based search constructs a compressed

data structure ZDD [14] storing all solutions. Not only compactness of ZDD may

enable us to store all solutions, but also ZDD has set algebra operations that can be
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applied without restoring. Therefore, taking intersection of two ZDDs, counting the

number of solutions, and finding the optimal solution are done in time depending

only on the size of ZDDs, not on the number of solutions. Frontier-based search has

been used in several applications such as path enumeration [10], power network [7],

and puzzle game [19].

Our goal in this paper is to improve the efficiency of frontier-based search in

order to apply frontier-based search to as large graphs as possible. To achieve this

goal, we focus on edge ordering of a graph. To use frontier-based search, we should

give an edge order to the method as input. The performance of the method and

the size of a resulting ZDD are dramatically affected by the edge order. Details

will be discussed in Section 3.

Furthermore, we indicate the relation between frontier-based search and a well-

known graph parameter path-width in section 3.4, though it is known as a folklore.

This means our problem is NP-complete as well as minimum path-width problem.

We thus propose meta-heuristics to find a good edge order for frontier-based search.

Our algorithm can also be considered as a method to find a path decomposition

with small path-width.

We propose our ordering algorithm in Section 4. Our algorithm is based on

beam search with multiple start vertices found by linear time heuristic search.

The features of our algorithm are:

• practical: Most previous algorithms focus on only maximum path-width. But

complexity of frontier-based search is affected by entire width. Our algorithm

consciously evaluates the average width too.

• scalable: frontier-based search runs in linear time to graph size but in ex-

ponential time to path-width. Thus main targets of frontier-based search

are not so large graphs with small path-width, and we should obtain enough

small width for such graphs. Our algorithm runs in O(|V ||E|K), where V is

a vertex set, E is an edge set, K is a user-selected parameter. Hence it will

work on graphs with |V |, |E| ≤ 10,000 in feasible time.

In Section 5, we give experimental results to evaluate the practical performance

of our algorithm. Results show our method achieves to find a good path decompo-

sition in terms of both of the maximum and average width. Results also indicate

there is a significant improvement of frontier-based search on many instances by

using our method.

2 Graph and Subgraph Enumeration

Our problem is to improve the efficiency of frontier-based search, which is an

algorithm to construct data structure storing all restricted subgraphs. Before in-

troduction of frontier-based search, we briefly review subgraph enumeration with

compressed data structure in this section.
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2.1 Graph Notation

Let G = (V,E) be an undirected graph G with a vertex set V and an edge set E ⊆
{{u, v} | u, v ∈ V }. We set n = |V | and m = |E|. We denote neighbors for a vertex

v by N(v) = {u | {u, v} ∈ E}, and for a vertex set S by N(S) =
∪

v∈S N(v) \ S.
We say an undirected graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V

and E′ ⊆ E.

2.2 Subgraph Enumeration

Subgraph enumeration is enumeration of all subgraphs satisfying given constraints,

such as no cycle, connected, degree bounded, and so on. For example, if a given

constraint forces there is no cycle in subgraph, we should enumerate all subgraphs

that are forests.

Since the number of subgraphs can be huge, in the worst case 2m, listing all

subgraphs may be impractical. An idea to overcome this combinatorial explosion

is using compressed data structure for subgraphs.

2.3 ZDD

Zero-suppressed Decision Diagram (ZDD) [14] is data structure derived from Bi-

nary Decision Diagram (BDD) [2] to represent sets of combinations. Because a

subgraph in a graph can be represented as a combination of edges1, we can also

use a ZDD to represent a set of subgraphs in a graph.

A ZDD is a directed acyclic graph (DAG) that is obtained by reducing a binary

decision tree. A binary decision tree consists of five types of components: internal

nodes, 0-edges, 1-edges, the ⊥-sink, and the ⊤-sink. Each internal node is labeled

with an edge-id, and has exactly two out-going edges: a 0-edge and a 1-edge. Each

path from a root to the ⊤-sink corresponds to a subgraph; if a 1-edge originates

from a node with label e, the subgraph contains e, while a 0-edge means that the

subgraph does not contain e.

The following two rules reduce a binary decision tree to a ZDD, which is a

compact and canonical form:

• sharing rule: share all nodes which have the same labels and child nodes.

• deleting rule: delete all nodes whose 1-edge points to the ⊥-sink.

Figure 1 shows an example of a reduced ZDD representing all restricted subgraphs

in a given graph.

Once we get a ZDD, several operations can be used to analyze and manipulate

subgraphs in the ZDD. For example, counting the number of subgraphs and finding

1if we do not matter isolate vertices
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Figure 1: A ZDD representing all K3 in K4, where Kn denote a complete graph
with n vertices. Note that a ZDD has exactly one ⊥-sink basically; we illustrate
multiple ⊥’s for visibility.

the smallest sum of edge-weights of subgraphs correspond to counting the number

of paths and computing the shortest path in a DAG, which are solved in linear time.

Moreover, there are intersection and union operations between two ZDDs, whose

computation time theoretically bounded by the product of the size of two ZDDs,

not depends on the cardinality. Here, the size of a ZDD means the number of nodes

in a ZDD. Thus, efficient compression by ZDD encourages not only preventing

combinatorial explosion but also fast computation after ZDD construction.

In order to obtain a ZDD from a binary decision tree, we should fix an edge

order; if an edge a is numbered smaller than b, a must be higher than b in a binary

decision tree. Using different edge orders changes ZDD structure, and affects the

compression ratio of ZDD. Details of relation between edge orders and ZDD size

will be discussed in the next section.

3 Frontier-based search and Problem Definition

ZDD helps enumeration of huge number of subgraphs and analysis of them. But if

we construct a ZDD by listing all subgraphs, we indeed cannot avoid exponential

calculation time. Frontier-based search is a ZDD construction framework without

trying all possibility.

3.1 Algorithm Overview

Frontier-based search [11] is a ZDD construction framework. Basically, frontier-

based search constructs a binary decision tree in top-down manner, deleting and

sharing redundant ZDD nodes. Thus, how to delete and share the nodes is the

core of the algorithm.

To identify redundant nodes, we store “state” for each ZDD node. Stored infor-

mation in states depends on given constraints for subgraphs. For example, suppose

we enumerate forests. Then the information in states is connections between pairs
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Figure 2: Equivalent states in the middle of frontier-based search to enumerate all
sub-forests.

of vertices. If we add e = {u, v} to a current state (i.e. use 1-edge in a ZDD) and

u and v are already connected in the current state, this is invalid because it makes

cycle(s). Therefore, we connect the node with the current state to the ⊥-sink with

1-edge. Moreover, if two ZDD nodes have the same state (e.g. same connections in

the forest case), valid edge selections are also same. Hence we can share the nodes

with the same state. Note that a ZDD made by frontier-based search may not

be well-reduced. We should use a reduction algorithm after frontier-based search,

which runs in linear time to the size of a non-reduced ZDD.

In the state, we have to consider only a subset of V , called frontier, not all

vertices in V . A frontier is a set of the vertices which are adjacent to both of the

processed edges and the unprocessed edges. More formally, a frontier Fi of the

i-th level is defined by Fi =
∪

1≤j≤i ej ∩
∪

i+1≤k≤m ek, if we use the edge order

e1, . . . , em. Figure 2 illustrates an example of frontiers of the 5-th level. Again,

suppose we enumerate forests. Then we can consider two subgraphs in figure 2

have the same state, because b and d are connected but e is not connected with b

and d in both of the subgraphs.

To enumerate subgraphs with other constraints, we should define the state and

the pruning rules for each problem. The paper [11] provides a problem list with

the state and the pruning rules that can be solved by the frontier-based search

framework.

3.2 Our Problem

Our goal is to improve the performance of frontier-based search in order to analyze

and manipulate restricted subgraphs efficiently. There are several ways affecting

the performance of frontier-based search: changing state definition, adding sophis-

ticated pruning rules, using an appropriate edge order.

In this paper, we focus on edge ordering to accelerate frontier-based search

because:

• The other techniques cannot be considered separately from given constraints.

The best edge order may depend on given constraints too, but we can deter-

mine an edge order only from a given graph. This is important for intersection
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of multiple ZDDs with different constraints, since intersection operation can

be used for two ZDDs with the same order.

• Although a ZDD made by frontier-based search can be different by using

the other techniques, after reducing, the ZDD will be same because a fully

reduced ZDD has a canonical form unless changing the edge order. Edge

ordering is only a way affecting the size of the reduced ZDD.

Hence, our problem in this paper is to determine a good edge order only from a

given graph such that the order makes frontier-based search faster and the resulting

ZDD smaller.

3.3 Theoretical Analysis

To improve the performance of frontier-based search, we should deeply understand

what factors essentially affect the performance. Time complexity of frontier-based

search is bounded by the number of states and the size of states. For example, a

state for enumeration of sub-forests is connected components between the vertices

in each frontier F . Thus, the number of states in the level i is bounded by the

number of set partitions of a frontier Fi, which is known as Bell number B|Fi|. The

size of states, i.e. the size of information to distinguish it from other states, is

also bounded by O(logB|Fi|). Hence the time complexity of frontier-based search

to enumerate all sub-forests is bounded by O(
∑m

i=1 logB|Fi|B|Fi|). On the other

hand, the size of a ZDD is O(
∑m

i=1B|Fi|), because a ZDD has not to store state

information after construction.

In general, the complexity of frontier-based search is bounded byO(
∑m

i=1 f(|Fi|)),
where f(x) is a function determined by state definition, and exponential to x in

many problems. Thus, it is natural that we guess a good edge order will yield

small frontiers.

3.4 Frontier-based search and Path Decomposition

The definition of frontier for edge ordering is almost same as vertex separator for

vertex ordering. The j-th vertex separator Sj on the vertex order v1, . . . , vn is

defined as Sj = {vi | i ≤ j, ∃k > j, {vi, vk} ∈ E}. We assume the edge order

e1, . . . , em such that for ex = {vi, vj} (i < j) and ey = {vk, vl} (k < l), x < y

if j < l. Then frontier Fx with ex = {vi, vj} (i < j) satisfies Fx ⊆ Sj−1 ∪ {vj}.
It is because

∪
1≤i≤x ei = {v1, . . . , vj} holds and vk (k < j) is in Fx if vk has at

least one unprocessed edge, which is {vk, vl} (k < j ≤ l), and thus vk satisfies

the definition of vertex separator Sj−1. Furthermore, ex adds only vj to Sj−1, not

adds vi because vi is already in Sj−1 due to {vi, vj}. Therefore, |Fx| ≤ |Sj−1|+ 1

holds when we use the above edge order. Relation between vertex separators and a

frontier-based search on BDD, similar data structure to ZDD, has been discussed

in [17], for example.
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Furthermore, it is known that the maximum size of vertex separators is equiva-

lent to the path-width of a corresponding path decomposition [12]. Path decompo-

sition of G = (V,E) is a sequence (X1, . . . Xl) of subsets of V , called bags, satisfying

the following requirements:

• For each edge e = {u, v} ∈ E, there is at least one bag Xi such that u, v ∈ Xi.

• For each vertex v ∈ V , if there are two bags Xi, Xj(i < j) both of which

contain v, for all i ≤ k ≤ j, Xk also contains v.

Path-width of a path decomposition is the maximum size max1≤i≤l |Xi| of bags.
Therefore, a path decomposition with small path-width seems to yield a good

vertex order for a good edge order.

In the context, frontier-based search can be considered as a dynamic program-

ming (DP) algorithm on a path decomposition. But we purposely use frontier-

based search rather than DP on a path decomposition for subgraph enumeration

problems because:

• We can consider a non-reduced ZDD made by frontier-based search is equiv-

alent to a DP table of a path decomposition. Thus, the reduced ZDD has

smaller size than a DP table, which will accelerate DP calculation (i.e. traver-

sal of the DAG). This is a merit especially when we repeatedly compute

different objective functions and edge-weights dynamically change.

• If there are multiple constraints, designing DP on a path decomposition may

be complex. ZDD framework makes it easy by constructing ZDDs for each

constraints respectively and taking ZDD intersection operations. Moreover,

we can also use subsetting technique [9], which can compute intersections

maybe faster than ordinary intersection operation.

4 Proposed Method

A path decomposition with small path-width will yield a good vertex order for a

good edge order to frontier-based search. We review previous work to compute

small path-width before proceeding our method.

4.1 Previous Work for Path Decomposition

Lengauer [13] shows computing the minimum of the maximum vertex separator

is NP-complete problem, and Kinnersley [12] shows this problem is equivalent to

finding the minimum path-width. Therefore, two goals have been mainly discussed

in the literature: (1) computing the exact optimal width as fast as possible and

(2) computing as a good solution as possible within feasible time by heuristics.
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For exact solution, there are several results about polynomial time algorithms

for restricted graph classes. [16, 1, 5, 18] For general graphs, Coudert et al. [3]

proposed an algorithm based on branch and bound. The paper [3] shows this

algorithm faster than SAT-based algorithm in most cases.

As heuristics, several linear time algorithms have been proposed such as:

• DFS/BFS [15]: Vertices are ordered by the traversal order of depth-first/breadth-

first search.

• NDS [15]: For the order v1, . . . , vi−1, let S = {v1, . . . , vi−1}. Then a vertex

v ∈ V \ S with maximum |N(v) ∩ S| is chosen as the next vertex vi.

• LUD [4]: For the order v1, . . . , vi−1, let S = {v1, . . . , vi−1}. Then a vertex

v ∈ V \ S with maximum |N(v)∩ S| − |N(v)∩ (V \ S)| is chosen as the next

vertex vi.

These heuristics must choose a start vertex (typically, with the smallest degree).

Many researches using frontier-based search use BFS ordering as input. For in-

stance, Graphillion package [6], which is a library using frontier-based search, sup-

ports DFS/BFS ordering and sets BFS ordering as default.

On the other hand, Duarte et al. [4] proposed a meta-heuristic algorithm based

on basic variable neighborhood search (BVNS). BVNS repeats local search with

random shake of current optimal solution within time limit explicitly set by users.

BVNS uses the evaluation function such that the smaller number of large bags is

highly evaluated, thus we can consider BVNS decreases not only the maximum

size but also the entire size.

4.2 Overview of Proposed Method

We propose an algorithm for computing a path decomposition with small path-

width. Moreover, we focus on improving “practical” performance of frontier-based

search. Namely,

• Practically, we guess the graph size can be dealt by frontier-based search

is n,m ≤ 10,000 and path-width up to 20 from the theoretical complexity.

Thus, algorithms should be polynomial time. On the other hand, linear time

seems to be too fast; we can compute further to improve the quality.

• Typical path-width optimization focuses on minimizing the maximum width.

But complexity of frontier-based search is O(
∑m

i=1 f(|Fi|)). Thus, we should

also care about the entire size of frontiers, not only the maximum one.

Our algorithm consists of three parts:

1. Calculate appropriate start vertices by using linear time heuristics.
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2. Calculate a good vertex order by using beam search with appropriate start

vertices.

3. Calculate a good edge order from a calculated good vertex order.

We first introduce the core of our algorithm, beam search, in the next subsec-

tion. Since preliminary experiment shows the performance of beam search deeply

depends on a start vertex, we also propose a strategy to choose appropriate start

vertices. Finally, we propose an edge ordering algorithm to obtain a better edge

order from a vertex order.

4.3 Core Algorithm: Beam Search

We use beam search to compute a good vertex order. Beam search is a search

algorithm pruning search space with evaluation function. Beam search traverses

search space in breadth-first manner and expand only K states with top-K evalu-

ation score in the same search level. Here, K, called beam width, is a parameter

given by users.

The i-th step of our beam search determine the i-th vertex as follows: We

already have K orders, each of which consists of i− 1 vertices. For each order, we

try to add a vertex that is adjacent to at least one vertex in the current frontier.

Here we obtain a new list of orders consisting of i vertices. Then we extract top-K

orders with evaluation function, and proceed next i + 1-th step. Our algorithm

finally outputs the most highly evaluated order in the n-th step.

We use the sum of the squares of frontier sizes
∑i

k=1 |Fk|2 as evaluation function

for the i-th step, where smaller values are considered highly evaluated. This is for

decreasing the maximum frontier size and average frontier size simultaneously. In

the tiebreak case, we use another evaluation function |N(Fi)∩(V \{v1, . . . , vi−1})|,
smaller is highly evaluated too. This is because (1) the set of neighbors may become

a future frontier and (2) decreasing candidates helps to reduce expansion of search

space, i.e. save runtime.

The time complexity of this algorithm is O(n(mK+nK logK)): The algorithm

examines K search nodes n times. Each expansion yields at most n search nodes,

and updates evaluation functions for each added vertex v in O(|N(v)|) time. Thus

each expansion costs O(m) time in total. Now, we have at most nK search nodes.

We sequentially add these nodes to a heap keeping provisional top-K nodes, whose

maintenance cost is O(logK) per one node, and finally the K next search nodes

are in the heap.

4.4 Improvement by Using New Light Search Algorithm: RFS

Preliminary experiments indicate the performance of beam search deeply depends

on a start vertex, and sometime beam search without fixing a start vertex misses
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an appropriate start vertex since small beam width forces beam search to select a

start vertex from the information about only few vertices around it. Therefore, we

choose likely appropriate vertices by another way and try them as start vertices.

In order to get appropriate vertices, we use linear time heuristics. We can run

linear time algorithm n times for our target graph size. Thus we evaluate each

vertex in terms of the maximum and average frontier size of the result of heuristic

search using it as a start vertex. Top-L vertices are chosen as appropriate vertices

for beam search; then we run beam search L times with L start vertices respectively

and output optimal one among the L results.

To improve the quality more, we also propose a new linear time heuristics RFS:

For the order v1, . . . , vi−1, let S = {v1, . . . , vi−1}. First, we choose v ∈ S with

minimum |N(v) ∩ (V \ S)|.2 Then a vertex u ∈ N(v) ∩ (V \ S) with minimum

|N(u)∩ (V \S)| is chosen as the next vertex. This intends to choose a vertex that

looks like to be easily removed from the current frontier to keep frontier size small.

Experimental results shown in Section 5.3 suggest RFS is the best heuristic

search for many instances. Hence we use RFS to calculate appropriate start vertices

for beam search.

Another advantage by using good heuristics is we can also use the best result

of the heuristics as our optimal solution, if it is better than a beam search result.

The good performance of RFS is also useful in terms of using its results directly.

4.5 Computing Edge Order via Vertex Order

Now, we can obtain a vertex order by the algorithm in previous subsections. In

the next step, we should transform it to an edge order. In Section 3.4, we have

seen the edge ordering such that |Fx| ≤ |Sj−1|+ 1 holds. But this ordering can be

improved in terms of entire frontier size.

If we fix a vertex order, the frontier transitions are uniquely determined as shown

in figure 3. Here, each vertex v has an interval in the frontier transition such that

v is added to a frontier and v is removed from a frontier. This can be examined

by the correspondence between frontiers and bags of a path decomposition.

A key idea is edge e = {u, v} can be processed at any time in the interval that is

the intersection of the intervals of u and v. We use edge e at the minimum frontier

in the valid interval described above. This cause reduction of entire frontier size

since for each edge, the size of the frontier in which the edge is processed is less

than or equal to the original size.

2but it must be greater than 0; N(v) ∩ (V \ S) = ϕ means v is not in frontier.
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Figure 3: Frontier transitions and vertex intervals.

5 Experimental Results

5.1 Experiment Environment

We conducted computational experiments to evaluate our algorithm and compare

with previous work. All algorithms are implemented in C++ with g++ 4.9.3

compiler. We also use TdZdd library [8] to implement frontier-based search. We

carried out experiments on a 3.20 GHz CPU machine with 64 GB memory.

We use two graph datasets: Rome Graph and VSPLIB. Rome Graph is road

networks used as benchmark in [3]. We use 140 graphs with n = 100, 119 ≤ m ≤
158. VSPLIB is used as benchmark for vertex separation problem in [4]. We use

73 instances of HB from VSPLIB, which come from the Harwell-Boeing Sparse

Matrix Collection. Graphs in VSPLIB have 24 ≤ n ≤ 960 and 46 ≤ m ≤ 7442.

5.2 Performance of Edge Ordering

We first show results for the edge ordering algorithm in Section 4.5. Here, we use

vertex orders generated by RFS. Table 1 presents experimental results.

Our edge ordering strategy achieves to reduce the maximum frontier size by

one in almost a half of instances. Furthermore, average frontier size also decreases

about 2 % in Rome Graph and 4 % in VSPLIB. An important fact is our proposed

algorithm does not increase the maximum and average frontier size, as shown in

the minimum of the difference. Hereafter, we thus use this algorithm to obtain an

edge order from vertex order.

5.3 Path Decomposition by Linear Time Heuristics

We next compare linear time heuristics, where a start vertex is fixed to a vertex

with the minimum degree. Table 2 describes experimental results.

Our RFS is the best in terms of both of the maximum and average frontier size.

Especially for Rome Graph dataset, RFS is the best in almost all cases. Thus we
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Table 1: Comparing edge ordering algorithms: näıve ordering (in Section 3.4) v.s.
proposed ordering (in Section 4.5).

max frontier size average frontier size

#improved instances
diff: näıve−proposed ratio: näıve/proposed

average min max average min max
Rome 63 0.152 0.065 0.346 1.019 1.007 1.038
VSPLIB 44 0.868 0.000 9.466 1.043 1.000 1.277

Table 2: Comparing linear time heuristics: previous algorithms (in Section 4.1)
v.s. proposed algorithm (in Section 4.4). “#best” means the number of instances
for which a corresponding method can compute the best frontier size among listed
algorithms. “ave. diff.” means the average of the differences between the frontier
size computed by a corresponding method and the best size for each instance.

max frontier size average frontier size
DFS BFS NDS LUD RFS DFS BFS NDS LUD RFS

Rome
#best 0 0 1 5 137 0 0 0 4 136

ave. diff. 7.78 7.99 7.11 4.14 0.02 4.63 4.71 4.40 2.48 0.01

VSPLIB
#best 5 22 9 21 47 4 21 4 13 42

ave. diff. 38.42 8.33 19.37 10.11 4.25 21.13 4.19 10.86 5.10 2.35

use RFS as linear time heuristics to determine start vertices for beam search. BFS

and LUD are second best, and if we merge the results of these three algorithms,

we achieve to get the best ordering among heuristics in almost all cases including

VSPLIB.

5.4 Path Decomposition by Meta-heuristics

We evaluate the performance of our beam search in terms of frontier size. We

compare our algorithm with BFS, which is usually used in frontier-based search,

and BVNS-based method in [4] with 1000 seconds time limit. We fix a beam width

K = 5000 and the number of start vertices L = 10. Our algorithm runs in 0.64

to 787.59 seconds, which depends on the size of each graph. Table 3 describes

experimental results.

Our algorithm achieves to get the best size for about 80% instances in both

datasets. Furthermore, even in the case our algorithm misses the best, it finds

an order enough close to the best, as shown in the average difference. On the

other hand, BFS seems not to be a sophisticated ordering for path decomposition.

Averagely, the difference of maximum frontier size between BFS ordering and the

best is more than 10, which may exponentially affect the performance of frontier-

based method.



Acceleration of ZDD Construction for Subgraph Enumeration via Path-width Optimization 13

Table 3: Comparing BFS, BVNS (in Section 4.1), and beam search (in Section 4.2).
“#best” and “ave. diff.” mean same as ones in Table 2.

max frontier size average frontier size
BFS BVNS beam BFS BVNS beam

Rome
#best 0 87 120 0 22 118

ave. diff. 10.707 0.421 0.150 6.296 0.401 0.027

VSPLIB
#best 12 39 63 4 23 58

ave. diff. 11.781 3.795 0.685 5.714 2.097 0.419

Table 4: Relation between the maximum frontier size and the number of the in-
stances for which a ZDD is constructed. “#in time” means the number of instances
for which frontier-based search runs in time limit 1000 seconds. “#timeout” means
the number of instances for which frontier-based search exceed the time limit.

BFS
max frontier size

Total≤ 11 12 13 14 15 16 17 ≤

Rome
#in time 0 0 2 1 3 0 0 6
#timeout 0 0 0 3 1 5 125 134

VSPLIB
#in time 14 3 0 0 1 1 0 19
#timeout 0 1 0 0 0 0 53 54

BVNS beam
max frontier size

Total
max frontier size

Total≤ 10 11 12 13 ≤ ≤ 11 12 13 ≤

Rome
#in time 87 29 7 0 123 121 4 0 125
#timeout 0 0 8 9 17 0 7 8 15

VSPLIB
#in time 19 2 1 0 22 24 1 0 25
#timeout 0 1 0 50 51 0 1 47 48

5.5 Efficiency of Frontier-based search with Path Decomposition-
based Ordering

Finally, we evaluate the impact of our algorithm to apply frontier-based search.

In this experiment, we enumerate all sub-forests in a given graph and construct a

ZDD for them with time limit 1000 seconds.

Table4 shows the relation between the maximum frontier size F and the solv-

ability of frontier-based search for all sub-forests. The total number of solved

instances by BFS ordering are really less than the ones by meta-heuristics, espe-

cially in Rome Graph. This shows the ordering based on a path decomposition

is effective to improve the performance of frontier-based search. Both of meta-

heuristic methods can construct a ZDD for all F ≤ 10 cases and cannot construct

a ZDD for all F ≥ 13 cases. On the other hand, BFS sometime constructs a ZDD

up to F ≤ 16 cases. This result is interesting and may be the key to improve our

algorithm, but we have not revealed the details yet.

Table 5 summarizes the performance of frontier-based search using path decomposition-

based ordering. Before the comparison between our method and BVNS, we notice
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Table 5: Comparing the performance of frontier-based search using an edge order
by meta-heuristics: BVNS (in Section 4.1) v.s. beam search (in Section 4.2).
“average” means the average of results for instances for which both ordering can
construct a ZDD (i.e. 119 instances for Rome Graph and 22 instances for VSPLIB).
“#best” means the number of instances for which the best result is obtained by a
corresponding ordering. “#2-folds” means the number of instances for which the
result of a corresponding ordering is twice or more better than the other ordering.

runtime non-reduced ZDD size reduced ZDD size
BVNS beam BVNS beam BVNS beam

Rome
average 35.81 s 32.68 s 140,496,029 129,300,247 11,542,286 11,010,751
#best 63 66 60 69 63 66

#2-folds 23 39 21 38 16 32

VSPLIB
average 41.11 s 25.30 s 135,520,389 83,321,337 22,976,532 14,510,650
#best 10 15 10 12 9 12

#2-folds 1 8 0 5 0 5

the impact of the reduction of ZDDs. On the average, reduced ZDDs are more

compact than non-reduced ones about 11 times in Rome Graph instances and 6

times in VSPLIB. This means dynamic programming on a path decomposition can

be accelerated 6 to 11 times after ZDD reduction.

In 140 Rome Graph instances, ZDDs for 4 instances are constructed only by

BVNS ordering, ZDDs for 6 instances are constructed only by beam search order-

ing, and 119 instances are constructed by both ordering. In 73 VSPLIB instances,

ZDDs for 0 instances are constructed only by BVNS ordering, ZDDs for 3 instances

are constructed only by beam search ordering, and 22 instances are constructed by

both orderings.

The results of the averages and the number of the best looks like there is no

big difference in our method and BVNS. We guess this is because BVNS also

decreases the entire size by the evaluation function. On the other hand, we can

find meaningful differences in the cases with the ratio is twice or more, i.e. there is

significant improvement, especially in VSPLIB. Figure 4 illustrates details of the

fact. In many cases, the two methods show close performance. But the number of

meaningful improvements by our method is more than the one by BVNS.

6 Conclusion

To improve frontier-based search, we focus on the edge ordering because it is robust

to change constraints and affects not only runtime but also the size of a resulting

ZDD. We propose meta-heuristic algorithm that find small frontier size, using

relation between frontiers and path decomposition.

Our algorithm can find a good path decomposition in terms of both of the

maximum and average bag size in the decomposition. Moreover, our algorithm

achieves to construct ZDDs for many instances for which the standard ordering BFS
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Figure 4: The number of instances with the ratio of reduced ZDD size comparing
with the other method.

cannot construct ZDDs. Our algorithm also tends to reduce runtime of frontier-

based search and the size of a resulting ZDD compared with the previous path

decomposition method BVNS. On the other hand, the performance of frontier-

based search using an edge order by our algorithm is frequently worse than the one

by BVNS even in the case our algorithm yields a better path decomposition than

BVNS in terms of the size of frontiers. Our future work is to reveal the key factor

of this phenomenon for further improvement of frontier-based search.
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