Theory of Computation

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/~thomas/ToC/
Lecture 1: Introducing Formal Languages

Motivation I

This course is about the study of a fascinating and important subject:

> the theory of computation.

Motivation I

This course is about the study of a fascinating and important subject:

the theory of computation.

It comprises the fundamental mathematical properties of computer hardware, software, and certain applications thereof. We are going to determine what can and cannot be computed. If it can, we also seek to figure out on which type of computational model, how quickly, and with how much memory.

Motivation II

Theory of computation has many connections with engineering practice, and, as a true science, it also comprises philosophical aspects.

Motivation II

Theory of computation has many connections with engineering practice, and, as a true science, it also comprises philosophical aspects.
Since formal languages are of fundamental importance to computer science, we shall start our course by having a closer look at them.

Motivation II

Theory of computation has many connections with engineering practice, and, as a true science, it also comprises philosophical aspects.
Since formal languages are of fundamental importance to computer science, we shall start our course by having a closer look at them.

First, we clarify the subject of formal language theory.

Motivation III

Generally speaking, formal language theory concerns itself with sets of strings called languages and different mechanisms for generating and recognizing them. Mechanisms for generating sets of strings are usually referred to as grammars and mechanisms for recognizing sets of strings are called acceptors or automata.

Motivation III

Generally speaking, formal language theory concerns itself with sets of strings called languages and different mechanisms for generating and recognizing them. Mechanisms for generating sets of strings are usually referred to as grammars and mechanisms for recognizing sets of strings are called acceptors or automata.

A mathematical theory for generating and accepting languages emerged in the later 1950's and has been extensively developed since then. Nowadays there are elaborated theories for both computer languages and natural languages.

Motivation IV

We have to restrict ourselves to the most fundamental parts of formal language theory, i.e., to the regular languages, the context-free languages, and the recursively enumerable languages. This will suffice to obtain a basic understanding of what formal language theory is all about and what are the fundamental proof techniques.

Motivation IV

We have to restrict ourselves to the most fundamental parts of formal language theory, i.e., to the regular languages, the context-free languages, and the recursively enumerable languages. This will suffice to obtain a basic understanding of what formal language theory is all about and what are the fundamental proof techniques.

For having a common ground, we shortly recall the mathematical background needed.

Background I

For any set M, by card (M) and $\wp(M)$ we denote the cardinality of M and the power set of M, respectively.

Background I

For any set M, by $\operatorname{card}(M)$ and $\wp(M)$ we denote the cardinality of M and the power set of M, respectively.
Let X, Y be any two sets; then we use $X \cup Y, X \cap Y$ and $X \backslash Y$ to denote the union, intersection and difference of X and Y, respectively.

Background I

For any set M, by $\operatorname{card}(M)$ and $\wp(M)$ we denote the cardinality of M and the power set of M, respectively.

Let X, Y be any two sets; then we use $X \cup Y, X \cap Y$ and $X \backslash Y$ to denote the union, intersection and difference of X and Y, respectively.

Furthermore, we denote the empty set by \emptyset.

Background I

For any set M, by $\operatorname{card}(M)$ and $\wp(M)$ we denote the cardinality of M and the power set of M, respectively.

Let X, Y be any two sets; then we use $X \cup Y, X \cap Y$ and $X \backslash Y$ to denote the union, intersection and difference of X and Y, respectively.

Furthermore, we denote the empty set by \emptyset.
By $\mathbb{N}=\{0,1,2, \ldots\}$ we denote the set of all natural numbers. We set $\mathbb{N}^{+}=\mathbb{N} \backslash\{0\}$.

Background II

If we have countably many sets X_{0}, X_{1}, \ldots, then we use $\bigcup_{i \in \mathbb{N}} X_{i}$ to denote the union of all X_{i}, i.e.,

$$
\begin{equation*}
\bigcup_{i \in \mathbb{N}} X_{i}=X_{0} \cup X_{1} \cup \cdots \cup X_{n} \cup \cdots \tag{1}
\end{equation*}
$$

Background II

If we have countably many sets X_{0}, X_{1}, \ldots, then we use $\bigcup_{i \in \mathbb{N}} X_{i}$ to denote the union of all X_{i}, i.e.,

$$
\begin{equation*}
\bigcup_{i \in \mathbb{N}} X_{i}=X_{0} \cup X_{1} \cup \cdots \cup X_{n} \cup \cdots \tag{1}
\end{equation*}
$$

Analogously, we write $\bigcap_{i \in \mathbb{N}} X_{i}$ to denote the intersection of all X_{i}, i.e.,

$$
\begin{equation*}
\bigcap_{i \in \mathbb{N}} X_{i}=X_{0} \cap X_{1} \cap \cdots \cap X_{n} \cap \cdots \tag{2}
\end{equation*}
$$

Background III

It is useful to have the following notions: Let X, Y be any sets and let $f: X \rightarrow Y$ be a function. For any $y \in Y$ we define

$$
\begin{equation*}
f^{-1}(y)=\{x \mid x \in X, f(x)=y\} . \tag{3}
\end{equation*}
$$

We refer to $f^{-1}(y)$ as to the set of pre-images of y.

Background III

It is useful to have the following notions: Let X, Y be any sets and let $f: X \rightarrow Y$ be a function. For any $y \in Y$ we define

$$
\begin{equation*}
f^{-1}(y)=\{x \mid x \in X, f(x)=y\} . \tag{3}
\end{equation*}
$$

We refer to $f^{-1}(y)$ as to the set of pre-images of y.
Also, we need the following definition:

Definition 1

Let X, Y be any sets and let $f: X \rightarrow Y$ be a function. The function f is said to be
(1) injective if $f(x)=f(y)$ implies $x=y$ for all $x, y \in X$;
(2) surjective if for every $y \in Y$ there is an $x \in X$ such that $f(x)=y ;$
(3) bijective if f is injective and surjective.

Background IV

Next, let X and Y be any sets. We say that X and Y have the same cardinality if there exists a bijection $f: X \rightarrow Y$. If a set X has the same cardinality as the set \mathbb{N} of natural numbers, then we say that X is countably infinite.

Background IV

Next, let X and Y be any sets. We say that X and Y have the same cardinality if there exists a bijection $f: X \rightarrow Y$. If a set X has the same cardinality as the set \mathbb{N} of natural numbers, then we say that X is countably infinite.
A set X is at most countably infinite if it is finite or countably infinite. If $X \neq \emptyset$ and X is at most countably infinite, then there exists a surjection $f: \mathbb{N} \rightarrow X$, i.e.,

$$
X=\{f(0), f(1), f(2), \ldots\}
$$

So, intuitively, we can enumerate all the elements of X (where repetitions are allowed).

Background V

The following theorem is of fundamental importance:

Theorem 1 (Cantor's Theorem)

For every countably infinite set X the set $\wp(\mathrm{X})$ is not countably infinite.

Background V

The following theorem is of fundamental importance:

Theorem 1 (Cantor's Theorem)

For every countably infinite set X the set $\wp(\mathrm{X})$ is not countably infinite.

Since X is countably infinite, there is a bijection $f: \mathbb{N} \rightarrow X$. Suppose that $\wp(X)$ is countably infinite. Then there must exist a bijection $\mathrm{g}: \mathbb{N} \rightarrow \wp(\mathrm{X})$.

Background V

The following theorem is of fundamental importance:

Theorem 1 (Cantor's Theorem)

For every countably infinite set X the set $\wp(\mathrm{X})$ is not countably infinite.

Since X is countably infinite, there is a bijection $f: \mathbb{N} \rightarrow X$. Suppose that $\wp(X)$ is countably infinite. Then there must exist a bijection $\mathrm{g}: \mathbb{N} \rightarrow \wp(\mathrm{X})$.
Now, we define a diagonal set D as follows:

$$
D=\{f(\mathfrak{j}) \mid \mathfrak{j} \in \mathbb{N}, f(\mathfrak{j}) \notin \mathrm{g}(\mathfrak{j})\} .
$$

By construction, $\mathrm{D} \subseteq X$ and hence $\mathrm{D} \in \wp(X)$. Consequently, there must be a number $d \in \mathbb{N}$ such that $D=g(d)$.

Background VI

Now, we consider $f(d)$. By the definition of f we know that $f(d) \in X$. Since $D \subseteq X$, there are two possible cases, either $f(d) \in D$ or $f(d) \notin D$.

Background VI

Now, we consider $f(d)$. By the definition of f we know that $f(d) \in X$. Since $D \subseteq X$, there are two possible cases, either $f(d) \in D$ or $f(d) \notin D$.

Case 1. $\mathrm{f}(\mathrm{d}) \in \mathrm{D}$.
By the definition of D and d we directly get

$$
f(d) \in D \Longleftrightarrow f(d) \notin g(d) \Longleftrightarrow f(d) \notin D,
$$

since $\mathrm{g}(\mathrm{d})=\mathrm{D}$. This contradiction shows that Case 1 cannot happen.

Case 2. $\mathrm{f}(\mathrm{d}) \notin \mathrm{D}$.
Again, by construction, $f(\mathrm{~d}) \notin \mathrm{D}$ holds if and only if $\mathrm{f}(\mathrm{d}) \in \mathrm{g}(\mathrm{d})$ if and only if $f(d) \in D$, again a contradiction.
Thus, Case 2 cannot happen either, and hence the supposition that $\mathfrak{Y}(X)$ is countably infinite, cannot hold.

Relations I

Let X, Y be any non-empty sets. We set $X \times Y=\{(x, y) \mid x \in X$ and $y \in Y\}$.
Every $\rho \subseteq X \times Y$ is said to be a binary relation.
We sometimes use the notation $x \rho y$ instead of writing $(x, y) \in \rho$. Of special importance is the case where $X=Y$. If $\rho \subseteq X \times X$ then we also say that ρ is a binary relation over X.

Relations II

Definition 2

Let $X \neq \emptyset$ be any set, and let ρ be any binary relation over X.
The relation ρ is said to be
(1) reflexive if $(x, x) \in \rho$ for all $x \in X$;
(2) symmetric if $(x, y) \in \rho$ implies $(y, x) \in \rho$ for all $x, y \in X$;
(3) transitive if $(x, y) \in \rho$ and $(y, z) \in \rho$ implies $(x, z) \in \rho$ for all $x, y, z \in X$;
(4) antisymmetric if $(x, y) \in \rho$ and $(y, x) \in \rho$ implies $x=y$ for all $x, y, z \in X$.

Relations II

Definition 2

Let $X \neq \emptyset$ be any set, and let ρ be any binary relation over X.
The relation ρ is said to be
(1) reflexive if $(x, x) \in \rho$ for all $x \in X$;
(2) symmetric if $(x, y) \in \rho$ implies $(y, x) \in \rho$ for all $x, y \in X$;
(3) transitive if $(x, y) \in \rho$ and $(y, z) \in \rho$ implies $(x, z) \in \rho$ for all $x, y, z \in X$;
(4) antisymmetric if $(x, y) \in \rho$ and $(y, x) \in \rho$ implies $x=y$ for all $x, y, z \in X$.

Any binary relation satisfying (1) through (3) is called equivalence relation. For any $x \in X$, we write $[x]$ to denote the equivalence class generated by x, i.e.,
$[x]=\{y \mid y \in X$ and $(x, y) \in \rho\}$.

Relations III

Any relation satisfying (1), (3) and (4) is called partial order. In this case, we also say that (X, ρ) is a partially ordered set.

Relations III

Any relation satisfying (1), (3) and (4) is called partial order. In this case, we also say that (X, ρ) is a partially ordered set.

Definition 3

Let $\rho \subseteq \mathrm{X} \times \mathrm{Y}$ and $\tau \subseteq \mathrm{Y} \times \mathrm{Z}$ be binary relations. The composition of ρ and τ is the binary relation $\zeta \subseteq X \times Z$ defined as
$\zeta=\rho \tau$
$=\{(x, z) \mid$ there is a $y \in Y$ such that $(x, y) \in \rho,(y, z) \in \tau\}$.

Relations IV

Now, let $X \neq \emptyset$ be any set; there is a special binary relation ρ^{0} called equality, and defined as $\rho^{0}=\{(x, x) \mid x \in X\}$. Moreover, let $\rho \subseteq X \times X$ be any binary relation. We inductively define $\rho^{i+1}=\rho^{i} \rho$ for each $i \in \mathbb{N}$.

Relations IV

Now, let $X \neq \emptyset$ be any set; there is a special binary relation ρ^{0} called equality, and defined as $\rho^{0}=\{(x, x) \mid x \in X\}$. Moreover, let $\rho \subseteq X \times X$ be any binary relation. We inductively define $\rho^{i+1}=\rho^{i} \rho$ for each $i \in \mathbb{N}$.

Definition 4

Let $X \neq \emptyset$ be any set, and ρ be any binary relation over X. The reflexive-transitive closure of ρ is the binary relation $\rho^{*}=\bigcup_{i \in \mathbb{N}} \rho^{i}$.

Relations IV

Now, let $X \neq \emptyset$ be any set; there is a special binary relation ρ^{0} called equality, and defined as $\rho^{0}=\{(x, x) \mid x \in X\}$. Moreover, let $\rho \subseteq X \times X$ be any binary relation. We inductively define $\rho^{i+1}=\rho^{i} \rho$ for each $i \in \mathbb{N}$.

Definition 4

Let $X \neq \emptyset$ be any set, and ρ be any binary relation over X. The reflexive-transitive closure of ρ is the binary relation $\rho^{*}=\bigcup_{i \in \mathbb{N}} \rho^{i}$.

Next, we introduce a formalism to deal with strings and sets of strings.

Alphabets

By Σ we denote a finite non-empty set called alphabet. The elements of Σ are assumed to be indivisible symbols and referred to as letters or symbols.

> In compiling, we may also have alphabets containing for example begin and end. But the letters begin and end are also assumed to be indivisible.

Alphabets

By Σ we denote a finite non-empty set called alphabet. The elements of Σ are assumed to be indivisible symbols and referred to as letters or symbols.
Examples:
$\Sigma=\{0,1\}$ is an alphabet containing the letters 0 and 1 , and $\Sigma=\{a, b, c\}$ is an alphabet containing the letters a, b, and c.

In compiling, we may also have alphabets containing for
example begin and end. But the letters begin and end are also assumed to be indivisible.

Alphabets

By Σ we denote a finite non-empty set called alphabet. The elements of Σ are assumed to be indivisible symbols and referred to as letters or symbols.

Examples:
$\Sigma=\{0,1\}$ is an alphabet containing the letters 0 and 1 , and $\Sigma=\{a, b, c\}$ is an alphabet containing the letters a, b, and c.

In compiling, we may also have alphabets containing for example begin and end. But the letters begin and end are also assumed to be indivisible.

Strings

Definition 5

A string over an alphabet Σ is a finite length sequence of letters from Σ. A typical string is written as $s=a_{1} a_{2} \cdots a_{k}$, where $a_{i} \in \Sigma$ for $i=1, \ldots, k$.

Strings

Definition 5

A string over an alphabet Σ is a finite length sequence of letters from Σ. A typical string is written as $s=a_{1} a_{2} \cdots a_{k}$, where $a_{i} \in \Sigma$ for $i=1, \ldots, k$.

Note that we also allow $k=0$ resulting in the empty string which we denote by λ. We call k the length of s and denote it by $|s|$, so $|\lambda|=0$. By Σ^{*} we denote the set of all strings over Σ, and we set $\Sigma^{+}=\Sigma^{*} \backslash\{\lambda\}$.

Concatenation

Let $s, w \in \Sigma^{*}$; we define a binary operation called concatenation (or word product). The concatenation of s and w is the string $s w$.

Concatenation

Let $s, w \in \Sigma^{*}$; we define a binary operation called concatenation (or word product). The concatenation of s and w is the string $s w$.

Example: Let $\Sigma=\{0,1\}, s=000111$ and $w=0011$; then $s w=0001110011$.

Properties of Concatenation

Proposition 1

Let Σ be any alphabet.
(1) Concatenation is associative, i.e., for all $x, y, z \in \Sigma^{*}$, $x(y z)=(x y) z$.
(2) The empty string λ is a two-sided identity for Σ^{*}, i.e., for all $x \in \Sigma^{*}$,

$$
x \lambda=\lambda x=x
$$

(3) Σ^{*} is free of nontrivial identities, i.e., for all $x, y, z \in \Sigma^{*}$,
i) $z x=z y$ implies $x=y$ and,
ii) $x z=y z$ implies $x=y$.
(4) For all $x, y \in \Sigma^{*},|x y|=|x|+|y|$.

Extension to Sets of Strings

Let X, Y be sets of strings. Then the product of X and Y is defined as

$$
X Y=\{x y \mid x \in X \text { and } y \in Y\} .
$$

Let $X \subseteq \Sigma^{*}$; define $X^{0}=\{\lambda\}$ and for all $i \geqslant 0$ set $X^{i+1}=X^{i} X$. The Kleene closure of X is defined as $X^{*}=\bigcup_{i \in \mathbb{N}} X^{i}$, and the semigroup closure of X is $X^{+}=\bigcup_{i \in \mathbb{N}^{+}} X^{i}$.
Finally, we define the transpose of a string and of sets of strings.

Extension to Sets of Strings

Let X, Y be sets of strings. Then the product of X and Y is defined as

$$
X Y=\{x y \mid x \in X \text { and } y \in Y\} .
$$

Let $X \subseteq \Sigma^{*}$; define $X^{0}=\{\lambda\}$ and for all $i \geqslant 0$ set $X^{i+1}=X^{i} X$. The Kleene closure of X is defined as $X^{*}=\bigcup_{i \in \mathbb{N}} X^{i}$, and the semigroup closure of X is $X^{+}=\bigcup_{i \in \mathbb{N}^{+}} X^{i}$.
Finally, we define the transpose of a string and of sets of strings.

Definition 6

Let Σ be any alphabet. The transpose operator is defined on strings in Σ^{*} and on sets $X \subseteq \Sigma^{*}$ of strings as follows:

$$
\begin{aligned}
\lambda^{\top} & =\lambda, \quad \text { and } \\
(x a)^{\top} & =a\left(x^{\top}\right) \text { for all } x \in \Sigma^{*} \text { and all } a \in \Sigma \\
X^{\top} & =\left\{x^{\top} \mid x \in X\right\} .
\end{aligned}
$$

Languages I

Definition 7

Let Σ be any alphabet. Every subset $\mathrm{L} \subseteq \Sigma^{*}$ is called language.

Languages I

Definition 7

Let Σ be any alphabet. Every subset $\mathrm{L} \subseteq \Sigma^{*}$ is called language.
Note that the empty set as well as $L=\{\lambda\}$ are also languages.

Languages I

Definition 7

Let Σ be any alphabet. Every subset $\mathrm{L} \subseteq \Sigma^{*}$ is called language.
Note that the empty set as well as $L=\{\lambda\}$ are also languages.
Next, we ask how many languages there are. Let m be the cardinality of Σ. There is precisely one string of length 0 , i.e., λ, there are m strings of length 1 , i.e., a for all $a \in \Sigma$, there are m^{2} many strings of length 2 , and in general there are m^{n} many strings of length n. Thus, the cardinality of Σ^{*} is countably infinite.

Languages II

By Cantor's theorem we know that $\operatorname{card}(M)<\operatorname{card}(\wp(M))$. So, we can conclude that there are uncountably many languages (as much as there are real numbers).
Since the generation and recognition of languages should be done algorithmically, we immediately see that only countably many languages can be generated and recognized by an algorithm.

Palindromes I

A palindrome is a string that reads the same from left to right and from right to left, e.g.,

AKASAKA

Palindromes I

A palindrome is a string that reads the same from left to right and from right to left，e．g．，
AKASAKA
トビコミコビト
にわとりとことりとわに
テングノハハノグンテ

Palindromes I

A palindrome is a string that reads the same from left to right and from right to left，e．g．，

AKASAKA
トビコミコビト
にわとりとことりとわに
テングノハハノグンテ
Now we ask how can we describe the language of all palindromes over the alphabet $\{a, b\}$（just to keep it simple）．

Palindromes II

So let us try it. Of course λ, a, and b are palindromes. Every palindrome must begin and end with the same letter, and if we remove the first and last letter of a palindrome, we still get a palindrome. This observation suggests the following basis and induction for defining $L_{p a l}$:

Palindromes II

So let us try it. Of course λ, a, and b are palindromes. Every palindrome must begin and end with the same letter, and if we remove the first and last letter of a palindrome, we still get a palindrome. This observation suggests the following basis and induction for defining $L_{p a l}$:

Induction Basis: λ, a, and b are palindromes.

Palindromes II

So let us try it. Of course λ, a, and b are palindromes. Every palindrome must begin and end with the same letter, and if we remove the first and last letter of a palindrome, we still get a palindrome. This observation suggests the following basis and induction for defining $L_{p a l}$:

Induction Basis: λ, a, and b are palindromes.
Induction Step: If $w \in\{a, b\}^{*}$ is a palindrome, then $a w a$ and $b w b$ are also palindromes. Furthermore, no string $w \in\{a, b\}^{*}$ is a palindrome, unless it follows from this basis and induction step.

Palindromes II

So let us try it. Of course λ, a, and b are palindromes. Every palindrome must begin and end with the same letter, and if we remove the first and last letter of a palindrome, we still get a palindrome. This observation suggests the following basis and induction for defining $L_{\text {pal }}$:

Induction Basis: λ, a, and b are palindromes.
Induction Step: If $w \in\{a, b\}^{*}$ is a palindrome, then $a w a$ and $\mathrm{b} w \mathrm{~b}$ are also palindromes. Furthermore, no string $w \in\{\mathrm{a}, \mathrm{b}\}^{*}$ is a palindrome, unless it follows from this basis and induction step.

But stop, we could have also used the transpose operator T to define the language of all palindromes, i.e., $\tilde{\mathrm{L}}_{\text {pal }}=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid w=w^{\mathrm{\top}}\right\}$.

Palindromes III

We used a different notation in the latter definition, since we still do not know whether or not $\mathrm{L}_{p a l}=\tilde{\mathrm{L}}_{\text {pal }}$. For getting this equality, we need a proof.

Palindromes III

We used a different notation in the latter definition, since we still do not know whether or not $\mathrm{L}_{p a l}=\tilde{\mathrm{L}}_{\text {pal }}$. For getting this equality, we need a proof.

Theorem 2
$\mathrm{L}_{\text {pal }}=\tilde{\mathrm{L}}_{\text {pal }}$.

Palindromes III

We used a different notation in the latter definition, since we still do not know whether or not $\mathrm{L}_{p a l}=\tilde{\mathrm{L}}_{\text {pal }}$. For getting this equality, we need a proof.

Theorem 2

$\mathrm{L}_{\text {pal }}=\tilde{\mathrm{L}}_{\text {pal }}$.
Proof. Equality of sets X, Y is often proved by showing $\mathrm{X} \subseteq \mathrm{Y}$ and $\mathrm{Y} \subseteq \mathrm{X}$. So, let us first show that $\mathrm{L}_{p a l} \subseteq \tilde{\mathrm{~L}}_{\text {pal }}$.

Palindromes IV

We start with the strings defined by the basis, i.e., λ, a, and b. By the definition of the transpose operator, we have $\lambda^{\top}=\lambda$. Thus, $\lambda \in \tilde{L}_{\text {pal }}$. Next, we deal with a. In order to apply the definition of the transpose operator, we use Property (2) of Proposition 1, i.e., $a=\lambda a$. Then, we have

$$
a^{\top}=(\lambda a)^{\top}=a \lambda^{\top}=a \lambda=a
$$

The proof for b is analogous and thus omitted.

Palindromes IV

We start with the strings defined by the basis, i.e., λ, a, and b. By the definition of the transpose operator, we have $\lambda^{\top}=\lambda$. Thus, $\lambda \in \tilde{\mathrm{L}}_{\text {pal }}$. Next, we deal with a. In order to apply the definition of the transpose operator, we use Property (2) of Proposition 1, i.e., $a=\lambda a$. Then, we have

$$
a^{\top}=(\lambda a)^{\top}=a \lambda^{\top}=a \lambda=a
$$

The proof for b is analogous and thus omitted.
Now, the induction hypothesis is that for all strings w with $|w| \leqslant n$, we have $w \in \mathrm{~L}_{\text {pal }}$ implies $w \in \tilde{\mathrm{~L}}_{\text {pal }}$. In accordance with our definition of $L_{p a l}$, the induction step is from n to $n+2$. Let $w \in \mathrm{~L}_{\text {pal }}$ be any string with $|w|=\mathfrak{n}+2$. Thus, $w=$ ava or $w=\mathrm{b} v \mathrm{~b}$, where $v \in\{\mathrm{a}, \mathrm{b}\}^{*}$ such that $|v|=\mathrm{n}$. Then v is a palindrome in the sense of the definition of $\mathrm{L}_{\text {pal }}$, and by the induction hypothesis, we know that $v=v^{\top}$.

Palindromes V

The following claims provide a special property of the transpose operator:
Claim 1. Let Σ be any alphabet, $n \in \mathbb{N}^{+}$, and $w=w_{1} \ldots w_{n} \in \Sigma^{*}$, where $w_{i} \in \Sigma$ for all $i \in\{1, \ldots, n\}$. Then $w^{\top}=w_{n} \ldots w_{1}$.

Palindromes V

The following claims provide a special property of the transpose operator:
Claim 1. Let Σ be any alphabet, $n \in \mathbb{N}^{+}$, and $w=w_{1} \ldots w_{n} \in \Sigma^{*}$, where $w_{i} \in \Sigma$ for all $i \in\{1, \ldots, n\}$. Then $w^{\top}=w_{n} \ldots w_{1}$.
Claim 2. For all $\mathrm{n} \in \mathbb{N}$, if $\mathrm{p}=\mathrm{p}_{1} \times \mathrm{p}_{\mathrm{n}+2}$ then $\mathrm{p}^{\top}=\mathrm{p}_{\mathrm{n}+2} \mathrm{x}^{\top} \mathrm{p}_{1}$ for all $p_{1}, p_{n+2} \in\{a, b\}$ and $x \in\{a, b\}^{*}$, where $|x|=n$.

Palindromes V

The following claims provide a special property of the transpose operator:
Claim 1. Let Σ be any alphabet, $n \in \mathbb{N}^{+}$, and $w=w_{1} \ldots w_{n} \in \Sigma^{*}$, where $w_{i} \in \Sigma$ for all $i \in\{1, \ldots, n\}$. Then $w^{\top}=w_{n} \ldots w_{1}$.
Claim 2. For all $n \in \mathbb{N}$, if $p=p_{1} x p_{n+2}$ then $p^{\top}=p_{n+2} x^{\top} p_{1}$ for all $p_{1}, p_{n+2} \in\{a, b\}$ and $x \in\{a, b\}^{*}$, where $|x|=n$.
Note that Claim 1 is needed to show Claim 2. The proofs are left as exercise.
By using Claim 2 just established we get

$$
w^{\top}=(a v a)^{\top}=a v^{\top} a \underbrace{=}_{\text {by IH }} a v a=w
$$

Again, the case $w=\mathrm{b} v \mathrm{~b}$ can be handled analogously and is thus omitted.

Palindromes VI

Finally, we have to show $\tilde{\mathrm{L}}_{p a l} \subseteq \mathrm{~L}_{p a l}$.
For the induction basis, we know that $\lambda=\lambda^{\top}$, i.e., $\lambda \in \tilde{L}_{p a l}$ and by the induction basis of the definition of $\mathrm{L}_{\text {pal }}$, we also know that $\lambda \in \mathrm{L}_{\text {pal }}$.
Thus, we have the induction hypothesis that for all strings w of length n : if $w=w^{\top}$ then $w \in \mathrm{~L}_{\text {pal }}$.

Palindromes VI

Finally, we have to show $\tilde{\mathrm{L}}_{p a l} \subseteq \mathrm{~L}_{p a l}$.
For the induction basis, we know that $\lambda=\lambda^{\top}$, i.e., $\lambda \in \tilde{L}_{p a l}$ and by the induction basis of the definition of $\mathrm{L}_{\text {pal }}$, we also know that $\lambda \in \mathrm{L}_{\text {pal }}$.
Thus, we have the induction hypothesis that for all strings w of length n : if $w=w^{\top}$ then $w \in \mathrm{~L}_{\text {pal }}$.
The induction step is from n to $n+1$. That is, we have to show if $|w|=\mathfrak{n}+1$ and $w=w^{\top}$ then $w \in \mathrm{~L}_{\text {pal }}$.

Palindromes VI

Finally, we have to show $\tilde{\mathrm{L}}_{p a l} \subseteq \mathrm{~L}_{p a l}$.
For the induction basis, we know that $\lambda=\lambda^{\top}$, i.e., $\lambda \in \tilde{L}_{p a l}$ and by the induction basis of the definition of $\mathrm{L}_{\text {pal }}$, we also know that $\lambda \in \mathrm{L}_{\text {pal }}$.
Thus, we have the induction hypothesis that for all strings w of length n : if $w=w^{\top}$ then $w \in \mathrm{~L}_{\text {pal }}$.
The induction step is from n to $n+1$. That is, we have to show if $|w|=\mathfrak{n}+1$ and $w=w^{\top}$ then $w \in \mathrm{~L}_{\text {pal }}$.
Since the case $n=1$ directly results in a and b and since $a, b \in L_{\text {pal }}$, we assume $n>1$ in the following.

Palindromes VII

So, let $w \in\{\mathrm{a}, \mathrm{b}\}^{*}$ be any string with $|w|=\mathrm{n}+1$ and $w=w^{\top}$, say $w=a_{1} \ldots a_{n+1}$, where $a_{i} \in \Sigma$. Thus, by assumption we have

$$
a_{1} \ldots a_{n+1}=a_{n+1} \ldots a_{1}
$$

Palindromes VII

So, let $w \in\{\mathrm{a}, \mathrm{b}\}^{*}$ be any string with $|w|=\mathrm{n}+1$ and $w=w^{\top}$, say $w=a_{1} \ldots a_{n+1}$, where $a_{i} \in \Sigma$. Thus, by assumption we have

$$
a_{1} \ldots a_{n+1}=a_{n+1} \ldots a_{1} .
$$

Now, applying Property (3) of Proposition 1 directly yields $a_{1}=a_{n+1}$. We have to distinguish the cases $a_{1}=a$ and $a_{1}=b$. Since both cases can be handled analogously, we consider only the case $a_{1}=a$ here. Thus, we can conclude $w=a v a$, where $v \in\{a, b\}^{*}$ and $|v|=n-1$. Next, applying the property of the transpose operator established above, we obtain $v=v^{\top}$, i.e., $v \in \mathrm{~L}_{\text {pal }}$. Finally, the "induction" part of the definition of $\mathrm{L}_{p a l}$ directly implies $w \in \mathrm{~L}_{\text {pal }}$.

Thank you!

