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Motivation I

This course is about the study of a fascinating and important
subject:

the theory of computation.

It comprises the fundamental mathematical properties of
computer hardware, software, and certain applications thereof.
We are going to determine what can and cannot be computed.
If it can, we also seek to figure out on which type of
computational model, how quickly, and with how much
memory.
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Motivation II

Theory of computation has many connections with engineering
practice, and, as a true science, it also comprises philosophical
aspects.

Since formal languages are of fundamental importance to
computer science, we shall start our course by having a closer
look at them.

First, we clarify the subject of formal language theory.
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Motivation III

Generally speaking, formal language theory concerns itself
with sets of strings called languages and different mechanisms
for generating and recognizing them. Mechanisms for
generating sets of strings are usually referred to as grammars
and mechanisms for recognizing sets of strings are called
acceptors or automata.

A mathematical theory for generating and accepting languages
emerged in the later 1950’s and has been extensively developed
since then. Nowadays there are elaborated theories for both
computer languages and natural languages.
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Motivation IV

We have to restrict ourselves to the most fundamental parts of
formal language theory, i.e., to the regular languages, the
context-free languages, and the recursively enumerable
languages. This will suffice to obtain a basic understanding of
what formal language theory is all about and what are the
fundamental proof techniques.

For having a common ground, we shortly recall the
mathematical background needed.
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Background I

For any set M, by card(M) and ℘(M) we denote the cardinality
of M and the power set of M, respectively.

Let X, Y be any two sets; then we use X ∪ Y, X ∩ Y and X \ Y to
denote the union, intersection and difference of X and Y,
respectively.

Furthermore, we denote the empty set by ∅.

ByN = {0, 1, 2, . . .} we denote the set of all natural numbers. We
setN+ =N \ {0}.
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Background II

If we have countably many sets X0, X1, . . . , then we use⋃
i∈N Xi to denote the union of all Xi, i.e.,⋃

i∈N
Xi = X0 ∪ X1 ∪ · · · ∪ Xn ∪ · · · . (1)

Analogously, we write
⋂

i∈N Xi to denote the intersection of
all Xi, i.e., ⋂

i∈N
Xi = X0 ∩ X1 ∩ · · · ∩ Xn ∩ · · · . (2)
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Background III

It is useful to have the following notions: Let X, Y be any sets
and let f : X → Y be a function. For any y ∈ Y we define

f−1(y) = {x | x ∈ X, f(x) = y} . (3)

We refer to f−1(y) as to the set of pre-images of y.

Also, we need the following definition:

Definition 1
Let X, Y be any sets and let f : X → Y be a function. The
function f is said to be
(1) injective if f(x) = f(y) implies x = y for all x, y ∈ X;
(2) surjective if for every y ∈ Y there is an x ∈ X such that

f(x) = y;
(3) bijective if f is injective and surjective.
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Background IV

Next, let X and Y be any sets. We say that X and Y have the same
cardinality if there exists a bijection f : X → Y. If a set X has the
same cardinality as the setN of natural numbers, then we say
that X is countably infinite.

A set X is at most countably infinite if it is finite or countably
infinite. If X , ∅ and X is at most countably infinite, then there
exists a surjection f : N→ X, i.e.,

X = {f(0), f(1), f(2), . . .} .

So, intuitively, we can enumerate all the elements of X (where
repetitions are allowed).
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Background V

The following theorem is of fundamental importance:

Theorem 1 (Cantor’s Theorem)

For every countably infinite set X the set ℘(X) is not countably
infinite.

Since X is countably infinite, there is a bijection f : N→ X.
Suppose that ℘(X) is countably infinite. Then there must exist a
bijection g : N→ ℘(X).
Now, we define a diagonal set D as follows:

D = {f(j) | j ∈N, f(j) < g(j)} .

By construction, D ⊆ X and hence D ∈ ℘(X). Consequently,
there must be a number d ∈N such that D = g(d).
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Background VI

Now, we consider f(d). By the definition of f we know that
f(d) ∈ X. Since D ⊆ X, there are two possible cases, either
f(d) ∈ D or f(d) < D.

Case 1. f(d) ∈ D.

By the definition of D and d we directly get

f(d) ∈ D ⇐⇒ f(d) < g(d) ⇐⇒ f(d) < D ,

since g(d) = D. This contradiction shows that Case 1 cannot
happen.
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Background VII

Case 2. f(d) < D.

Again, by construction, f(d) < D holds if and only if f(d) ∈ g(d)

if and only if f(d) ∈ D, again a contradiction.

Thus, Case 2 cannot happen either, and hence the supposition
that ℘(X) is countably infinite, cannot hold.
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Relations I

Let X, Y be any non-empty sets. We set
X× Y = {(x, y) | x ∈ X and y ∈ Y}.
Every ρ ⊆ X× Y is said to be a binary relation.

We sometimes use the notation xρy instead of writing
(x, y) ∈ ρ. Of special importance is the case where X = Y. If
ρ ⊆ X× X then we also say that ρ is a binary relation over X.
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Relations II

Definition 2
Let X , ∅ be any set, and let ρ be any binary relation over X.
The relation ρ is said to be
(1) reflexive if (x, x) ∈ ρ for all x ∈ X;
(2) symmetric if (x, y) ∈ ρ implies (y, x) ∈ ρ for all x, y ∈ X;
(3) transitive if (x, y) ∈ ρ and (y, z) ∈ ρ implies (x, z) ∈ ρ for

all x, y, z ∈ X;
(4) antisymmetric if (x, y) ∈ ρ and (y, x) ∈ ρ implies x = y for

all x, y, z ∈ X.

Any binary relation satisfying (1) through (3) is called
equivalence relation. For any x ∈ X, we write [x] to denote the
equivalence class generated by x, i.e.,
[x] = {y | y ∈ X and (x, y) ∈ ρ} .
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Relations III

Any relation satisfying (1), (3) and (4) is called partial order. In
this case, we also say that (X, ρ) is a partially ordered set.

Definition 3
Let ρ ⊆ X× Y and τ ⊆ Y × Z be binary relations. The
composition of ρ and τ is the binary relation ζ ⊆ X× Z defined
as

ζ = ρτ

= {(x, z) | there is a y ∈ Y such that (x, y) ∈ ρ, (y, z) ∈ τ} .
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Relations IV

Now, let X , ∅ be any set; there is a special binary relation ρ0

called equality, and defined as ρ0 = {(x, x) | x ∈ X}.
Moreover, let ρ ⊆ X× X be any binary relation. We inductively
define ρi+1 = ρiρ for each i ∈N.

Definition 4

Let X , ∅ be any set, and ρ be any binary relation over X. The
reflexive-transitive closure of ρ is the binary relation
ρ∗ =

⋃
i∈N ρi.

Next, we introduce a formalism to deal with strings and sets of
strings.
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Alphabets

By Σ we denote a finite non-empty set called alphabet. The
elements of Σ are assumed to be indivisible symbols and referred
to as letters or symbols.

Examples:
Σ = {0, 1} is an alphabet containing the letters 0 and 1, and
Σ = {a, b, c} is an alphabet containing the letters a, b, and c.

In compiling, we may also have alphabets containing for
example begin and end. But the letters begin and end are also
assumed to be indivisible.
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Strings

Definition 5
A string over an alphabet Σ is a finite length sequence of letters
from Σ. A typical string is written as s = a1a2 · · ·ak, where
ai ∈ Σ for i = 1, . . . , k.

Note that we also allow k = 0 resulting in the empty string
which we denote by λ. We call k the length of s and denote it
by |s|, so |λ| = 0. By Σ∗ we denote the set of all strings over Σ,
and we set Σ+ = Σ∗ \ {λ}.
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Concatenation

Let s, w ∈ Σ∗; we define a binary operation called concatenation
(or word product). The concatenation of s and w is the string sw.

Example: Let Σ = {0, 1}, s = 000111 and w = 0011;
then sw = 0001110011.
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Properties of Concatenation

Proposition 1

Let Σ be any alphabet.
(1) Concatenation is associative, i.e., for all x, y, z ∈ Σ∗,

x(yz) = (xy)z .
(2) The empty string λ is a two-sided identity for Σ∗, i.e., for all

x ∈ Σ∗,
xλ = λx = x .

(3) Σ∗ is free of nontrivial identities, i.e., for all x, y, z ∈ Σ∗,
i) zx = zy implies x = y and,

ii) xz = yz implies x = y .

(4) For all x, y ∈ Σ∗, |xy| = |x| + |y|.
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Extension to Sets of Strings

Let X, Y be sets of strings. Then the product of X and Y is
defined as

XY = {xy | x ∈ X and y ∈ Y}.

Let X ⊆ Σ∗; define X0 = {λ} and for all i > 0 set Xi+1 = XiX. The
Kleene closure of X is defined as X∗ =

⋃
i∈N Xi, and the

semigroup closure of X is X+ =
⋃

i∈N+ Xi.
Finally, we define the transpose of a string and of sets of strings.

Definition 6
Let Σ be any alphabet. The transpose operator is defined on
strings in Σ∗ and on sets X ⊆ Σ∗ of strings as follows:

λT = λ , and
(xa)T = a(xT ) for all x ∈ Σ∗ and all a ∈ Σ

XT = {xT | x ∈ X} .
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Languages I

Definition 7
Let Σ be any alphabet. Every subset L ⊆ Σ∗ is called language.

Note that the empty set as well as L = {λ} are also languages.

Next, we ask how many languages there are. Let m be the
cardinality of Σ. There is precisely one string of length 0, i.e., λ,
there are m strings of length 1, i.e., a for all a ∈ Σ, there are m2

many strings of length 2, and in general there are mn many
strings of length n. Thus, the cardinality of Σ∗ is countably
infinite.
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Languages II

By Cantor’s theorem we know that card(M) < card(℘(M)). So,
we can conclude that there are uncountably many languages
(as much as there are real numbers).
Since the generation and recognition of languages should be
done algorithmically, we immediately see that only countably
many languages can be generated and recognized by an
algorithm.
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Palindromes I

A palindrome is a string that reads the same from left to right
and from right to left, e.g.,

AKASAKA

ÈÓ³ß³ÓÈ

k�h�hSh�h�k

Æó°ÎÏÏÎ°óÆ

Now we ask how can we describe the language of all
palindromes over the alphabet {a, b} (just to keep it simple).

Theory of Computation c©Thomas Zeugmann



Motivation Background Relations Languages Palindromes End

Palindromes I

A palindrome is a string that reads the same from left to right
and from right to left, e.g.,

AKASAKA

ÈÓ³ß³ÓÈ

k�h�hSh�h�k

Æó°ÎÏÏÎ°óÆ

Now we ask how can we describe the language of all
palindromes over the alphabet {a, b} (just to keep it simple).

Theory of Computation c©Thomas Zeugmann



Motivation Background Relations Languages Palindromes End

Palindromes I

A palindrome is a string that reads the same from left to right
and from right to left, e.g.,

AKASAKA

ÈÓ³ß³ÓÈ

k�h�hSh�h�k

Æó°ÎÏÏÎ°óÆ

Now we ask how can we describe the language of all
palindromes over the alphabet {a, b} (just to keep it simple).

Theory of Computation c©Thomas Zeugmann



Motivation Background Relations Languages Palindromes End

Palindromes II

So let us try it. Of course λ, a, and b are palindromes. Every
palindrome must begin and end with the same letter, and if we
remove the first and last letter of a palindrome, we still get a
palindrome. This observation suggests the following basis and
induction for defining Lpal:

Induction Basis: λ, a, and b are palindromes.

Induction Step: If w ∈ {a, b}∗ is a palindrome, then awa and
bwb are also palindromes. Furthermore, no string w ∈ {a, b}∗ is
a palindrome, unless it follows from this basis and induction
step.

But stop, we could have also used the transpose operator T to
define the language of all palindromes, i.e.,
L̃pal = {w ∈ {a, b}∗ | w = wT } .
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Palindromes III

We used a different notation in the latter definition, since we
still do not know whether or not Lpal = L̃pal. For getting this
equality, we need a proof.

Theorem 2

Lpal = L̃pal.

Proof. Equality of sets X, Y is often proved by showing X ⊆ Y

and Y ⊆ X. So, let us first show that Lpal ⊆ L̃pal.
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Palindromes IV

We start with the strings defined by the basis, i.e., λ, a, and b.
By the definition of the transpose operator, we have λT = λ.
Thus, λ ∈ L̃pal. Next, we deal with a. In order to apply the
definition of the transpose operator, we use Property (2) of
Proposition 1, i.e., a = λa. Then, we have

aT = (λa)T = aλT = aλ = a .

The proof for b is analogous and thus omitted.

Now, the induction hypothesis is that for all strings w with
|w| 6 n, we have w ∈ Lpal implies w ∈ L̃pal. In accordance with
our definition of Lpal, the induction step is from n to n + 2. Let
w ∈ Lpal be any string with |w| = n + 2. Thus, w = ava or
w = bvb, where v ∈ {a, b}∗ such that |v| = n. Then v is a
palindrome in the sense of the definition of Lpal, and by the
induction hypothesis, we know that v = vT .
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Palindromes V

The following claims provide a special property of the
transpose operator:
Claim 1. Let Σ be any alphabet, n ∈N+, and w = w1 . . . wn ∈ Σ∗,
where wi ∈ Σ for all i ∈ {1, . . . , n}. Then wT = wn . . . w1.

Claim 2. For all n ∈N, if p = p1xpn+2 then pT = pn+2x
Tp1 for all

p1, pn+2 ∈ {a, b} and x ∈ {a, b}∗, where |x| = n.

Note that Claim 1 is needed to show Claim 2. The proofs are
left as exercise.
By using Claim 2 just established we get

wT = (ava)T = avTa =︸︷︷︸
by IH

ava = w .

Again, the case w = bvb can be handled analogously and is
thus omitted.
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Palindromes VI

Finally, we have to show L̃pal ⊆ Lpal.
For the induction basis, we know that λ = λT , i.e., λ ∈ L̃pal and
by the induction basis of the definition of Lpal, we also know
that λ ∈ Lpal.
Thus, we have the induction hypothesis that for all strings w of
length n: if w = wT then w ∈ Lpal.

The induction step is from n to n + 1. That is, we have to show
if |w| = n + 1 and w = wT then w ∈ Lpal.

Since the case n = 1 directly results in a and b and since
a, b ∈ Lpal, we assume n > 1 in the following.
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Palindromes VII

So, let w ∈ {a, b}∗ be any string with |w| = n + 1 and w = wT ,
say w = a1 . . . an+1, where ai ∈ Σ. Thus, by assumption we
have

a1 . . . an+1 = an+1 . . . a1 .

Now, applying Property (3) of Proposition 1 directly yields
a1 = an+1. We have to distinguish the cases a1 = a and a1 = b.
Since both cases can be handled analogously, we consider only
the case a1 = a here. Thus, we can conclude w = ava, where
v ∈ {a, b}∗ and |v| = n − 1. Next, applying the property of the
transpose operator established above, we obtain v = vT , i.e.,
v ∈ Lpal. Finally, the “induction” part of the definition of Lpal

directly implies w ∈ Lpal.
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Thank you!
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