Theory of Computation

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/~thomas/ToC/

Lecture 2: Introducing Formal Grammars

Grammars

We have to formalize what is meant by generating a language. If we look at natural languages, then we have the following situation: The set Σ consists of all words in the language. Although large, Σ is finite. What is usually done in speaking or writing natural languages is forming sentences. A typical sentence starts with a noun phrase followed by a verb phrase. Thus, we may describe this generation by

$$
<\text { sentence }>\rightarrow<\text { noun phrase }><\text { verb phrase }>
$$

Grammars

We have to formalize what is meant by generating a language. If we look at natural languages, then we have the following situation: The set Σ consists of all words in the language. Although large, Σ is finite. What is usually done in speaking or writing natural languages is forming sentences. A typical sentence starts with a noun phrase followed by a verb phrase. Thus, we may describe this generation by

$$
<\text { sentence }>\rightarrow<\text { noun phrase }><\text { verb phrase }>
$$

Clearly, more complicated sentences are generated by more complicated rules. If we look in a usual grammar book, e.g., for the English language, then we see that there are, however, only finitely many rules for generating sentences.

Formal Grammars

This suggest the following general definition of a grammar:
Definition 1
$\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ is said to be a grammar if
(1) T and N are alphabets with $\mathrm{T} \cap \mathrm{N}=\emptyset$;
(2) $\sigma \in \mathrm{N}$;
(3) $\mathrm{P} \subseteq\left((T \cup N)^{+} \backslash \mathrm{T}^{*}\right) \times(\mathrm{T} \cup N)^{*}$ is finite.

Formal Grammars

This suggest the following general definition of a grammar:

Definition 1

$\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ is said to be a grammar if
(1) T and N are alphabets with $\mathrm{T} \cap \mathrm{N}=\emptyset$;
(2) $\sigma \in N$;
(3) $\mathrm{P} \subseteq\left((T \cup N)^{+} \backslash \mathrm{T}^{*}\right) \times(\mathrm{T} \cup \mathrm{N})^{*}$ is finite.

We call T the terminal alphabet, N the nonterminal alphabet, σ the start symbol and P the set of productions (or rules).

Formal Grammars

This suggest the following general definition of a grammar:

Definition 1

$\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ is said to be a grammar if
(1) T and N are alphabets with $\mathrm{T} \cap \mathrm{N}=\emptyset$;
(2) $\sigma \in N$;
(3) $\mathrm{P} \subseteq\left((T \cup N)^{+} \backslash \mathrm{T}^{*}\right) \times(\mathrm{T} \cup \mathrm{N})^{*}$ is finite.

We call T the terminal alphabet, N the nonterminal alphabet, σ the start symbol and P the set of productions (or rules).
Usually, productions are written in the form $\alpha \rightarrow \beta$, where $\alpha \in(T \cup N)^{+} \backslash T^{*}$ and $\beta \in(T \cup N)^{*}$.

Generating a Language by a Grammar I

Next, we have to explain how to generate a language using a grammar. This is done by the following definition:

Definition 2

Let $\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ be a grammar. Let $\alpha^{\prime}, \beta^{\prime} \in(\mathrm{T} \cup \mathrm{N})^{*} . \alpha^{\prime}$ is said to directly generate β^{\prime}, written $\alpha^{\prime} \Rightarrow \beta^{\prime}$, if there exist $\alpha_{1}, \alpha_{2}, \alpha, \beta \in(\mathrm{~T} \cup N)^{*}$ such that $\alpha^{\prime}=\alpha_{1} \alpha \alpha_{2}, \beta^{\prime}=\alpha_{1} \beta \alpha_{2}$ and $\alpha \rightarrow \beta$ is in P. We write $\stackrel{*}{\Rightarrow}$ for the reflexive transitive closure of \Rightarrow.

Illustration

Example 1

Let $\mathcal{G}=[\{a, b\},\{\sigma\}, \sigma, P]$, where $\mathrm{P}=\{\sigma \rightarrow \lambda, \sigma \rightarrow \mathrm{a}, \sigma \rightarrow \mathrm{b}, \sigma \rightarrow \mathrm{a} \sigma \mathrm{a}, \sigma \rightarrow \mathrm{b} \sigma \mathrm{b}\}$.

Illustration

Example 1

Let $\mathcal{G}=[\{a, b\},\{\sigma\}, \sigma, P]$, where
$\mathrm{P}=\{\sigma \rightarrow \lambda, \sigma \rightarrow \mathrm{a}, \sigma \rightarrow \mathrm{b}, \sigma \rightarrow \mathrm{a} \sigma \mathrm{a}, \sigma \rightarrow \mathrm{b} \sigma \mathrm{b}\}$.
Then we can directly generate a from σ, since $\sigma \rightarrow a$ is in P.
Furthermore, we can generate the string abba from σ as follows by using the rules $\sigma \rightarrow a \sigma a, \sigma \rightarrow b \sigma b$ and $\sigma \rightarrow \lambda$; i.e., we obtain

$$
\begin{equation*}
\sigma \Rightarrow a \sigma a \Rightarrow a b \sigma b a \Rightarrow a b b a \tag{1}
\end{equation*}
$$

Illustration

Example 1

Let $\mathcal{G}=[\{a, b\},\{\sigma\}, \sigma, P]$, where
$\mathrm{P}=\{\sigma \rightarrow \lambda, \sigma \rightarrow \mathrm{a}, \sigma \rightarrow \mathrm{b}, \sigma \rightarrow \mathrm{a} \sigma \mathrm{a}, \sigma \rightarrow \mathrm{b} \sigma \mathrm{b}\}$.
Then we can directly generate a from σ, since $\sigma \rightarrow a$ is in P.
Furthermore, we can generate the string abba from σ as follows by using the rules $\sigma \rightarrow a \sigma a, \sigma \rightarrow b \sigma b$ and $\sigma \rightarrow \lambda$; i.e., we obtain

$$
\begin{equation*}
\sigma \Rightarrow a \sigma a \Rightarrow a b \sigma b a \Rightarrow a b b a \tag{1}
\end{equation*}
$$

A sequence like Eq. (1) is called a generation or derivation. If a string s can be generated from a nonterminal h then we write $h \stackrel{*}{\Rightarrow} s$.

Generating a Language by a Grammar II

Finally, we can define the language generated by a grammar.

Generating a tanguage by a Grannnar I

Finally, we can define the language generated by a grammar.

Definition 3

Let $\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ be a grammar. The language $\mathrm{L}(\mathcal{G})$ generated by \mathcal{G} is defined as $L(\mathcal{G})=\left\{s \mid s \in \mathrm{~T}^{*}\right.$ and $\left.\sigma \stackrel{*}{\Rightarrow} s\right\}$.

Generating a Language by a Grammar II

Finally, we can define the language generated by a grammar.

Definition 3

Let $\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ be a grammar. The language $\mathrm{L}(\mathcal{G})$ generated by \mathcal{G} is defined as $L(\mathcal{G})=\left\{s \mid s \in \mathrm{~T}^{*}\right.$ and $\left.\sigma \stackrel{*}{\Rightarrow} s\right\}$.

The family of all languages that can be generated by a grammar in the sense of Definition 2 is denoted by \mathcal{L}_{0}. These languages are also called type-0 languages, where 0 should remind us to zero restrictions.

An Example - Palindromes I

Recall that a palindrome is a string that reads the same from left to right and from right to left, e.g.,

AKASAKA

An Example－Palindromes I

Recall that a palindrome is a string that reads the same from left to right and from right to left，e．g．，

AKASAKA
トビコミコビト
にわとりとことりとわに
テングノハハノグンテ

An Example－Palindromes I

Recall that a palindrome is a string that reads the same from left to right and from right to left，e．g．，

AKASAKA
トビコミコビト
にわとりとことりとわに
テングノハハノグンテ
Let us look again at the language of all palindromes over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ ，i．e．， $\mathrm{L}_{\text {pal }}=\left\{w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}, w=w^{\top}\right\}$ ．

An Example－Palindromes I

Recall that a palindrome is a string that reads the same from left to right and from right to left，e．g．，

AKASAKA
トビコミコビト
にわとりとことりとわに
テングノハハノグンテ
Let us look again at the language of all palindromes over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ ，i．e．， $\mathrm{L}_{\text {pal }}=\left\{w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}, w=w^{\top}\right\}$ ．
Consider the grammar from Example 1，i．e．，
$\mathcal{G}=[\{a, b\},\{\sigma\}, \sigma, P]$ ，where
$\mathrm{P}=\{\sigma \rightarrow \lambda, \sigma \rightarrow \mathrm{a}, \sigma \rightarrow \mathrm{b}, \sigma \rightarrow \mathrm{a} \sigma \mathrm{a}, \sigma \rightarrow \mathrm{b} \sigma \mathrm{b}\}$.

An Example - Palindromes II

We have to show that $\mathrm{L}_{\text {pal }}=\mathrm{L}(\mathcal{G})$.

An Example - Palindromes II

We have to show that $\mathrm{L}_{\text {pal }}=\mathrm{L}(\mathcal{G})$.
Claim 1. $\mathrm{L}_{\text {pal }} \subseteq \mathrm{L}(\mathcal{G})$.
The proof is done inductively. For the induction basis, consider $w=\lambda, w=a$ and $w=b$. Since P contains $\sigma \rightarrow \lambda, \sigma \rightarrow a$, and $\sigma \rightarrow \mathrm{b}$, we get $\sigma \stackrel{*}{\Rightarrow} w$ in all three cases.

An Example - Palindromes II

We have to show that $\mathrm{L}_{\text {pal }}=\mathrm{L}(\mathcal{G})$.
Claim 1. $\mathrm{L}_{\text {pal }} \subseteq \mathrm{L}(\mathcal{G})$.
The proof is done inductively. For the induction basis, consider $w=\lambda, w=a$ and $w=b$. Since P contains $\sigma \rightarrow \lambda, \sigma \rightarrow a$, and $\sigma \rightarrow \mathrm{b}$, we get $\sigma \stackrel{*}{\Rightarrow} w$ in all three cases. Induction Step: Now let $|w| \geqslant 2$. Since $w=w^{\top}, w$ must begin and end with the same symbol, i.e., $w=a v a$ or $w=b v b$, where v must be a palindrome, too.
By the induction hypothesis we have $\sigma \stackrel{*}{\Rightarrow} v$, and thus

$$
\begin{array}{rll}
\sigma & \Rightarrow \mathrm{a} \sigma \mathrm{a} \stackrel{*}{\Rightarrow} \mathrm{a} v \mathrm{a} & \text { proving the } w=\mathrm{a} v a \text { case, or } \\
\sigma & \Rightarrow \mathrm{b} \sigma \mathrm{~b} \stackrel{*}{\Rightarrow} \mathrm{~b} v \mathrm{~b} & \text { proving the } w=\mathrm{b} v \mathrm{~b} \text { case. }
\end{array}
$$

This shows Claim 1.

An Example - Palindromes III

Claim 2. $\mathrm{L}(\mathcal{G}) \subseteq \mathrm{L}_{\text {pal }}$.
Induction Basis: If the generation is done in one step, then one of the productions not containing σ on the right hand side must have been used, i.e., $\sigma \rightarrow \lambda, \sigma \rightarrow \mathrm{a}$, or $\sigma \rightarrow \mathrm{b}$. Thus, $\sigma \Rightarrow w$ results in $w=\lambda, w=\mathrm{a}$ or $w=\mathrm{b}$; hence $w \in \mathrm{~L}_{\text {pal }}$.

An Example - Palindromes III

Claim 2. $\mathrm{L}(\mathcal{G}) \subseteq \mathrm{L}_{\text {pal }}$.
Induction Basis: If the generation is done in one step, then one of the productions not containing σ on the right hand side must have been used, i.e., $\sigma \rightarrow \lambda, \sigma \rightarrow \mathrm{a}$, or $\sigma \rightarrow \mathrm{b}$. Thus, $\sigma \Rightarrow w$ results in $w=\lambda, w=\mathrm{a}$ or $w=\mathrm{b}$; hence $w \in \mathrm{~L}_{\text {pal }}$.
Induction Step: Suppose, the generation takes $\mathfrak{n}+1$ steps, $n \geqslant 1$. Thus, we have

$$
\begin{aligned}
& \sigma \Rightarrow \quad a \sigma a \stackrel{*}{\Rightarrow} a v a \quad \text { or } \\
& \sigma \Rightarrow b \sigma b \stackrel{*}{\Rightarrow} b v b
\end{aligned}
$$

Since by the induction hypothesis, we know that $v \in \mathrm{~L}_{\text {pal }}$, we get in both cases $w \in \mathrm{~L}_{\text {pal }}$.

Regular Grammars

Definition 4

A grammar $\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ is said to be regular provided for all $\alpha \rightarrow \beta$ in P we have $\alpha \in N$ and $\beta \in \mathrm{T}^{*} \cup \mathrm{~T}^{*} \mathrm{~N}$.

A language L is said to be regular if there exists a regular grammar \mathcal{G} such that $L=L(\mathcal{G})$. By $\mathcal{R E} \mathcal{G}$ we denote the set of all regular languages.

Regular Grammars

Definition 4

A grammar $\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ is said to be regular provided for all $\alpha \rightarrow \beta$ in P we have $\alpha \in N$ and $\beta \in \mathrm{T}^{*} \cup \mathrm{~T}^{*} \mathrm{~N}$.
A language L is said to be regular if there exists a regular grammar \mathcal{G} such that $L=L(\mathcal{G})$. By $\mathcal{R E \mathcal { G }}$ we denote the set of all regular languages.

Example 2

Let $\mathcal{G}=[\{a, b\},\{\sigma\}, \sigma, P]$ with $P=\{\sigma \rightarrow a b, \sigma \rightarrow a \sigma\}$. \mathcal{G} is regular and $L(\mathcal{G})=\left\{a^{n} b \mid n \geqslant 1\right\}$ is a regular language.

Examples for Regular Languages

Example 3

Let $\mathcal{G}=[\{\mathrm{a}, \mathrm{b}\},\{\sigma\}, \sigma, \mathrm{P}]$ with $\mathrm{P}=\{\sigma \rightarrow \lambda, \sigma \rightarrow a \sigma, \sigma \rightarrow \mathrm{~b} \sigma\}$. Again, \mathcal{G} is regular and $L(\mathcal{G})=\Sigma^{*}$.

Consequently, Σ^{*} is a regular language.

Examples for Regular Languages

Example 3

Let $\mathcal{G}=[\{\mathrm{a}, \mathrm{b}\},\{\sigma\}, \sigma, \mathrm{P}]$ with $\mathrm{P}=\{\sigma \rightarrow \lambda, \sigma \rightarrow a \sigma, \sigma \rightarrow \mathrm{~b} \sigma\}$. Again, \mathcal{G} is regular and $\mathrm{L}(\mathcal{G})=\Sigma^{*}$.

Consequently, Σ^{*} is a regular language.

Example 4

Let Σ be any alphabet, and let $X \subseteq \Sigma^{*}$ be any finite set. Then, for $\mathcal{G}=[\Sigma,\{\sigma\}, \sigma, P]$ with $P=\{\sigma \rightarrow s \mid s \in X\}$, we have $L(\mathcal{G})=X$.

Consequently, every finite language is regular.

What else is regular?

Question

Which languages are regular?

What else is regular?

Question

Which languages are regular?

For answering this question, we first deal with closure properties.

Closure Properties

Theorem 1

The regular languages are closed under union, product and Kleene closure.

Closure Properties

Theorem 1

The regular languages are closed under union, product and Kleene closure.

Proof. Let L_{1} and L_{2} be any regular languages. Since L_{1} and L_{2} are regular, there are regular grammars $\mathcal{G}_{1}=\left[\mathrm{T}_{1}, \mathrm{~N}_{1}, \sigma_{1}, \mathrm{P}_{1}\right]$ and $\mathcal{G}_{2}=\left[\mathrm{T}_{2}, \mathrm{~N}_{2}, \sigma_{2}, \mathrm{P}_{2}\right]$ such that $\mathrm{L}_{\mathrm{i}}=\mathrm{L}\left(\mathcal{G}_{i}\right)$ for $i=1,2$. Without loss of generality, we may assume that $N_{1} \cap N_{2}=\emptyset$ for otherwise we simply rename the nonterminals appropriately. We start with the union. We have to show that $L=L_{1} \cup L_{2}$ is regular.

Closure Properties

Theorem 1

The regular languages are closed under union, product and Kleene closure.

Proof. Let L_{1} and L_{2} be any regular languages. Since L_{1} and L_{2} are regular, there are regular grammars $\mathcal{G}_{1}=\left[\mathrm{T}_{1}, \mathrm{~N}_{1}, \sigma_{1}, \mathrm{P}_{1}\right]$ and $\mathcal{G}_{2}=\left[T_{2}, N_{2}, \sigma_{2}, P_{2}\right]$ such that $L_{i}=L\left(\mathcal{G}_{i}\right)$ for $i=1,2$. Without loss of generality, we may assume that $N_{1} \cap N_{2}=\emptyset$ for otherwise we simply rename the nonterminals appropriately. We start with the union. We have to show that $L=L_{1} \cup L_{2}$ is regular. Now, let
$\mathcal{G}_{\text {union }}=\left[\mathrm{T}_{1} \cup \mathrm{~T}_{2}, \mathrm{~N}_{1} \cup \mathrm{~N}_{2} \cup\{\sigma\}, \sigma, \mathrm{P}_{1} \cup \mathrm{P}_{2} \cup\left\{\sigma \rightarrow \sigma_{1}, \sigma \rightarrow \sigma_{2}\right\}\right]$.
By construction, $\mathcal{G}_{\text {union }}$ is regular.

Closure under Union

Claim 1. $\mathrm{L}=\mathrm{L}\left(\mathcal{G}_{\text {union }}\right)$.
We have to start every generation of strings with σ. Thus, there are two possibilities, i.e., $\sigma \rightarrow \sigma_{1}$ and $\sigma \rightarrow \sigma_{2}$. In the first case, we can continue with all generations that start with σ_{1} yielding all strings in L_{1}. In the second case, we can continue with σ_{2}, thus getting all strings in L_{2}. Consequently, $\mathrm{L}_{1} \cup \mathrm{~L}_{2} \subseteq \mathrm{~L}$.

Closure under Union

$$
\text { Claim 1. } \mathrm{L}=\mathrm{L}\left(\mathcal{G}_{\text {union }}\right) .
$$

We have to start every generation of strings with σ. Thus, there are two possibilities, i.e., $\sigma \rightarrow \sigma_{1}$ and $\sigma \rightarrow \sigma_{2}$. In the first case, we can continue with all generations that start with σ_{1} yielding all strings in L_{1}. In the second case, we can continue with σ_{2}, thus getting all strings in L_{2}. Consequently, $L_{1} \cup L_{2} \subseteq L$.
On the other hand, $L \subseteq L_{1} \cup L_{2}$ by construction. Hence, $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ 。

【 (union)

Closure under Product I

We have to show that $L_{1} L_{2}$ is regular. A first idea might be to use a construction analogous to the one above, i.e., to take as a new starting production $\sigma \rightarrow \sigma_{1} \sigma_{2}$.
Unfortunately, this production is not regular. We have to be a bit more careful. But the underlying idea is fine, we just have to replace it by a sequential construction.

Closure under Product I

We have to show that $L_{1} L_{2}$ is regular. A first idea might be to use a construction analogous to the one above, i.e., to take as a new starting production $\sigma \rightarrow \sigma_{1} \sigma_{2}$.
Unfortunately, this production is not regular. We have to be a bit more careful. But the underlying idea is fine, we just have to replace it by a sequential construction.
The idea for doing that is easily described. Let $s_{1} \in L_{1}$ and $s_{2} \in L_{2}$. We want to generate $s_{1} s_{2}$. Then, starting with σ_{1} there is a generation $\sigma_{1} \Rightarrow w_{1} \Rightarrow w_{2} \Rightarrow \cdots \Rightarrow s_{1}$. But instead of finishing the generation at that point, we want to have the possibility to continue to generate s_{2}. Thus, all we need is a production having a right hand side resulting in $s_{1} \sigma_{2}$.
This idea can be formalized as follows:

Let $\mathcal{G}_{\text {prod }}=\left[\mathrm{T}_{1} \cup \mathrm{~T}_{2}, \mathrm{~N}_{1} \cup \mathrm{~N}_{2}, \sigma_{1}, \mathrm{P}\right]$, where

$$
\begin{aligned}
P= & P_{1} \backslash\left\{h \rightarrow s \mid s \in T_{1}^{*}, h \in N_{1}\right\} \\
& \cup\left\{h \rightarrow s \sigma_{2} \mid h \rightarrow s \in P_{1}, s \in T_{1}^{*}\right\} \cup P_{2} .
\end{aligned}
$$

By construction, $\mathcal{G}_{\text {prod }}$ is regular.

Let $\mathcal{G}_{\text {prod }}=\left[\mathrm{T}_{1} \cup \mathrm{~T}_{2}, \mathrm{~N}_{1} \cup \mathrm{~N}_{2}, \sigma_{1}, P\right]$, where

$$
\begin{aligned}
P= & P_{1} \backslash\left\{h \rightarrow s \mid s \in T_{1}^{*}, h \in N_{1}\right\} \\
& \cup\left\{h \rightarrow s \sigma_{2} \mid h \rightarrow s \in P_{1}, s \in T_{1}^{*}\right\} \cup P_{2} .
\end{aligned}
$$

By construction, $\mathcal{G}_{\text {prod }}$ is regular.
Claim 2. $\mathrm{L}\left(\mathcal{G}_{\text {prod }}\right)=\mathrm{L}_{1} \mathrm{~L}_{2}$.
Clearly, $\mathrm{L}\left(\mathcal{G}_{\text {prod }}\right) \subseteq \mathrm{L}_{1} \mathrm{~L}_{2}$. We show $\mathrm{L}_{1} \mathrm{~L}_{2} \subseteq \mathrm{~L}\left(\mathcal{G}_{\text {prod }}\right)$. Let $s \in \mathrm{~L}_{1} \mathrm{~L}_{2}$. Then, there are $s_{1} \in L_{1}$ and $s_{2} \in L_{2}$ such that $s=s_{1} s_{2}$. Since $s_{1} \in L_{1}$, there is a generation $\sigma_{1} \Rightarrow w_{1} \Rightarrow \cdots \Rightarrow w_{n} \Rightarrow s_{1}$ in \mathcal{G}_{1}. So, w_{n} must contain precisely one nonterminal, say h, and thus $w_{n}=w h$. Since $w_{n} \Rightarrow s_{1}$ and $s_{1} \in T_{1}^{*}$, we must have applied a production $h \rightarrow s, s \in T_{1}^{*}$ such that $w h \Rightarrow w s=s_{1}$.

Let $\mathcal{G}_{\text {prod }}=\left[\mathrm{T}_{1} \cup \mathrm{~T}_{2}, \mathrm{~N}_{1} \cup \mathrm{~N}_{2}, \sigma_{1}, P\right]$, where

$$
\begin{aligned}
P= & P_{1} \backslash\left\{h \rightarrow s \mid s \in T_{1}^{*}, h \in N_{1}\right\} \\
& \cup\left\{h \rightarrow s \sigma_{2} \mid h \rightarrow s \in P_{1}, s \in T_{1}^{*}\right\} \cup P_{2} .
\end{aligned}
$$

By construction, $\mathcal{G}_{\text {prod }}$ is regular.
Claim 2. $\mathrm{L}\left(\mathcal{G}_{\text {prod }}\right)=\mathrm{L}_{1} \mathrm{~L}_{2}$.
Clearly, $\mathrm{L}\left(\mathcal{G}_{\text {prod }}\right) \subseteq \mathrm{L}_{1} \mathrm{~L}_{2}$. We show $\mathrm{L}_{1} \mathrm{~L}_{2} \subseteq \mathrm{~L}\left(\mathcal{G}_{\text {prod }}\right)$. Let $s \in \mathrm{~L}_{1} \mathrm{~L}_{2}$. Then, there are $s_{1} \in L_{1}$ and $s_{2} \in L_{2}$ such that $s=s_{1} s_{2}$. Since $s_{1} \in L_{1}$, there is a generation $\sigma_{1} \Rightarrow w_{1} \Rightarrow \cdots \Rightarrow w_{n} \Rightarrow s_{1}$ in \mathcal{G}_{1}. So, w_{n} must contain precisely one nonterminal, say h, and thus $w_{n}=w h$. Since $w_{n} \Rightarrow s_{1}$ and $s_{1} \in T_{1}^{*}$, we must have applied a production $h \rightarrow s, s \in T_{1}^{*}$ such that $w h \Rightarrow w s=s_{1}$. But in $\mathcal{G}_{\text {prod }}$ all these productions have been replaced by $h \rightarrow s \sigma_{2}$. Hence, the last generation $w_{n} \Rightarrow s_{1}$ is now replaced by $w h \Rightarrow w s \sigma_{2}$. Now, we apply the productions from P_{2} to generate s_{2} which is possible, since $s_{2} \in L_{2}$.

Closure under Kleene Closure

Let L be a regular language, and let $\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ be a regular grammar such that $L=L(\mathcal{G})$. We have to show that L^{*} is regular.

Closure under Kleene Closure

Let L be a regular language, and let $\mathcal{G}=[\mathrm{T}, \mathrm{N}, \sigma, \mathrm{P}]$ be a regular grammar such that $L=L(\mathcal{G})$. We have to show that L^{*} is regular.
By definition $L^{*}=\bigcup_{i \in \mathbb{N}} L^{i}$. Since $L^{0}=\{\lambda\}$, we have to make sure that λ can be generated. This is obvious if $\lambda \in L$. Otherwise, we simply add the production $\sigma \rightarrow \lambda$. The rest is done analogously as in the product case, i.e., we set

$$
\begin{gathered}
\mathcal{G}^{*}=\left[\mathrm{T}, \mathrm{~N} \cup\left\{\sigma^{*}\right\}, \sigma^{*}, \mathrm{P}^{*}\right] \text {, where } \\
\mathrm{P}^{*}=\mathrm{P} \cup\left\{h \rightarrow s \sigma \mid h \rightarrow s \in \mathrm{P}, \mathrm{~s} \in \mathrm{~T}^{*}\right\} \cup\left\{\sigma^{*} \rightarrow \sigma, \sigma^{*} \rightarrow \lambda\right\} .
\end{gathered}
$$

We leave it as an exercise to prove that $\mathrm{L}\left(\mathcal{G}^{*}\right)=\mathrm{L}^{*}$.

Equivalence of Grammars

We finish this lecture by defining the equivalence of grammars.

Definition 5

Let \mathcal{G} and $\hat{\mathcal{G}}$ be any grammars. \mathcal{G} and $\hat{\mathcal{G}}$ are said to be equivalent if $L(\mathcal{G})=L(\hat{\mathcal{G}})$.

Equivalence of Grammars

We finish this lecture by defining the equivalence of grammars.

Definition 5

Let \mathcal{G} and $\hat{\mathcal{G}}$ be any grammars. \mathcal{G} and $\hat{\mathcal{G}}$ are said to be equivalent if $L(\mathcal{G})=L(\hat{\mathcal{G}})$.

For having an example for equivalent grammars, we consider $\mathcal{G}=[\{a\},\{\sigma\}, \sigma,\{\sigma \rightarrow a \sigma a, \sigma \rightarrow a a, \sigma \rightarrow a\}]$, and the following grammar:
$\hat{\mathcal{G}}=[\{a\},\{\sigma\}, \sigma,\{\sigma \rightarrow a, \sigma \rightarrow a \sigma\}]$.

Equivalence of Grammars

We finish this lecture by defining the equivalence of grammars.

Definition 5

Let \mathcal{G} and $\hat{\mathcal{G}}$ be any grammars. \mathcal{G} and $\hat{\mathcal{G}}$ are said to be equivalent if $L(\mathcal{G})=L(\hat{\mathcal{G}})$.

For having an example for equivalent grammars, we consider $\mathcal{G}=[\{a\},\{\sigma\}, \sigma,\{\sigma \rightarrow a \sigma a, \sigma \rightarrow a a, \sigma \rightarrow a\}]$, and the following grammar:
$\hat{\mathcal{G}}=[\{a\},\{\sigma\}, \sigma,\{\sigma \rightarrow a, \sigma \rightarrow a \sigma\}]$.
Now, it is easy to see that $L(\mathcal{G})=\{a\}^{+}=L(\hat{\mathcal{G}})$, and hence \mathcal{G} and $\hat{\mathcal{G}}$ are equivalent.

Equivalence of Grammars

We finish this lecture by defining the equivalence of grammars.

Definition 5

Let \mathcal{G} and $\hat{\mathcal{G}}$ be any grammars. \mathcal{G} and $\hat{\mathcal{G}}$ are said to be equivalent if $L(\mathcal{G})=L(\hat{\mathcal{G}})$.

For having an example for equivalent grammars, we consider $\mathcal{G}=[\{a\},\{\sigma\}, \sigma,\{\sigma \rightarrow a \sigma a, \sigma \rightarrow a a, \sigma \rightarrow a\}]$, and the following grammar:
$\hat{\mathcal{G}}=[\{a\},\{\sigma\}, \sigma,\{\sigma \rightarrow a, \sigma \rightarrow a \sigma\}]$.
Now, it is easy to see that $L(\mathcal{G})=\{a\}^{+}=L(\hat{\mathcal{G}})$, and hence \mathcal{G} and $\hat{\mathcal{G}}$ are equivalent.
Note, however, that $\hat{\mathcal{G}}$ is regular while \mathcal{G} is not.

Thank you!

