	Regular Languages	
0000000	0000000	

Theory of Computation

Thomas Zeugmann

Hokkaido University Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/~thomas/ToC/

Lecture 2: Introducing Formal Grammars

Grammars	Regular Languages	
0000000		
Grammars		

We have to formalize what is meant by generating a language. If we look at natural languages, then we have the following situation: The set Σ consists of all words in the language. Although large, Σ is finite. What is usually done in speaking or writing natural languages is forming sentences. A typical sentence starts with a noun phrase followed by a verb phrase. Thus, we may describe this generation by

< sentence $> \rightarrow <$ noun phrase > < verb phrase >

Grammars	Regular Languages	
•0000000		
Grammars		

We have to formalize what is meant by generating a language. If we look at natural languages, then we have the following situation: The set Σ consists of all words in the language. Although large, Σ is finite. What is usually done in speaking or writing natural languages is forming sentences. A typical sentence starts with a noun phrase followed by a verb phrase. Thus, we may describe this generation by

< sentence $> \rightarrow <$ noun phrase > < verb phrase >

Clearly, more complicated sentences are generated by more complicated rules. If we look in a usual grammar book, e.g., for the English language, then we see that there are, however, only finitely many rules for generating sentences.

Grammars	Regular Languages	
0000000		
Formal Gr	ammars	

This suggest the following general definition of a grammar:

Definition 1

- $\mathcal{G} = [\mathsf{T}, \mathsf{N}, \sigma, \mathsf{P}]$ is said to be a *grammar* if
- (1) T and N are alphabets with $T \cap N = \emptyset$;

(2)
$$\sigma \in N$$
;

(3) $P \subseteq ((T \cup N)^+ \setminus T^*) \times (T \cup N)^*$ is finite.

Grammars	Regular Languages	
0000000		
Formal Gr	ammars	

This suggest the following general definition of a grammar:

Definition 1

$$\mathcal{G} = [\mathsf{T}, \mathsf{N}, \sigma, \mathsf{P}]$$
 is said to be a *grammar* if

(1) T and N are alphabets with
$$T \cap N = \emptyset$$
;

(2)
$$\sigma \in N$$
;

(3)
$$P \subseteq ((T \cup N)^+ \setminus T^*) \times (T \cup N)^*$$
 is finite.

We call T the *terminal alphabet*, N the *nonterminal alphabet*, σ the *start symbol* and P the set of *productions* (or *rules*).

Grammars	Regular Languages	
0000000		
Formal Gr	ammars	

This suggest the following general definition of a grammar:

Definition 1

$$\mathcal{G} = [\mathsf{T}, \mathsf{N}, \sigma, \mathsf{P}]$$
 is said to be a *grammar* if

(1) T and N are alphabets with
$$T \cap N = \emptyset$$
;

(2)
$$\sigma \in N$$
;

(3)
$$P \subseteq ((T \cup N)^+ \setminus T^*) \times (T \cup N)^*$$
 is finite.

We call T the *terminal alphabet*, N the *nonterminal alphabet*, σ the *start symbol* and P the set of *productions* (or *rules*).

Usually, productions are written in the form $\alpha \rightarrow \beta$, where $\alpha \in (T \cup N)^+ \setminus T^*$ and $\beta \in (T \cup N)^*$.

Generating a Language by a Grammar I

Next, we have to explain how to generate a language using a grammar. This is done by the following definition:

Definition 2

Let $\mathcal{G} = [\mathsf{T}, \mathsf{N}, \sigma, \mathsf{P}]$ be a grammar. Let $\alpha', \beta' \in (\mathsf{T} \cup \mathsf{N})^*$. α' is said to *directly generate* β' , written $\alpha' \Rightarrow \beta'$, if there exist $\alpha_1, \alpha_2, \alpha, \beta \in (\mathsf{T} \cup \mathsf{N})^*$ such that $\alpha' = \alpha_1 \alpha \alpha_2, \beta' = \alpha_1 \beta \alpha_2$ and $\alpha \rightarrow \beta$ is in P . We write $\stackrel{*}{\Rightarrow}$ for the *reflexive transitive closure* of \Rightarrow .

Gramm 000●0	iars 9000	Regular Languages 0000000		
Illu	stration			
	Example 1			
	Let $\mathcal{G} = [\{a, b\}$ $P = \{\sigma \rightarrow \lambda, \sigma\}$	$\{\sigma\}, \sigma, P], $ where $\sigma \rightarrow a, \sigma \rightarrow b, \sigma -$	\rightarrow asa, s \rightarrow bsb}.	

Grammars 0000000	Regular Languages 0000000	
Illustration		
Example 1		

Let $\mathcal{G} = [\{a, b\}, \{\sigma\}, \sigma, P]$, where $P = \{\sigma \rightarrow \lambda, \sigma \rightarrow a, \sigma \rightarrow b, \sigma \rightarrow a\sigma a, \sigma \rightarrow b\sigma b\}$. Then we can directly generate a from σ , since $\sigma \rightarrow a$ is in P.

Furthermore, we can generate the string abba from σ as follows by using the rules $\sigma \rightarrow a\sigma a$, $\sigma \rightarrow b\sigma b$ and $\sigma \rightarrow \lambda$; i.e., we obtain

$$\sigma \Rightarrow a\sigma a \Rightarrow ab\sigma ba \Rightarrow abba . \tag{1}$$

Grammars	Regular Languages	
0000000		
Illustration		

Example 1

Let $\mathcal{G} = [\{a, b\}, \{\sigma\}, \sigma, P]$, where $P = \{\sigma \to \lambda, \sigma \to a, \sigma \to b, \sigma \to a\sigma a, \sigma \to b\sigma b\}$. Then we can directly generate a from σ , since $\sigma \to a$ is in P. Furthermore, we can generate the string abba from σ as follows by using the rules $\sigma \to a\sigma a, \sigma \to b\sigma b$ and $\sigma \to \lambda$; i.e., we obtain

$$\sigma \Rightarrow a\sigma a \Rightarrow ab\sigma ba \Rightarrow abba . \tag{1}$$

A sequence like Eq. (1) is called a *generation* or *derivation*. If a string s can be generated from a nonterminal h then we write $h \stackrel{*}{\Rightarrow} s$.

Finally, we can define the language generated by a grammar.

Regular Languages

Equivalence

End

Generating a Language by a Grammar II

Finally, we can define the language generated by a grammar.

Definition 3

Let $\mathcal{G} = [\mathsf{T}, \mathsf{N}, \sigma, \mathsf{P}]$ be a grammar. The *language* $L(\mathcal{G})$ generated by \mathcal{G} is defined as $L(\mathcal{G}) = \{s \mid s \in \mathsf{T}^* \text{ and } \sigma \stackrel{*}{\Rightarrow} s\}$.

Generating a Language by a Grammar II

Finally, we can define the language generated by a grammar.

Definition 3

Let $\mathfrak{G} = [\mathsf{T}, \mathsf{N}, \sigma, \mathsf{P}]$ be a grammar. The *language* $L(\mathfrak{G})$ generated by \mathfrak{G} is defined as $L(\mathfrak{G}) = \{s \mid s \in \mathsf{T}^* \text{ and } \sigma \stackrel{*}{\Rightarrow} s\}$.

The family of all languages that can be generated by a grammar in the sense of Definition 2 is denoted by \mathcal{L}_0 . These languages are also called *type-0 languages*, where 0 should remind us to *zero restrictions*.

Grammars 00000000	Regular Languages 00000000	
An Example - F	Palindromes I	

AKASAKA

AKASAKA

トビコミコビト にわとりとことりとわに テングノハハノグンテ

AKASAKA

トビコミコビト にわとりとことりとわに テングノハハノグンテ

Let us look again at the language of all palindromes over $\Sigma = \{a, b\}$, i.e., $L_{pal} = \{w \mid w \in \{a, b\}^*, w = w^T\}$.

AKASAKA

トビコミコビト にわとりとことりとわに テングノハハノグンテ

Let us look again at the language of all palindromes over $\Sigma = \{a, b\}$, i.e., $L_{pal} = \{w \mid w \in \{a, b\}^*, w = w^T\}$.

Consider the grammar from Example 1, i.e., $G = [\{a, b\}, \{\sigma\}, \sigma, P]$, where $P = \{\sigma \rightarrow \lambda, \sigma \rightarrow a, \sigma \rightarrow b, \sigma \rightarrow a\sigma a, \sigma \rightarrow b\sigma b\}$.

Grammars 00000000	Regular Languages 0000000	
An Example - F	Palindromes II	

We have to show that $L_{pal} = L(\mathcal{G})$.

ammars	Regular Languages	
000000		

An Example - Palindromes II

We have to show that $L_{pal} = L(G)$.

Claim 1. $L_{pal} \subseteq L(\mathcal{G})$.

The proof is done inductively. For the induction basis, consider $w = \lambda$, w = a and w = b. Since P contains $\sigma \rightarrow \lambda$, $\sigma \rightarrow a$, and $\sigma \rightarrow b$, we get $\sigma \stackrel{*}{\Rightarrow} w$ in all three cases.

Regular Languages

Equivalence

An Example - Palindromes II

We have to show that $L_{pal} = L(\mathcal{G})$.

Claim 1. $L_{pal} \subseteq L(\mathcal{G})$.

The proof is done inductively. For the induction basis, consider $w = \lambda$, w = a and w = b. Since P contains $\sigma \rightarrow \lambda$, $\sigma \rightarrow a$, and $\sigma \rightarrow b$, we get $\sigma \stackrel{*}{\Rightarrow} w$ in all three cases.

Induction Step: Now let $|w| \ge 2$. Since $w = w^T$, w must begin and end with the same symbol, i.e., w = ava or w = bvb, where v must be a palindrome, too.

By the induction hypothesis we have $\sigma \stackrel{*}{\Rightarrow} \nu$, and thus

 $\sigma \Rightarrow a\sigma a \stackrel{*}{\Rightarrow} ava \text{ proving the } w = ava \text{ case, or}$ $\sigma \Rightarrow b\sigma b \stackrel{*}{\Rightarrow} bvb \text{ proving the } w = bvb \text{ case.}$

This shows Claim 1.

Claim 2. L(\mathcal{G}) \subseteq L_{*pal*}. Induction Basis: If the generation is done in one step, then one of the productions not containing σ on the right hand side must have been used, i.e., $\sigma \rightarrow \lambda$, $\sigma \rightarrow a$, or $\sigma \rightarrow b$. Thus, $\sigma \Rightarrow w$ results in $w = \lambda$, w = a or w = b; hence $w \in L_{pal}$.

Claim **2**. $L(\mathcal{G}) \subseteq L_{pal}$.

Induction Basis: If the generation is done in one step, then one of the productions not containing σ on the right hand side must have been used, i.e., $\sigma \rightarrow \lambda$, $\sigma \rightarrow a$, or $\sigma \rightarrow b$. Thus, $\sigma \Rightarrow w$ results in $w = \lambda$, w = a or w = b; hence $w \in L_{pal}$.

Induction Step: Suppose, the generation takes n + 1 steps, $n \ge 1$. Thus, we have

 $\sigma \Rightarrow a\sigma a \stackrel{*}{\Rightarrow} a\nu a \text{ or } \sigma \Rightarrow b\sigma b \stackrel{*}{\Rightarrow} b\nu b$

Since by the induction hypothesis, we know that $v \in L_{pal}$, we get in both cases $w \in L_{pal}$.

	Regular Languages	
	0000000	
Regular G	irammars	

Definition 4

A grammar $\mathcal{G} = [T, N, \sigma, P]$ is said to be *regular* provided for all $\alpha \rightarrow \beta$ in P we have $\alpha \in N$ and $\beta \in T^* \cup T^*N$.

A language L is said to be *regular* if there exists a regular grammar \mathcal{G} such that $L = L(\mathcal{G})$. By \mathcal{REG} we denote the set of all regular languages.

	Regular Languages	
	0000000	
Regular G	arammars	

Definition 4

A grammar $\mathcal{G} = [T, N, \sigma, P]$ is said to be *regular* provided for all $\alpha \rightarrow \beta$ in P we have $\alpha \in N$ and $\beta \in T^* \cup T^*N$.

A language L is said to be *regular* if there exists a regular grammar \mathcal{G} such that $L = L(\mathcal{G})$. By \mathcal{REG} we denote the set of all regular languages.

Example 2

Let $\mathcal{G} = [\{a, b\}, \{\sigma\}, \sigma, P]$ with $P = \{\sigma \rightarrow ab, \sigma \rightarrow a\sigma\}$. \mathcal{G} is regular and $L(\mathcal{G}) = \{a^nb \mid n \ge 1\}$ is a regular language.

Consequently, Σ^* is a regular language.

Grammars 00000000	Regular Languages		
Examples	for Regular Langua	ages	

Example 3

Let $\mathcal{G} = [\{a, b\}, \{\sigma\}, \sigma, P]$ with $P = \{\sigma \rightarrow \lambda, \sigma \rightarrow a\sigma, \sigma \rightarrow b\sigma\}$.

Again, \mathcal{G} is regular and $L(\mathcal{G}) = \Sigma^*$.

Consequently, Σ^* is a regular language.

Example 4

Let Σ be any alphabet, and let $X \subseteq \Sigma^*$ be any finite set. Then, for $\mathcal{G} = [\Sigma, \{\sigma\}, \sigma, P]$ with $P = \{\sigma \rightarrow s \mid s \in X\}$, we have $L(\mathcal{G}) = X$.

Consequently, every *finite* language is regular.

Regular Languages	
000000	

What else is regular?

Question

Which languages are regular?

Regular Languages	
0000000	

What else is regular?

Question

Which languages are regular?

For answering this question, we first deal with *closure* properties.

	Regular Languages	
	0000000	
Closure	Properties	

Theorem 1

The regular languages are closed under union, product and Kleene closure.

Grammars	Regular Languages	
	0000000	
Closure P	roperties	

Theorem 1

The regular languages are closed under union, product and Kleene closure.

Proof. Let L_1 and L_2 be any regular languages. Since L_1 and L_2 are regular, there are regular grammars $\mathcal{G}_1 = [T_1, N_1, \sigma_1, P_1]$ and $\mathcal{G}_2 = [T_2, N_2, \sigma_2, P_2]$ such that $L_i = L(\mathcal{G}_i)$ for i = 1, 2. Without loss of generality, we may assume that $N_1 \cap N_2 = \emptyset$ for otherwise we simply rename the nonterminals appropriately. We start with the union. We have to show that $L = L_1 \cup L_2$ is regular.

Grammars	Regular Languages	
	0000000	
Closure P	roperties	

Theorem 1

The regular languages are closed under union, product and Kleene closure.

Proof. Let L_1 and L_2 be any regular languages. Since L_1 and L_2 are regular, there are regular grammars $\mathcal{G}_1 = [T_1, N_1, \sigma_1, P_1]$ and $\mathcal{G}_2 = [T_2, N_2, \sigma_2, P_2]$ such that $L_i = L(\mathcal{G}_i)$ for i = 1, 2. Without loss of generality, we may assume that $N_1 \cap N_2 = \emptyset$ for otherwise we simply rename the nonterminals appropriately. We start with the union. We have to show that $L = L_1 \cup L_2$ is regular. Now, let

 $\mathcal{G}_{\textit{union}} = [T_1 \cup T_2, N_1 \cup N_2 \cup \{\sigma\}, \sigma, P_1 \cup P_2 \cup \{\sigma \ \rightarrow \ \sigma_1, \ \sigma \ \rightarrow \ \sigma_2\}] \;.$

By construction, \mathcal{G}_{union} is regular.

Claim 1. $L = L(G_{union})$.

We have to start every generation of strings with σ . Thus, there are two possibilities, i.e., $\sigma \rightarrow \sigma_1$ and $\sigma \rightarrow \sigma_2$. In the first case, we can continue with all generations that start with σ_1 yielding all strings in L₁. In the second case, we can continue with σ_2 , thus getting all strings in L₂. Consequently, $L_1 \cup L_2 \subseteq L$.

Claim 1. $L = L(G_{union})$.

We have to start every generation of strings with σ . Thus, there are two possibilities, i.e., $\sigma \rightarrow \sigma_1$ and $\sigma \rightarrow \sigma_2$. In the first case, we can continue with all generations that start with σ_1 yielding all strings in L₁. In the second case, we can continue with σ_2 , thus getting all strings in L₂. Consequently, $L_1 \cup L_2 \subseteq L$.

On the other hand, $L \subseteq L_1 \cup L_2$ by construction. Hence, $L = L_1 \cup L_2$. (union)

	Regular Languages	
	00000000	
Closure u	nder Product I	

We have to show that L_1L_2 is regular. A first idea might be to use a construction analogous to the one above, i.e., to take as a new starting production $\sigma \rightarrow \sigma_1 \sigma_2$.

Unfortunately, this production is **not** regular. We have to be a bit more careful. But the underlying idea is fine, we just have to replace it by a sequential construction.

	Regular Languages	
	0000000	
Closure u	nder Product I	

We have to show that L_1L_2 is regular. A first idea might be to use a construction analogous to the one above, i.e., to take as a new starting production $\sigma \rightarrow \sigma_1 \sigma_2$.

Unfortunately, this production is **not** regular. We have to be a bit more careful. But the underlying idea is fine, we just have to replace it by a sequential construction.

The idea for doing that is easily described. Let $s_1 \in L_1$ and $s_2 \in L_2$. We want to generate s_1s_2 . Then, starting with σ_1 there is a generation $\sigma_1 \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow s_1$. But instead of finishing the generation at that point, we want to have the possibility to continue to generate s_2 . Thus, all we need is a production having a right hand side resulting in $s_1\sigma_2$. This idea can be formalized as follows:

	Regular Languages		
0000000	00000000	0	0

Let $\mathcal{G}_{prod} = [T_1 \cup T_2, N_1 \cup N_2, \sigma_1, P]$, where

$$\begin{array}{rcl} \mathsf{P} &=& \mathsf{P}_1 \setminus \{ \mathsf{h} \; \rightarrow \; s \mid s \in \mathsf{T}_1^*, \; \mathsf{h} \in \mathsf{N}_1 \} \\ & \cup \{ \mathsf{h} \; \rightarrow \; s \sigma_2 \mid \mathsf{h} \; \rightarrow \; s \in \mathsf{P}_1, \; s \in \mathsf{T}_1^* \} \cup \mathsf{P}_2 \; . \end{array}$$

By construction, \mathcal{G}_{prod} is regular.

	Regular Languages		
0000000	00000000	0	0

Let $\mathcal{G}_{prod} = [\mathsf{T}_1 \cup \mathsf{T}_2, \mathsf{N}_1 \cup \mathsf{N}_2, \sigma_1, \mathsf{P}]$, where

$$\begin{array}{rcl} \mathsf{P} &=& \mathsf{P}_1 \setminus \{ \mathsf{h} \; \rightarrow \; s \mid s \in \mathsf{T}_1^*, \; \mathsf{h} \in \mathsf{N}_1 \} \\ & & \cup \{ \mathsf{h} \; \rightarrow \; s\sigma_2 \mid \mathsf{h} \; \rightarrow \; s \in \mathsf{P}_1, \; s \in \mathsf{T}_1^* \} \cup \mathsf{P}_2 \, . \end{array}$$

By construction, \mathcal{G}_{prod} is regular.

Claim 2. $L(\mathcal{G}_{prod}) = L_1L_2$.

Clearly, $L(\mathcal{G}_{prod}) \subseteq L_1L_2$. We show $L_1L_2 \subseteq L(\mathcal{G}_{prod})$. Let $s \in L_1L_2$. Then, there are $s_1 \in L_1$ and $s_2 \in L_2$ such that $s = s_1s_2$. Since $s_1 \in L_1$, there is a generation $\sigma_1 \Rightarrow w_1 \Rightarrow \cdots \Rightarrow w_n \Rightarrow s_1$ in \mathcal{G}_1 . So, w_n must contain precisely one nonterminal, say h, and thus $w_n = wh$. Since $w_n \Rightarrow s_1$ and $s_1 \in T_1^*$, we must have applied a production $h \rightarrow s, s \in T_1^*$ such that $wh \Rightarrow ws = s_1$.

	Regular Languages		
0000000	00000000	0	0

Let $\mathcal{G}_{prod} = [\mathsf{T}_1 \cup \mathsf{T}_2, \mathsf{N}_1 \cup \mathsf{N}_2, \sigma_1, \mathsf{P}]$, where

$$\begin{array}{rcl} \mathsf{P} &=& \mathsf{P}_1 \setminus \{ \mathsf{h} \; \rightarrow \; s \mid s \in \mathsf{T}_1^*, \; \mathsf{h} \in \mathsf{N}_1 \} \\ & & \cup \{ \mathsf{h} \; \rightarrow \; s \sigma_2 \mid \mathsf{h} \; \rightarrow \; s \in \mathsf{P}_1, \; s \in \mathsf{T}_1^* \} \cup \mathsf{P}_2 \, . \end{array}$$

By construction, \mathcal{G}_{prod} is regular.

Claim 2. $L(\mathcal{G}_{prod}) = L_1L_2$.

Clearly, $L(\mathcal{G}_{prod}) \subseteq L_1L_2$. We show $L_1L_2 \subseteq L(\mathcal{G}_{prod})$. Let $s \in L_1L_2$. Then, there are $s_1 \in L_1$ and $s_2 \in L_2$ such that $s = s_1 s_2$. Since $s_1 \in L_1$, there is a generation $\sigma_1 \Rightarrow w_1 \Rightarrow \cdots \Rightarrow w_n \Rightarrow s_1$ in G_1 . So, w_n must contain precisely one nonterminal, say h, and thus $w_n = wh$. Since $w_n \Rightarrow s_1$ and $s_1 \in T_1^*$, we must have applied a production $h \rightarrow s, s \in T_1^*$ such that $wh \Rightarrow ws = s_1$. But in \mathcal{G}_{vrod} all these productions have been replaced by $h \rightarrow s\sigma_2$. Hence, the last generation $w_n \Rightarrow s_1$ is now replaced by wh \Rightarrow ws σ_2 . Now, we apply the productions from P₂ to (product) generate s₂ which is possible, since $s_2 \in L_2$.

Let L be a regular language, and let $\mathcal{G} = [T, N, \sigma, P]$ be a regular grammar such that $L = L(\mathcal{G})$. We have to show that L^* is regular.

Let L be a regular language, and let $\mathcal{G} = [T, N, \sigma, P]$ be a regular grammar such that $L = L(\mathcal{G})$. We have to show that L^* is regular.

By definition $L^* = \bigcup_{i \in \mathbb{N}} L^i$. Since $L^0 = \{\lambda\}$, we have to make sure that λ can be generated. This is obvious if $\lambda \in L$. Otherwise, we simply add the production $\sigma \rightarrow \lambda$. The rest is done analogously as in the product case, i.e., we set

 $\mathfrak{G}^* = [\mathsf{T}, \mathsf{N} \cup \{\sigma^*\}, \sigma^*, \mathsf{P}^*], \text{ where }$

 $P^* = P \cup \{h \ \rightarrow \ s\sigma \ | \ h \ \rightarrow \ s \in P, \ s \in T^*\} \cup \{\sigma^* \ \rightarrow \ \sigma, \ \sigma^* \ \rightarrow \ \lambda\}.$

We leave it as an exercise to prove that $L(\mathcal{G}^*) = L^*$.

Definition 5

Let \mathfrak{G} and $\hat{\mathfrak{G}}$ be any grammars. \mathfrak{G} and $\hat{\mathfrak{G}}$ are said to be *equivalent* if $L(\mathfrak{G}) = L(\hat{\mathfrak{G}})$.

Definition 5

Let \mathcal{G} and $\hat{\mathcal{G}}$ be any grammars. \mathcal{G} and $\hat{\mathcal{G}}$ are said to be *equivalent* if $L(\mathcal{G}) = L(\hat{\mathcal{G}})$.

For having an example for equivalent grammars, we consider $\mathcal{G} = [\{\alpha\}, \{\sigma\}, \sigma, \{\sigma \to \alpha \sigma \alpha, \sigma \to \alpha \alpha, \sigma \to \alpha\}],$ and the following grammar: $\hat{\mathcal{G}} = [\{\alpha\}, \{\sigma\}, \sigma, \{\sigma \to \alpha, \sigma \to \alpha\sigma\}].$

Definition 5

Let \mathcal{G} and $\hat{\mathcal{G}}$ be any grammars. \mathcal{G} and $\hat{\mathcal{G}}$ are said to be *equivalent* if $L(\mathcal{G}) = L(\hat{\mathcal{G}})$.

For having an example for equivalent grammars, we consider $\mathcal{G} = [\{a\}, \{\sigma\}, \sigma, \{\sigma \rightarrow a\sigma a, \sigma \rightarrow aa, \sigma \rightarrow a\}],$ and the following grammar: $\hat{\mathcal{G}} = [\{a\}, \{\sigma\}, \sigma, \{\sigma \rightarrow a, \sigma \rightarrow a\sigma\}].$

Now, it is easy to see that $L(\mathcal{G}) = \{a\}^+ = L(\hat{\mathcal{G}})$, and hence \mathcal{G} and $\hat{\mathcal{G}}$ are equivalent.

Definition 5

Let \mathcal{G} and $\hat{\mathcal{G}}$ be any grammars. \mathcal{G} and $\hat{\mathcal{G}}$ are said to be *equivalent* if $L(\mathcal{G}) = L(\hat{\mathcal{G}})$.

For having an example for equivalent grammars, we consider $\mathcal{G} = [\{a\}, \{\sigma\}, \sigma, \{\sigma \rightarrow a\sigma a, \sigma \rightarrow aa, \sigma \rightarrow a\}],$ and the following grammar: $\hat{\mathcal{G}} = [\{a\}, \{\sigma\}, \sigma, \{\sigma \rightarrow a, \sigma \rightarrow a\sigma\}].$

Now, it is easy to see that $L(\mathcal{G}) = \{a\}^+ = L(\hat{\mathcal{G}})$, and hence \mathcal{G} and $\hat{\mathcal{G}}$ are equivalent.

Note, however, that $\hat{\mathcal{G}}$ is regular while \mathcal{G} is *not*.

Thank you!

