
Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Theory of Computation

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/∼thomas/ToC/

Lecture 7: Further Properties of Context-Free Languages

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Backus-Naur Form I

As mentioned in the last lecture, context-free grammars are of
fundamental importance for programming languages.
However, in the specification of programming languages
usually a form different to the one provided in our Definition of
context-free grammars is used.

This form is the so-called Backus normal form or Backus-Naur
form. It was created by John Backus to specify the grammar of
ALGOL. Later it has been simplified by Peter Naur to reduce
the character set used and Donald Knuth proposed to call the
new form Backus-Naur form. Fortunately, whether or not one
is following Knuth’s suggestion, the form is commonly
abbreviated BNF.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Backus-Naur Form I

As mentioned in the last lecture, context-free grammars are of
fundamental importance for programming languages.
However, in the specification of programming languages
usually a form different to the one provided in our Definition of
context-free grammars is used.
This form is the so-called Backus normal form or Backus-Naur
form. It was created by John Backus to specify the grammar of
ALGOL. Later it has been simplified by Peter Naur to reduce
the character set used and Donald Knuth proposed to call the
new form Backus-Naur form. Fortunately, whether or not one
is following Knuth’s suggestion, the form is commonly
abbreviated BNF.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Backus-Naur Form II

The form uses four meta characters that are not allowed to
appear in the working vocabulary, i.e., in T ∪N in our
definition. These meta characters are

〈 〉 ::= |

and the idea to use them is as follows. Strings (not containing
the meta characters) are enclosed by 〈 and 〉 denote
nonterminals. The symbol ::= serves as a replacement operator
(in the same way as →) and | is read as “or.”

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Backus-Naur Form III
Example 1

Consider a context-free grammar for unsigned integers in a
programming language. Here, D stands for the class of digits
and U for the class of unsigned integers.

D → 0
D → 1
D → 2
D → 3
D → 4
U → D

D → 5
D → 6
D → 7
D → 8
D → 9
U → UD .

Rewriting this example in BNF yields:

〈digit〉 ::= 0|1|2|3|4|5|6|7|8|9
〈unsigned integer〉 ::= 〈digit〉|〈unsigned integer〉〈digit〉

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Backus-Naur Form III
Example 1

Consider a context-free grammar for unsigned integers in a
programming language. Here, D stands for the class of digits
and U for the class of unsigned integers.

D → 0
D → 1
D → 2
D → 3
D → 4
U → D

D → 5
D → 6
D → 7
D → 8
D → 9
U → UD .

Rewriting this example in BNF yields:

〈digit〉 ::= 0|1|2|3|4|5|6|7|8|9
〈unsigned integer〉 ::= 〈digit〉|〈unsigned integer〉〈digit〉

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Backus-Naur Form IV

As this example clearly shows the BNF allows for a very
compact representation of the grammar. This is of particular
importance when defining the syntax of a programming
language, where the set of productions usually contains many
elements.

Whenever appropriate, we shall adopt a blend of the notation
used in BNFs, i.e., occasionally we shall use | as well as 〈 and 〉
but not ::= .

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Motivation

Context-free languages play an important role in many
applications. As far as regular languages are concerned, we
have seen that finite automata are very efficient recognizers.
So, what about context-free languages?

Again, for every context-free language a recognizer can be
algorithmically constructed. Formally, these recognizers are
pushdown automata. There are many software systems around
that perform the construction of the relevant pushdown
automaton for a given language. These systems are important
in that they allow the quick construction of the syntax analysis
part of a compiler for a new language and are therefore highly
valued.

We shall study them in Lectures 9 and 10.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Motivation

Context-free languages play an important role in many
applications. As far as regular languages are concerned, we
have seen that finite automata are very efficient recognizers.
So, what about context-free languages?
Again, for every context-free language a recognizer can be
algorithmically constructed. Formally, these recognizers are
pushdown automata. There are many software systems around
that perform the construction of the relevant pushdown
automaton for a given language. These systems are important
in that they allow the quick construction of the syntax analysis
part of a compiler for a new language and are therefore highly
valued.

We shall study them in Lectures 9 and 10.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Motivation

Context-free languages play an important role in many
applications. As far as regular languages are concerned, we
have seen that finite automata are very efficient recognizers.
So, what about context-free languages?
Again, for every context-free language a recognizer can be
algorithmically constructed. Formally, these recognizers are
pushdown automata. There are many software systems around
that perform the construction of the relevant pushdown
automaton for a given language. These systems are important
in that they allow the quick construction of the syntax analysis
part of a compiler for a new language and are therefore highly
valued.

We shall study them in Lectures 9 and 10.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Motivation

It is advantageous to treat another important tool for syntax
analysis first, i.e., parsers.

One of the most widely used of these syntax analyzer
generators is called yacc (yet another compiler-compiler). The
generation of a parser, i.e., a function that creates parse trees
from source programs has been institutionalized in the yacc
command that appears in all UNIX systems. The input to yacc
is a CFG, in a notation that differs only in details from the
well-known BNF. Associated with each production is an action,
which is a fragment of C code that is performed whenever a
node of the parse tree that (combined with its children)
corresponds to this production is created. So, let us continue
with parse trees.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Motivation

It is advantageous to treat another important tool for syntax
analysis first, i.e., parsers.
One of the most widely used of these syntax analyzer
generators is called yacc (yet another compiler-compiler). The
generation of a parser, i.e., a function that creates parse trees
from source programs has been institutionalized in the yacc
command that appears in all UNIX systems. The input to yacc
is a CFG, in a notation that differs only in details from the
well-known BNF. Associated with each production is an action,
which is a fragment of C code that is performed whenever a
node of the parse tree that (combined with its children)
corresponds to this production is created. So, let us continue
with parse trees.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees I

A nice feature of grammars is that they describe the hierarchical
syntactic structure of the sentences of languages they define.
These hierarchical structures are described by parse trees.

Parse trees are a representation for derivations. When used in a
compiler, it is the data structure of choice to represent the
source program. In a compiler, the tree structure of the source
program facilitates the translation of the source program into
executable code by allowing natural, recursive functions to
perform this translation process.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees I

A nice feature of grammars is that they describe the hierarchical
syntactic structure of the sentences of languages they define.
These hierarchical structures are described by parse trees.

Parse trees are a representation for derivations. When used in a
compiler, it is the data structure of choice to represent the
source program. In a compiler, the tree structure of the source
program facilitates the translation of the source program into
executable code by allowing natural, recursive functions to
perform this translation process.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees II

Parse trees are trees defined as follows.

Definition 1
Let G = [T , N, σ, P] be a context-free grammar. A parse tree for G

is a tree satisfying the following conditions.
(1) Each interior node and the root are labeled by a variable

from N.
(2) Each leaf is either labeled by a non-terminal, a terminal or

the empty string. If the leaf is labeled by the empty string,
then it must be the only child of its parent.

(3) If an interior node is labeled by h and its children are
labeled by x1, . . . , xk, respectively, from left to right, then
h → x1 · · · xk is a production from P.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees III

Thus, every subtree of a parse tree describes one instance of an
abstraction in the statement. Next, we define the yield of a
parse tree. If we look at the leaves of any parse tree and
concatenate them from left to right, we get a string. This string
is called the yield of the parse tree.

Clearly, of special importance is the case that the root is labeled
by the start symbol and that the yield is a terminal string, i.e.,
all leaves are labeled with a symbol from T or the empty string.
Thus, the language of a grammar can also be expressed as the
set of yields of those parse trees having the start symbol at the
root and a terminal string as yield.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees III

Thus, every subtree of a parse tree describes one instance of an
abstraction in the statement. Next, we define the yield of a
parse tree. If we look at the leaves of any parse tree and
concatenate them from left to right, we get a string. This string
is called the yield of the parse tree.

Clearly, of special importance is the case that the root is labeled
by the start symbol and that the yield is a terminal string, i.e.,
all leaves are labeled with a symbol from T or the empty string.
Thus, the language of a grammar can also be expressed as the
set of yields of those parse trees having the start symbol at the
root and a terminal string as yield.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees IV

Let us assume that we have the following part of a grammar on
hand that describes how assignment statements are generated.

Example 2

〈assign〉 → 〈id〉 := 〈expr〉
〈id〉 → A | B | C

〈expr〉 → 〈id〉+ 〈expr〉
| 〈id〉 ∗ 〈expr〉
| (〈expr〉)
| 〈id〉

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees V

Now, let us look at the assignment statement A := B ∗ (A+ C)
which can be generated by the following derivation.

〈assign〉 ⇒ 〈id〉 := 〈expr〉
⇒ A := 〈expr〉
⇒ A := 〈id〉 ∗ 〈expr〉
⇒ A := B ∗ 〈expr〉
⇒ A := B ∗ (〈expr〉)
⇒ A := B ∗ (〈id〉+ 〈expr〉)
⇒ A := B ∗ (A+ 〈expr〉)
⇒ A := B ∗ (A+ 〈id〉)
⇒ A := B ∗ (A+ C)

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees V

The structure of the assignment statement that we have just
derived is shown in the parse tree displayed below.

*

<assign>

<expr><id>

A <id> <expr>

:=

(<expr)

<id> <expr>

<id>

C

B

+

A

Figure 1: Parse tree for sentence A := B ∗ (A+ C)

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees VI

Note that syntax analyzers for programming languages, which
are often called parsers, construct parse trees for given
programs. Some systems construct parse trees only implicitly,
but they also use the whole information provided by the parse
tree during the parse. There are two major approaches of how
to build these parse trees. One is top-down and the other one is
bottom-up. In the top-down approach the parse tree is built
from the root to the leaves while in the bottom-up approach the
parse tree is built from the leaves upward to the root.

A major problem one has to handle when constructing such
parsers is ambiguity. We thus direct our attention to this
problem.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Parse Trees VI

Note that syntax analyzers for programming languages, which
are often called parsers, construct parse trees for given
programs. Some systems construct parse trees only implicitly,
but they also use the whole information provided by the parse
tree during the parse. There are two major approaches of how
to build these parse trees. One is top-down and the other one is
bottom-up. In the top-down approach the parse tree is built
from the root to the leaves while in the bottom-up approach the
parse tree is built from the leaves upward to the root.

A major problem one has to handle when constructing such
parsers is ambiguity. We thus direct our attention to this
problem.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity I

Definition 2
A grammar that generates a sentence for which there are two or
more distinct parse trees is said to be ambiguous.

For having an example, let us look at the following part of a
grammar given in Example 3. At first glance this grammar
looks quite similar to the one considered above. The only
difference is that the production for expressions has been
altered by replacing 〈id〉 by 〈expr〉.

However, this small modification leads to serious problems,
because now the grammar provides slightly less syntactic
structure than the grammar considered in Example 2 does.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity I

Definition 2
A grammar that generates a sentence for which there are two or
more distinct parse trees is said to be ambiguous.

For having an example, let us look at the following part of a
grammar given in Example 3. At first glance this grammar
looks quite similar to the one considered above. The only
difference is that the production for expressions has been
altered by replacing 〈id〉 by 〈expr〉.

However, this small modification leads to serious problems,
because now the grammar provides slightly less syntactic
structure than the grammar considered in Example 2 does.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity I

Definition 2
A grammar that generates a sentence for which there are two or
more distinct parse trees is said to be ambiguous.

For having an example, let us look at the following part of a
grammar given in Example 3. At first glance this grammar
looks quite similar to the one considered above. The only
difference is that the production for expressions has been
altered by replacing 〈id〉 by 〈expr〉.

However, this small modification leads to serious problems,
because now the grammar provides slightly less syntactic
structure than the grammar considered in Example 2 does.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity II

Example 3

〈assign〉 → 〈id〉 := 〈expr〉
〈id〉 → A | B | C

〈expr〉 → 〈expr〉+ 〈expr〉
| 〈expr〉 ∗ 〈expr〉
| (〈expr〉)
| 〈id〉

For seeing that this grammar is ambiguous, let us look at the
following assignment statement:

A := B+ C ∗ A .

We skip the two formal derivations possible for this
assignment and look directly at the two parse trees.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity III

<assign>

<id> := <expr>

A <expr> + <expr>

<id> <expr> <expr>

B <id>

*

<id>

C A

<id> := <expr>

<assign>

A <expr> * <expr>

<expr> + <expr> <id>

<id> <id>

CB

A

Figure 2: Two parse trees for the same sentence A := B+ C ∗ A

A := B+ (C ∗ A) A := (B+ C) ∗ A.
Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity IV

These two distinct parse trees cause problems because
compilers base the semantics of the sentences on their syntactic
structure. In particular, compilers decide what code to generate
by examining the parse tree. So, in our example the semantics is
not clear. Let us examine this problem in some more detail.

In the first parse tree (the left one) of Figure 2 the multiplication
operator is generated lower in the tree which would indicate
that it has precedence over the addition operator in the
expression.
The second parse tree in Figure 2, however, is just indicating the
opposite. Clearly, in dependence on what decision the compiler
makes, the result of an actual evaluation of the assignment
given will be either the expected one (that is multiplication has
precedence over addition) or an erroneous one.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity IV

These two distinct parse trees cause problems because
compilers base the semantics of the sentences on their syntactic
structure. In particular, compilers decide what code to generate
by examining the parse tree. So, in our example the semantics is
not clear. Let us examine this problem in some more detail.
In the first parse tree (the left one) of Figure 2 the multiplication
operator is generated lower in the tree which would indicate
that it has precedence over the addition operator in the
expression.

The second parse tree in Figure 2, however, is just indicating the
opposite. Clearly, in dependence on what decision the compiler
makes, the result of an actual evaluation of the assignment
given will be either the expected one (that is multiplication has
precedence over addition) or an erroneous one.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity IV

These two distinct parse trees cause problems because
compilers base the semantics of the sentences on their syntactic
structure. In particular, compilers decide what code to generate
by examining the parse tree. So, in our example the semantics is
not clear. Let us examine this problem in some more detail.
In the first parse tree (the left one) of Figure 2 the multiplication
operator is generated lower in the tree which would indicate
that it has precedence over the addition operator in the
expression.
The second parse tree in Figure 2, however, is just indicating the
opposite. Clearly, in dependence on what decision the compiler
makes, the result of an actual evaluation of the assignment
given will be either the expected one (that is multiplication has
precedence over addition) or an erroneous one.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity V

Although the grammar in Example 2 is not ambiguous, the
precedence order of its operators is not the usual one. Rather, in
this grammar, a parse tree of a sentence with multiple operators
has the rightmost operator at the lowest point, with the other
operators in the tree moving progressively higher as one moves
to the left in the expression.

So, one has to think about a way to overcome this difficulty and
to clearly define the usual operator precedence between
multiplication and addition, or more generally with any
desired operator precedence. As a matter of fact, this goal can
be achieved for our example by using separate nonterminals for
the operands of the operators that have different precedence.
This not only requires additional nonterminals but also
additional productions.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity V

Although the grammar in Example 2 is not ambiguous, the
precedence order of its operators is not the usual one. Rather, in
this grammar, a parse tree of a sentence with multiple operators
has the rightmost operator at the lowest point, with the other
operators in the tree moving progressively higher as one moves
to the left in the expression.
So, one has to think about a way to overcome this difficulty and
to clearly define the usual operator precedence between
multiplication and addition, or more generally with any
desired operator precedence. As a matter of fact, this goal can
be achieved for our example by using separate nonterminals for
the operands of the operators that have different precedence.
This not only requires additional nonterminals but also
additional productions.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity VI

Question
Can we always detect ambiguity?
If ambiguity has been detected, can it always be removed?

The answers are given by the following theorems.

Theorem 1
There is no algorithm deciding whether or not any context-free
grammar is ambiguous.

Theorem 2
There are context-free languages that have nothing but ambiguous
grammars.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity VI

Question
Can we always detect ambiguity?
If ambiguity has been detected, can it always be removed?

The answers are given by the following theorems.

Theorem 1
There is no algorithm deciding whether or not any context-free
grammar is ambiguous.

Theorem 2
There are context-free languages that have nothing but ambiguous
grammars.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity VI

Question
Can we always detect ambiguity?
If ambiguity has been detected, can it always be removed?

The answers are given by the following theorems.

Theorem 1
There is no algorithm deciding whether or not any context-free
grammar is ambiguous.

Theorem 2
There are context-free languages that have nothing but ambiguous
grammars.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity VI

Question
Can we always detect ambiguity?
If ambiguity has been detected, can it always be removed?

The answers are given by the following theorems.

Theorem 1
There is no algorithm deciding whether or not any context-free
grammar is ambiguous.

Theorem 2
There are context-free languages that have nothing but ambiguous
grammars.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity VII

But in practice the situation is not as grim as it may seem.
Many techniques have been proposed to eliminate ambiguity in
the sorts of constructs that typically appear in programming
languages.

So, let us come back to our example and let us show how to
eliminate the ambiguity we have detected. We continue by
providing a grammar generating the same language as the
grammars of Examples 2 and 3, but which clearly indicates the
usual precedence order of multiplication and addition.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity VII

But in practice the situation is not as grim as it may seem.
Many techniques have been proposed to eliminate ambiguity in
the sorts of constructs that typically appear in programming
languages.

So, let us come back to our example and let us show how to
eliminate the ambiguity we have detected. We continue by
providing a grammar generating the same language as the
grammars of Examples 2 and 3, but which clearly indicates the
usual precedence order of multiplication and addition.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity VIII

Example 4

〈assign〉 → 〈id〉 := 〈expr〉
〈id〉 → A | B | C

〈expr〉 → 〈expr〉+ 〈term〉
| 〈term〉

〈term〉 → 〈term〉 ∗ 〈factor〉
| 〈factor〉

〈factor〉 → (〈expr〉)
| 〈id〉

Next, let us derive the same statement as above, i.e.,

A := B+ C ∗ A .

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity VIII

Example 4

〈assign〉 → 〈id〉 := 〈expr〉
〈id〉 → A | B | C

〈expr〉 → 〈expr〉+ 〈term〉
| 〈term〉

〈term〉 → 〈term〉 ∗ 〈factor〉
| 〈factor〉

〈factor〉 → (〈expr〉)
| 〈id〉

Next, let us derive the same statement as above, i.e.,

A := B+ C ∗ A .

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity IX

The derivation is unambiguously obtained as follows:

〈assign〉 ⇒ 〈id〉 := 〈expr〉 ⇒ A := 〈expr〉
⇒ A := 〈expr〉+ 〈term〉
⇒ A := 〈term〉+ 〈term〉
⇒ A := 〈factor〉+ 〈term〉
⇒ A := 〈id〉+ 〈term〉
⇒ A := B+ 〈term〉
⇒ A := B+ 〈term〉 ∗ 〈factor〉
⇒ A := B+ 〈factor〉 ∗ 〈factor〉
⇒ A := B+ 〈id〉 ∗ 〈factor〉
⇒ A := B+ C ∗ 〈factor〉
⇒ A := B+ C ∗ 〈id〉
⇒ A := B+ C ∗ A

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity X

Furthermore, you should note that we have presented a leftmost
derivation above, i.e., the leftmost nonterminal has always been
handled first until it was replaced by a terminal. Thus, the
sentence given above has more than one derivation. If we had
always handled the rightmost nonterminal first, then we would
have been arrived at a rightmost derivation.

Clearly, one could also choose arbitrarily the nonterminal
which allows the application of a production. Try it out, and
construct the resulting parse trees. Usually, one is implicitly
assuming that derivations are leftmost. Thus, we can more
precisely say that a context-free grammar is ambiguous if there is
a sentence in the language it generates that possesses at least
two different leftmost derivations. Otherwise it is called
unambiguous. A language is said to be unambiguous if there is
an unambiguous grammar for it.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity X

Furthermore, you should note that we have presented a leftmost
derivation above, i.e., the leftmost nonterminal has always been
handled first until it was replaced by a terminal. Thus, the
sentence given above has more than one derivation. If we had
always handled the rightmost nonterminal first, then we would
have been arrived at a rightmost derivation.
Clearly, one could also choose arbitrarily the nonterminal
which allows the application of a production. Try it out, and
construct the resulting parse trees. Usually, one is implicitly
assuming that derivations are leftmost. Thus, we can more
precisely say that a context-free grammar is ambiguous if there is
a sentence in the language it generates that possesses at least
two different leftmost derivations. Otherwise it is called
unambiguous. A language is said to be unambiguous if there is
an unambiguous grammar for it.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity XI

Another important problem in describing programming
languages is to express that operators are associative. As you
have learned in mathematics, addition and multiplication are
associative. Is this also true for computer arithmetic? As far as
integer addition and multiplication are concerned, they are
associative. But floating point computer arithmetic is not
always associative. So, in general correct associativity is
essential. The book provides more information.

As an exercise you should try to provide an unambiguous
grammar for the if-then-else statement that is present in many
programming languages.

We continue with further properties of context-free grammars.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity XI

Another important problem in describing programming
languages is to express that operators are associative. As you
have learned in mathematics, addition and multiplication are
associative. Is this also true for computer arithmetic? As far as
integer addition and multiplication are concerned, they are
associative. But floating point computer arithmetic is not
always associative. So, in general correct associativity is
essential. The book provides more information.
As an exercise you should try to provide an unambiguous
grammar for the if-then-else statement that is present in many
programming languages.

We continue with further properties of context-free grammars.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Ambiguity XI

Another important problem in describing programming
languages is to express that operators are associative. As you
have learned in mathematics, addition and multiplication are
associative. Is this also true for computer arithmetic? As far as
integer addition and multiplication are concerned, they are
associative. But floating point computer arithmetic is not
always associative. So, in general correct associativity is
essential. The book provides more information.
As an exercise you should try to provide an unambiguous
grammar for the if-then-else statement that is present in many
programming languages.

We continue with further properties of context-free grammars.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars I

In a context-free grammar, there is no a priori bound on the size
of a right-hand side of a production. This may complicate
many proofs. But, there is a normal form for context-free grammars
bounding the right-hand side to be of length at most 2.
Knowing and applying this considerably simplifies many
proofs.
First, we define the notion of a separated grammar.

Definition 3
A grammar G = [T , N, σ, P] is called separated if for all
(α → β) ∈ P we either have α, β ∈ N∗ or α ∈ N and β ∈ T .

Theorem 3
For every context-free grammar G = [T , N, σ, P] there exists an
equivalent separated context-free grammar G ′ = [T , N ′, σ, P ′].

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars I

In a context-free grammar, there is no a priori bound on the size
of a right-hand side of a production. This may complicate
many proofs. But, there is a normal form for context-free grammars
bounding the right-hand side to be of length at most 2.
Knowing and applying this considerably simplifies many
proofs.
First, we define the notion of a separated grammar.

Definition 3
A grammar G = [T , N, σ, P] is called separated if for all
(α → β) ∈ P we either have α, β ∈ N∗ or α ∈ N and β ∈ T .

Theorem 3
For every context-free grammar G = [T , N, σ, P] there exists an
equivalent separated context-free grammar G ′ = [T , N ′, σ, P ′].

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars I

In a context-free grammar, there is no a priori bound on the size
of a right-hand side of a production. This may complicate
many proofs. But, there is a normal form for context-free grammars
bounding the right-hand side to be of length at most 2.
Knowing and applying this considerably simplifies many
proofs.
First, we define the notion of a separated grammar.

Definition 3
A grammar G = [T , N, σ, P] is called separated if for all
(α → β) ∈ P we either have α, β ∈ N∗ or α ∈ N and β ∈ T .

Theorem 3
For every context-free grammar G = [T , N, σ, P] there exists an
equivalent separated context-free grammar G ′ = [T , N ′, σ, P ′].

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars II

Proof. First, we introduce for every t ∈ T a new nonterminal
symbol ht, where by new we mean that ht < N for all t ∈ T .
Furthermore, we set N ′ = {ht | t ∈ T } ∪N.

Next, for (α → β) ∈ P, we denote the production obtained by
replacing every terminal symbol t in β by ht by
(α → β)[t//ht]. The production set P ′ is then defined as
follows.

P ′ = {(α → β)[t//ht] | (α → β) ∈ P} ∪ {ht → t | t ∈ T } .

By construction, we directly see that G ′ is separated.
Moreover, the construction ensures that G ′ is context-free, too.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars II

Proof. First, we introduce for every t ∈ T a new nonterminal
symbol ht, where by new we mean that ht < N for all t ∈ T .
Furthermore, we set N ′ = {ht | t ∈ T } ∪N.
Next, for (α → β) ∈ P, we denote the production obtained by
replacing every terminal symbol t in β by ht by
(α → β)[t//ht]. The production set P ′ is then defined as
follows.

P ′ = {(α → β)[t//ht] | (α → β) ∈ P} ∪ {ht → t | t ∈ T } .

By construction, we directly see that G ′ is separated.
Moreover, the construction ensures that G ′ is context-free, too.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars II

Proof. First, we introduce for every t ∈ T a new nonterminal
symbol ht, where by new we mean that ht < N for all t ∈ T .
Furthermore, we set N ′ = {ht | t ∈ T } ∪N.
Next, for (α → β) ∈ P, we denote the production obtained by
replacing every terminal symbol t in β by ht by
(α → β)[t//ht]. The production set P ′ is then defined as
follows.

P ′ = {(α → β)[t//ht] | (α → β) ∈ P} ∪ {ht → t | t ∈ T } .

By construction, we directly see that G ′ is separated.
Moreover, the construction ensures that G ′ is context-free, too.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars III

It remains to show that L(G) = L(G ′).
Claim 1. L(G) ⊆ L(G ′).
Let s ∈ L(G). Then there exists a derivation

σ
1⇒ w1

1⇒ w2
1⇒ · · · 1⇒ wn

1⇒ s ,

where w1, . . . , wn ∈ (N ∪ T)+ \ T∗, and s ∈ T∗. Let Pi be the
production used to generate wi, i = 1, . . . , n.

Then we can generate s by using productions from P ′ as
follows. Let s = s1 · · · sm, where sj ∈ T for all j = 1, . . . , m.
Instead of applying Pi we use Pi[t//ht] from P ′ and obtain

σ
1⇒ w ′

1
1⇒ w ′

2
1⇒ · · · 1⇒ w ′

n
1⇒ hs1 · · ·hsm ,

where now w ′
i ∈ (N ′)+ for all i = 1, . . . , n. Thus, in order to

obtain s it now suffices to apply the productions hsj
→ sj for

j = 1, . . . m. This proves Claim 1.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars III

It remains to show that L(G) = L(G ′).
Claim 1. L(G) ⊆ L(G ′).
Let s ∈ L(G). Then there exists a derivation

σ
1⇒ w1

1⇒ w2
1⇒ · · · 1⇒ wn

1⇒ s ,

where w1, . . . , wn ∈ (N ∪ T)+ \ T∗, and s ∈ T∗. Let Pi be the
production used to generate wi, i = 1, . . . , n.
Then we can generate s by using productions from P ′ as
follows. Let s = s1 · · · sm, where sj ∈ T for all j = 1, . . . , m.
Instead of applying Pi we use Pi[t//ht] from P ′ and obtain

σ
1⇒ w ′

1
1⇒ w ′

2
1⇒ · · · 1⇒ w ′

n
1⇒ hs1 · · ·hsm ,

where now w ′
i ∈ (N ′)+ for all i = 1, . . . , n.

Thus, in order to
obtain s it now suffices to apply the productions hsj

→ sj for
j = 1, . . . m. This proves Claim 1.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars III

It remains to show that L(G) = L(G ′).
Claim 1. L(G) ⊆ L(G ′).
Let s ∈ L(G). Then there exists a derivation

σ
1⇒ w1

1⇒ w2
1⇒ · · · 1⇒ wn

1⇒ s ,

where w1, . . . , wn ∈ (N ∪ T)+ \ T∗, and s ∈ T∗. Let Pi be the
production used to generate wi, i = 1, . . . , n.
Then we can generate s by using productions from P ′ as
follows. Let s = s1 · · · sm, where sj ∈ T for all j = 1, . . . , m.
Instead of applying Pi we use Pi[t//ht] from P ′ and obtain

σ
1⇒ w ′

1
1⇒ w ′

2
1⇒ · · · 1⇒ w ′

n
1⇒ hs1 · · ·hsm ,

where now w ′
i ∈ (N ′)+ for all i = 1, . . . , n. Thus, in order to

obtain s it now suffices to apply the productions hsj
→ sj for

j = 1, . . . m. This proves Claim 1.
Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Separated Grammars IV

Claim 2. L(G ′) ⊆ L(G).
This claim can be proved analogously by inverting the
construction used in showing Claim 1.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form I

Now, we are ready to define the normal form for context-free
grammars announced above.

Definition 4
A grammar G = [T , N, σ, P] is said to be in Chomsky normal
form if all productions of P have the form h → h1h2, where
h, h1, h2 ∈ N, or h → x, where h ∈ N and x ∈ T .

The latter definition directly allows the following corollary.

Corollary 4

Let G = [T , N, σ, P] be a grammar in Chomsky normal form. Then
(1) G is context-free,
(2) G is λ-free,
(3) G is separated.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form I

Now, we are ready to define the normal form for context-free
grammars announced above.

Definition 4
A grammar G = [T , N, σ, P] is said to be in Chomsky normal
form if all productions of P have the form h → h1h2, where
h, h1, h2 ∈ N, or h → x, where h ∈ N and x ∈ T .

The latter definition directly allows the following corollary.

Corollary 4

Let G = [T , N, σ, P] be a grammar in Chomsky normal form. Then
(1) G is context-free,
(2) G is λ-free,
(3) G is separated.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form II

Now, we can show:

Theorem 5
For every context-free grammar G = [T , N, σ, P] such that λ < L(G)

there exists an equivalent grammar G ′ that is in Chomsky normal
form.

Proof. Let G = [T , N, σ, P] be given. Without loss of generality,
we may assume that G is reduced.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form II

Now, we can show:

Theorem 5
For every context-free grammar G = [T , N, σ, P] such that λ < L(G)

there exists an equivalent grammar G ′ that is in Chomsky normal
form.

Proof. Let G = [T , N, σ, P] be given. Without loss of generality,
we may assume that G is reduced.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form III

First, we eliminate all productions of the form h → h ′. This is
done as follows. We set

W0(h) = {h} for every h ∈ N

and for each i > 0 we define

Wi+1(h) = Wi(h)∪{h̃ | h̃ ∈ N, (ĥ → h̃) ∈ P for some ĥ ∈ Wi(h)} .

Then, the following facts are obvious:
(1) Wi(h) ⊆ Wi+1(h) for all i > 0,
(2) If Wi(h) = Wi+1(h) then Wi(h) = Wi+m(h) for all m ∈N,
(3) Wn(h) = Wn+1(h) for n = card(N),

(4) Wn(h) = {B | B ∈ N and h
∗⇒ B}.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form III

First, we eliminate all productions of the form h → h ′. This is
done as follows. We set

W0(h) = {h} for every h ∈ N

and for each i > 0 we define

Wi+1(h) = Wi(h)∪{h̃ | h̃ ∈ N, (ĥ → h̃) ∈ P for some ĥ ∈ Wi(h)} .

Then, the following facts are obvious:
(1) Wi(h) ⊆ Wi+1(h) for all i > 0,
(2) If Wi(h) = Wi+1(h) then Wi(h) = Wi+m(h) for all m ∈N,
(3) Wn(h) = Wn+1(h) for n = card(N),

(4) Wn(h) = {B | B ∈ N and h
∗⇒ B}.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form IV

Now, we define

P1 = {h → γ | h ∈ N, γ < N, (B → γ) ∈ P

for some B ∈ Wn(h)} .

Let G1 = [T , N, σ, P1],

then by construction P1 does not contain
any production of the form h → h ′. These productions have
been replaced by h → γ. That is, if we had h

∗⇒ B by using the
productions from P and B → γ, then we now have the
production h → γ in P1. Also note that P1 contains all original
productions (h → γ) ∈ P, where γ < N by the definition of W0.

We leave it as an exercise to formally verify that L(G1) = L(G).

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form IV

Now, we define

P1 = {h → γ | h ∈ N, γ < N, (B → γ) ∈ P

for some B ∈ Wn(h)} .

Let G1 = [T , N, σ, P1], then by construction P1 does not contain
any production of the form h → h ′. These productions have
been replaced by h → γ. That is, if we had h

∗⇒ B by using the
productions from P and B → γ, then we now have the
production h → γ in P1. Also note that P1 contains all original
productions (h → γ) ∈ P, where γ < N by the definition of W0.

We leave it as an exercise to formally verify that L(G1) = L(G).

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form V

Next, from G1 we construct an equivalent separated grammar
G2 by using the algorithm given above. Now, the only
productions in P2 that still need modification are of the form

h → h1h2 · · ·hn , where n > 3 .

We replace any such production by the following productions

h → h1hh2···hn

hh2···hn → h2hh3···hn

·
·
·

hhn−1hn → hn−1hn

Hence, the resulting grammar G ′ is in Chomsky normal form
and by construction equivalent to G. We omit the details.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form V

Next, from G1 we construct an equivalent separated grammar
G2 by using the algorithm given above. Now, the only
productions in P2 that still need modification are of the form

h → h1h2 · · ·hn , where n > 3 .

We replace any such production by the following productions

h → h1hh2···hn

hh2···hn → h2hh3···hn

·
·
·

hhn−1hn → hn−1hn

Hence, the resulting grammar G ′ is in Chomsky normal form
and by construction equivalent to G. We omit the details.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Chomsky Normal Form V

Next, from G1 we construct an equivalent separated grammar
G2 by using the algorithm given above. Now, the only
productions in P2 that still need modification are of the form

h → h1h2 · · ·hn , where n > 3 .

We replace any such production by the following productions

h → h1hh2···hn

hh2···hn → h2hh3···hn

·
·
·

hhn−1hn → hn−1hn

Hence, the resulting grammar G ′ is in Chomsky normal form
and by construction equivalent to G. We omit the details.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma I

We finish this lecture by pointing to an important result which
can be proved by using the Chomsky normal form. This result
is usually referred to as Pumping Lemma for context-free
languages or Lemma of Bar-Hillel or qrsuv-Theorem.

Please note that the qrsuv-Theorem provides a necessary
condition for a language to be context-free. It is not sufficient.
So its main importance lies in the fact that one can often use it
to show that a language is not context-free.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma I

We finish this lecture by pointing to an important result which
can be proved by using the Chomsky normal form. This result
is usually referred to as Pumping Lemma for context-free
languages or Lemma of Bar-Hillel or qrsuv-Theorem.

Please note that the qrsuv-Theorem provides a necessary
condition for a language to be context-free. It is not sufficient.
So its main importance lies in the fact that one can often use it
to show that a language is not context-free.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma II

Theorem 6 (qrsuv-Theorem, Pumping Lemma)

For every context-free language L there is a number k such that for
every w ∈ L with |w| > k there are strings q, r, s, u, v such that
(1) w = qrsuv,
(2) |rsu| 6 k,
(3) ru , λ, and
(4) qrisuiv ∈ L for all i ∈N.

Proof. Let G = [T , N, σ, P] be any context-free grammar in CNF
for L. Then all parse trees are binary trees except the last
derivation step.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma II

Theorem 6 (qrsuv-Theorem, Pumping Lemma)

For every context-free language L there is a number k such that for
every w ∈ L with |w| > k there are strings q, r, s, u, v such that
(1) w = qrsuv,
(2) |rsu| 6 k,
(3) ru , λ, and
(4) qrisuiv ∈ L for all i ∈N.

Proof. Let G = [T , N, σ, P] be any context-free grammar in CNF
for L. Then all parse trees are binary trees except the last
derivation step.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma III

Let n = card(N) and k = 2n and consider the parse tree for any
string w ∈ L(G) with |w| > k. So, any of the parse trees for w

must have depth at least n. Hence, there must exist a path from
the root σ to a leaf having length at least n. Including σ there
are n+ 1 nonterminals on this path. Hence, some nonterminal h

has to appear at least twice (see Figure 3, Part (a)).

Part (a) Part (b)

last derivation
step

σσ

w

︸ ︷︷ ︸
h h

h h

q r s u v

Figure 3: Parse trees for illustrating the proof of the qrsuv-Theorem

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma IV

Now, starting from the leaves and going up, we fix a path
containing two times h and we fix the first two occurrences of
h. In this way, we guarantee that the higher located occurrence
of h is at most n steps above the leaves.

Next, we look at the substrings that are generated from these
two occurrences of h. This gives us the substrings qrsuv (see
Figure 3, Part (b)).

Because G is in CNF, at the higher occurrence of h a production
of the form h → h1h2 must have been applied. Consequently,
r , λ or u , λ, and Assertion (3) is shown.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma IV

Now, starting from the leaves and going up, we fix a path
containing two times h and we fix the first two occurrences of
h. In this way, we guarantee that the higher located occurrence
of h is at most n steps above the leaves.

Next, we look at the substrings that are generated from these
two occurrences of h. This gives us the substrings qrsuv (see
Figure 3, Part (b)).

Because G is in CNF, at the higher occurrence of h a production
of the form h → h1h2 must have been applied. Consequently,
r , λ or u , λ, and Assertion (3) is shown.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma IV

Now, starting from the leaves and going up, we fix a path
containing two times h and we fix the first two occurrences of
h. In this way, we guarantee that the higher located occurrence
of h is at most n steps above the leaves.

Next, we look at the substrings that are generated from these
two occurrences of h. This gives us the substrings qrsuv (see
Figure 3, Part (b)).

Because G is in CNF, at the higher occurrence of h a production
of the form h → h1h2 must have been applied. Consequently,
r , λ or u , λ, and Assertion (3) is shown.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma V

Assertion (2) follows from the fact that the higher located
occurrence of h is at most n steps above the leaves. Thus, the
string rsu derived from this h can have length at most 2n = k.

It remains to show Assertion (4). This is done by modifying the
parse tree. First, we may remove the subtree rooted at the
higher located occurrence of h and replace it by the subtree
rooted at the lower located occurrence of h (see Figure 4,
Part (a)). In this way, we get a generation of qsv, i.e.,
qr0su0v ∈ L(G).

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma V

Assertion (2) follows from the fact that the higher located
occurrence of h is at most n steps above the leaves. Thus, the
string rsu derived from this h can have length at most 2n = k.

It remains to show Assertion (4). This is done by modifying the
parse tree. First, we may remove the subtree rooted at the
higher located occurrence of h and replace it by the subtree
rooted at the lower located occurrence of h (see Figure 4,
Part (a)). In this way, we get a generation of qsv, i.e.,
qr0su0v ∈ L(G).

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma VI

Part (a)

Part (b)
s

σ

h

q

s

v

σ

h

q v

h

r u
h

r u

Figure 4: Illustrating Assertion (4) of the qrsuv-Theorem

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma VII

Second, we remove the subtree rooted at the lower located
occurrence of h and replace it by the subtree rooted at the
higher located occurrence of h (see Figure 4, Part (b)). In this
way, we get a derivation of qr2su2v and thus, qr2su2v ∈ L(G).
Iterating this idea shows qrisuiv ∈ L(G) for every i ∈N+.

For having an application of Theorem 6, we show the following
Theorem, thus completing the proof of Theorem 6.5.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma VII

Second, we remove the subtree rooted at the lower located
occurrence of h and replace it by the subtree rooted at the
higher located occurrence of h (see Figure 4, Part (b)). In this
way, we get a derivation of qr2su2v and thus, qr2su2v ∈ L(G).
Iterating this idea shows qrisuiv ∈ L(G) for every i ∈N+.

For having an application of Theorem 6, we show the following
Theorem, thus completing the proof of Theorem 6.5.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Pumping Lemma VIII

Theorem 7

L = {anbncn | n ∈N} < CF.

Proof. Suppose the converse. Then, by Theorem 6 there is a k

such that for all w ∈ L with |w| > k we have:

There are substrings q, r, s, u, v with |ru| > 0 and for all
w = qrsuv ∈ L we must have qrisuiv ∈ L, too, for all i ∈N.
Now, consider w = akbkck. Consequently, |w| = 3k > k. By
Assertion (2) of Theorem 6 we have |rsu| 6 k, and thus ru

cannot contain a’s, b’s and c’s. Since |ru| > 0 and by
Assertion (4) (applied for i = 0), we must have
qr0su0v = qsv ∈ L. But, as discussed above, qsv , a`b`c` for
every ` ∈N, a contradiction.

Theory of Computation c©Thomas Zeugmann

Backus-Naur Form Parse Trees, Ambiguity Chomsky Normal Form Pumping Lemma End

Thank you!

Theory of Computation c©Thomas Zeugmann

	Backus-Naur Form
	

	Parse Trees, Ambiguity
	

	Chomsky Normal Form
	

	Pumping Lemma
	

	End
	

