Theory of Computation

Thomas Zeugmann

Hokkaido University Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/~thomas/ToC/

Lecture 8: CF and Homomorphisms

Substitutions I

In this lecture we continue with further useful properties and characterizations of context-free languages. First, we look at substitutions.

Substitutions I

In this lecture we continue with further useful properties and characterizations of context-free languages. First, we look at substitutions.

Definition 1

Let Σ and Δ be any two finite alphabets. A mapping $\tau: \Sigma \longrightarrow \wp(\Delta^*)$ is said to be a *substitution*. We extend τ to be a mapping $\tau: \Sigma^* \longrightarrow \wp(\Delta^*)$ (i.e., to strings) by defining (1) $\tau(\lambda) = \lambda$,

(2) $\tau(wx) = \tau(w)\tau(x)$ for all $w \in \Sigma^*$ and $x \in \Sigma$.

The mapping τ is generalized to languages $L\subseteq \Sigma^*$ by setting

$$\tau(\mathsf{L}) = \bigcup_{w \in \mathsf{L}} \tau(w) \; .$$

So, a substitution maps every symbol of Σ to a language over Δ . The language a symbol is mapped to can be finite or infinite. So, a substitution maps every symbol of Σ to a language over Δ . The language a symbol is mapped to can be finite or infinite.

Example 1

Let $\Sigma = \{0, 1\}$ and let $\Delta = \{a, b\}$. Then, the mapping τ defined by $\tau(\lambda) = \lambda$, $\tau(0) = \{a\}$ and $\tau(1) = \{b\}^*$ is a substitution.

Let us calculate $\tau(010)$. By definition,

 $\tau(010)=\tau(01)\tau(0)=\tau(0)\tau(1)\tau(0)=\{a\}\!\{b\}^*\!\{a\}=\underline{a}\langle\underline{b}\rangle\underline{a}$,

where the latter equality is by the definition of regular expressions.

Substitutions III

Next, we want to define what is meant by closure of a language family \mathcal{L} under substitutions. Here special care is necessary. At first glance, we may be tempted to require that for every substitution τ the condition $\tau(L) \in \mathcal{L}$ has to be satisfied. But this is a too strong demand. Why? Next, we want to define what is meant by closure of a language family \mathcal{L} under substitutions. Here special care is necessary. At first glance, we may be tempted to require that for every substitution τ the condition $\tau(L) \in \mathcal{L}$ has to be satisfied. But this is a too strong demand. Why?

Consider $\Sigma = \{0, 1\}, \Delta = \{a, b\}$ and $\mathcal{L} = \Re \mathfrak{E} \mathfrak{G}$. Furthermore, suppose that $\tau(0) = L$, where L is any recursively enumerable but non-recursive language over Δ .

Next, we want to define what is meant by closure of a language family \mathcal{L} under substitutions. Here special care is necessary. At first glance, we may be tempted to require that for every substitution τ the condition $\tau(L) \in \mathcal{L}$ has to be satisfied. But this is a too strong demand. Why?

Consider $\Sigma = \{0, 1\}, \Delta = \{a, b\}$ and $\mathcal{L} = \Re \mathcal{E} \mathcal{G}$. Furthermore, suppose that $\tau(0) = L$, where L is any recursively enumerable but non-recursive language over Δ .

Then we obviously have $\tau(\{0\}) = L$, too. Consequently, $\tau(\{0\}) \notin \Re \mathcal{E} \mathcal{G}$. On the other hand, $\{0\} \in \Re \mathcal{E} \mathcal{G}$, and thus we would conclude that $\Re \mathcal{E} \mathcal{G}$ is not closed under substitution. Also, the same argument would prove that \mathcal{CF} is not closed under substitution.

The point to be made here is that we have to restrict the set of allowed substitutions to those ones that map the elements of Σ to languages belonging to \mathcal{L} . Therefore, we arrive at the following definition.

The point to be made here is that we have to restrict the set of allowed substitutions to those ones that map the elements of Σ to languages belonging to \mathcal{L} . Therefore, we arrive at the following definition.

Definition 2

Let Σ be any alphabet, and let \mathcal{L} be any language family over Σ . We say that \mathcal{L} is *closed under substitutions* if for every substitution $\tau: \Sigma \longrightarrow \mathcal{L}$ and every $L \in \mathcal{L}$ we have $\tau(L) \in \mathcal{L}$.

Homomorphisms I

Definition 3

Let Σ and Δ be any two finite alphabets. A mapping $\varphi: \Sigma^* \longrightarrow \Delta^*$ is said to be a *homomorphism* if

 $\varphi(\nu w) = \varphi(\nu)\varphi(w) \quad \text{ for all } \nu, w \in \Sigma^* \ .$

 φ is said to be a λ -*free homomorphism*, if additionally

 $\varphi(w) = \lambda$ implies $w = \lambda$ for all $w \in \Sigma^*$.

Moreover, if $\varphi: \Sigma^* \longrightarrow \Delta^*$ is a homomorphism then we define the *inverse of the homomorphism* φ to be the mapping $\varphi^{-1}: \Delta^* \longrightarrow \wp(\Sigma^*)$ by setting for each $s \in \Delta^*$

$$\varphi^{-1}(s) = \{w \mid w \in \Sigma^* \text{ and } \varphi(w) = s\}.$$

Homomorphisms II

So, a homomorphism is a special case of a substitution.

Homomorphisms II

Homomorphic Characterization

End 0

So, a homomorphism is a special case of a substitution. That is, a homomorphism is a substitution that maps every symbols of Σ to a *singleton* set. Clearly, by the definition of homomorphism, it already suffices to declare the mapping φ for the symbols in Σ . Note that, when dealing with homomorphisms we usually identify the language containing exactly one string by the string itself, i.e., instead of {s} we shortly write s.

Homomorphisms II

So, a homomorphism is a special case of a substitution. That is, a homomorphism is a substitution that maps every symbols of Σ to a *singleton* set. Clearly, by the definition of homomorphism, it already suffices to declare the mapping φ for the symbols in Σ . Note that, when dealing with homomorphisms we usually identify the language containing exactly one string by the string itself, i.e., instead of {s} we shortly write s.

Example 2

Let $\Sigma = \{0, 1\}$ and let $\Delta = \{a, b\}$. Then, the mapping $\varphi \colon \Sigma^* \longrightarrow \Delta^*$ defined by $\varphi(0) = ab$ and $\varphi(1) = \lambda$ is a homomorphisms but *not* a λ -*free homomorphism*. Applying φ to 1100 yields $\varphi(1100) = \varphi(1)\varphi(1)\varphi(0)\varphi(0) = \lambda\lambda abab = abab$ and to the language $\underline{1}\langle \underline{0} \rangle \underline{1}$ gives $\varphi(\underline{1}\langle \underline{0} \rangle \underline{1}) = \langle \underline{ab} \rangle$.

Remarks

For seeing the importance of the notions just introduced consider the language $L = \{a^n b^n \mid n \in \mathbb{N}\}$. This language is context-free. Thus, we intuitively know that $\{0^n 1^n \mid n \in \mathbb{N}\}$ is also context-free, since we could go through the grammar and replace all occurrences of a by 0 and all occurrences of b by 1.

Remarks

For seeing the importance of the notions just introduced consider the language $L = \{a^n b^n \mid n \in \mathbb{N}\}$. This language is context-free. Thus, we intuitively know that $\{0^n 1^n \mid n \in \mathbb{N}\}$ is also context-free, since we could go through the grammar and replace all occurrences of a by 0 and all occurrences of b by 1.

This observation would suggest that if we replace all occurrences of a and b by strings v and w, respectively, we also get a context-free language. However, it is much less intuitive that we also obtain a context-free language if all occurrences of a and b are replaced by context-free sets of strings V and W, respectively.

Remarks

For seeing the importance of the notions just introduced consider the language $L = \{a^n b^n \mid n \in \mathbb{N}\}$. This language is context-free. Thus, we intuitively know that $\{0^n 1^n \mid n \in \mathbb{N}\}$ is also context-free, since we could go through the grammar and replace all occurrences of a by 0 and all occurrences of b by 1.

This observation would suggest that if we replace all occurrences of a and b by strings v and w, respectively, we also get a context-free language. However, it is much less intuitive that we also obtain a context-free language if all occurrences of a and b are replaced by context-free sets of strings V and W, respectively.

Nevertheless, we just aim to prove this *closure* property. In the following we always assume two finite alphabets Σ and Δ as in the definition of substitution.

Closure under Substitutions I

Theorem 1

CF is closed under substitutions.

Theorem 1

CF is closed under substitutions.

Proof. Let $L \in C\mathcal{F}$ be arbitrarily fixed and let τ be a substitution such that $\tau(a)$ is a context-free language for all $a \in \Sigma$. We have to show that $\tau(L)$ is context-free. We shall do this by providing a context-free grammar $\overline{\mathcal{G}} = [\overline{T}, \overline{N}, \overline{\sigma}, \overline{P}]$ such that $L(\overline{\mathcal{G}}) = \tau(L)$.

Theorem 1

CF is closed under substitutions.

Proof. Let $L \in C\mathcal{F}$ be arbitrarily fixed and let τ be a substitution such that $\tau(\mathfrak{a})$ is a context-free language for all $\mathfrak{a} \in \Sigma$. We have to show that $\tau(L)$ is context-free. We shall do this by providing a context-free grammar $\overline{\mathcal{G}} = [\overline{T}, \overline{N}, \overline{\sigma}, \overline{P}]$ such that $L(\overline{\mathcal{G}}) = \tau(L)$.

Since $L \in C\mathcal{F}$, there exists a context-free grammar $\mathcal{G} = [\Sigma, N, \sigma, P]$ in Chomsky normal form such that $L = L(\mathcal{G})$. Next, let $\Sigma = \{a_1, \ldots, a_n\}$ and consider $\tau(a)$ for all $a \in \Sigma$. By assumption, $\tau(a) \in C\mathcal{F}$ for all $a \in \Sigma$. Thus, there are context-free grammars $\mathcal{G}_a = [T_a, N_a, \sigma_a, P_a]$ such that $\tau(a) = L(\mathcal{G}_a)$ for all $a \in \Sigma$. Without loss of generality, we can assume the sets $N, N_{a_1}, \ldots, N_{a_n}$ to be pairwise disjoint and disjoint to all terminal alphabets considered. Substitutions and Homomorphisms

Homomorphic Characterization

Closure under Substitutions II

At this point we need an *idea how to proceed*. To get this idea, we look at possible derivations in *G*. Suppose we have a derivation

$$\sigma \stackrel{*}{\Longrightarrow} x_1 x_2 \cdots x_m$$
 ,

where all $x_i \in \Sigma$ for i = 1, ..., m.

Substitutions and Homomorphisms

Homomorphic Characterization

Closure under Substitutions II

At this point we need an *idea how to proceed*. To get this idea, we look at possible derivations in *G*. Suppose we have a derivation

$$\sigma \stackrel{*}{\Longrightarrow} x_1 x_2 \cdots x_m ,$$

where all $x_i \in \Sigma$ for i = 1, ..., m. Then, since \mathcal{G} is in Chomsky normal form, we can conclude that there must be productions $(h_{x_i} \rightarrow x_i) \in P, i = 1, ..., m$, and hence achieve the following.

$$\sigma \stackrel{*}{\underset{\mathcal{G}}{\Longrightarrow}} h_{x_1} h_{x_2} \cdots h_{x_m} \stackrel{m}{\underset{\mathcal{G}}{\Longrightarrow}} x_1 x_2 \cdots x_m , \qquad (1)$$

where all $h_{x_i} \in N$.

Theory of Computation

Taking into account that the image $\tau(x_1 \cdots x_m)$ is obtained by calculating

$$\tau(\mathbf{x}_1)\tau(\mathbf{x}_2)\cdots\tau(\mathbf{x}_m)$$
,

we see that for every string $w_1 w_2 \cdots w_m$ in this image there must be a derivation

$$\sigma_{x_i} \stackrel{*}{\underset{g_{x_i}}{\Longrightarrow}} w_i \quad i = 1, \dots, m.$$

This directly yields the idea for constructing $\overline{9}$.

Closure under Substitutions IV

We aim to cut the derivation in (1) when having obtained $h_{x_1}h_{x_2}\cdots h_{x_m}$. Instead of deriving $x_1x_2\cdots x_m$, all we need is to generate $\sigma_{x_1}\cdots \sigma_{x_m}$, and thus, we have to replace the productions $(h_{x_i} \rightarrow x_i) \in P$ by $(h_{x_i} \rightarrow \sigma_{x_i}) \in \overline{P}$, i = 1, ..., m. So we define:

Closure under Substitutions IV

We aim to cut the derivation in (1) when having obtained $h_{x_1}h_{x_2}\cdots h_{x_m}$. Instead of deriving $x_1x_2\cdots x_m$, all we need is to generate $\sigma_{x_1}\cdots \sigma_{x_m}$, and thus, we have to replace the productions $(h_{x_i} \rightarrow x_i) \in P$ by $(h_{x_i} \rightarrow \sigma_{x_i}) \in \overline{P}$, i = 1, ..., m. So we define:

$$\begin{split} \overline{\mathsf{T}} &= \bigcup_{\alpha \in \Sigma} \mathsf{T}_{\alpha} \\ \overline{\mathsf{N}} &= \mathsf{N} \cup \left(\bigcup_{\alpha \in \Sigma} \mathsf{N}_{\alpha} \right) \\ \overline{\sigma} &= \sigma \\ \overline{\mathsf{P}} &= \left(\bigcup_{\alpha \in \Sigma} \mathsf{P}_{\alpha} \right) \cup \mathsf{P}[\alpha /\!\!/ \sigma_{\alpha}] \,. \end{split}$$

We set $\overline{9} = [\overline{T}, \overline{N}, \overline{\sigma}, \overline{P}].$

Substitutions and Homomorphisms

Homomorphic Characterization

Closure under Substitutions V

It remains to show that $\tau(L) = L(\overline{\mathcal{G}})$.

Claim 1. $\tau(L) \subseteq L(\overline{\mathcal{G}})$.

Substitutions and Homomorphisms

Closure under Substitutions V

It remains to show that $\tau(L) = L(\overline{\mathfrak{G}})$.

Claim 1. $\tau(L) \subseteq L(\overline{\mathcal{G}})$.

If
$$\sigma \stackrel{*}{\underset{\mathcal{G}}{\Longrightarrow}} x_1 \cdots x_m$$
, where $x_i \in \Sigma$ and if $\sigma_{x_i} \stackrel{*}{\underset{\mathcal{G}_{x_i}}{\Longrightarrow}} w_i$, where

 $w_i \in T^*_{x_i}$, i = 1, ..., m, then we derive $x_1 \cdots x_m$ as follows:

$$\sigma \stackrel{*}{\underset{\mathcal{G}}{\Longrightarrow}} h_{x_1} \cdots h_{x_m} \stackrel{*}{\underset{\mathcal{G}}{\Longrightarrow}} x_1 \cdots x_m ,$$

where all $h_{x_i} \in N$. By construction, we can thus generate

$$\sigma \stackrel{*}{\underset{\overline{g}}{\Longrightarrow}} h_{x_1} \cdots h_{x_m} \stackrel{*}{\underset{\overline{g}}{\Longrightarrow}} \sigma_{x_1} \cdots \sigma_{x_m} \stackrel{*}{\underset{\overline{g}}{\Longrightarrow}} w_1 \cdots w_m .$$

Hence, Claim 1 follows.

Closure under Substitutions VI

Claim 2. $L(\overline{\mathcal{G}}) \subseteq \tau(L)$.

Now, we start from $\sigma \stackrel{*}{\Rightarrow} w$, where $w \in \overline{T}^*$. If $w = \lambda$, then also $\sigma \to \lambda$ in P, and we are done.

Closure under Substitutions VI

Claim 2. $L(\overline{\mathcal{G}}) \subseteq \tau(L)$.

Now, we start from $\sigma \stackrel{*}{\Rightarrow} w$, where $w \in \overline{T}^*$. If $w = \lambda$, then also $\sigma \rightarrow \lambda$ in P, and we are done. Otherwise, the construction of $\overline{\mathcal{G}}$ ensures that the derivation of *w* must look as follows.

$$\sigma \stackrel{*}{\Longrightarrow} \sigma_{x_1} \cdots \sigma_{x_m} \stackrel{*}{\Longrightarrow} w$$

Closure under Substitutions VI

Claim 2. $L(\overline{\mathcal{G}}) \subseteq \tau(L)$.

Now, we start from $\sigma \stackrel{*}{\Rightarrow} w$, where $w \in \overline{T}^*$. If $w = \lambda$, then also $\sigma \to \lambda$ in P, and we are done. Otherwise, the construction of $\overline{\mathcal{G}}$ ensures that the derivation of w must look as follows.

$$\sigma \stackrel{*}{\Longrightarrow} \sigma_{x_1} \cdots \sigma_{x_m} \stackrel{*}{\Longrightarrow} w.$$

By our construction we then know that $\sigma \stackrel{*}{\Longrightarrow} x_1 \cdots x_m$ as we

have shown in (1). Also, there are strings $w_1, \ldots, w_m \in \overline{\mathsf{T}}^*$ such

that
$$w = w_1 \cdots w_m$$
 and $\sigma_{x_i} \xrightarrow{*}_{\mathcal{G}_{x_i}} w_i$ for all $i = 1, \dots, m$.

Consequently, $w_i \in \tau(x_i)$. Therefore, $w \in \tau(L)$ and we are done.

Closure under Substitutions VII

Consequently, $w_i \in \tau(x_i)$. Therefore, $w \in \tau(L)$ and we are done.

Finally, putting Claim 1 and 2 together, we see that

 $\tau(L) = L(\overline{\mathfrak{G}}) \; .$

Closure under Substitutions VII

Consequently, $w_i \in \tau(x_i)$. Therefore, $w \in \tau(L)$ and we are done.

Finally, putting Claim 1 and 2 together, we see that

 $\tau(L) = L(\overline{\mathfrak{G}}) \ .$

Our Theorem allows the following nice corollary.

Corollary 2

CF is closed under homomorphisms.

Proof. Since homomorphisms are a special type of substitution, it suffices to argue that every singleton subset is context-free. But this is obvious, because we have already shown that every finite language belongs to \mathcal{REG} and that $\mathcal{REG} \subseteq C\mathcal{F}$. Thus, the corollary follows.

Dyck Languages I

When we started to study context-free languages, we emphasized that many programming languages use balanced brackets of different kinds. Therefore, we continue with a closer look at bracket languages. Such languages are called *Dyck languages*.

Dyck Languages I

When we started to study context-free languages, we emphasized that many programming languages use balanced brackets of different kinds. Therefore, we continue with a closer look at bracket languages. Such languages are called *Dyck languages*.

In order to define Dyck languages, we need the following notations. Let $n\in\mathbb{N}^+$ and let

$$X_n = \{a_1, \overline{a}_1, a_2, \overline{a}_2, \ldots, a_n, \overline{a}_n\}.$$

We consider the set X_n as a set of different bracket symbols, where a_i is an opening bracket and \overline{a}_i is the corresponding closing bracket. Thus, it is justified to speak of X_n as a set of n different bracket symbols.

Dyck Languages II

Now we are ready to define Dyck languages.

Definition 4

A language L is said to be a *Dyck language* with n bracket symbols if L is isomorphic to the language D_n generated by the following grammar $\mathcal{G}_n = [X_n, \{\sigma\}, \sigma, P_n]$, where P_n is given by

$$\mathsf{P}_{\mathsf{n}} = \{ \sigma \ \rightarrow \ \lambda, \ \sigma \ \rightarrow \ \sigma\sigma, \ \sigma \ \rightarrow \ \mathfrak{a}_{1}\sigma\overline{\mathfrak{a}}_{1}, \ \ldots, \ \sigma \ \rightarrow \ \mathfrak{a}_{\mathsf{n}}\sigma\overline{\mathfrak{a}}_{\mathsf{n}} \}.$$

Dyck Languages II

Now we are ready to define Dyck languages.

Definition 4

A language L is said to be a *Dyck language* with n bracket symbols if L is isomorphic to the language D_n generated by the following grammar $\mathcal{G}_n = [X_n, \{\sigma\}, \sigma, P_n]$, where P_n is given by

$$\mathsf{P}_{\mathsf{n}} = \{ \sigma \ \rightarrow \ \lambda, \ \sigma \ \rightarrow \ \sigma\sigma, \ \sigma \ \rightarrow \ \mathfrak{a}_{1}\sigma\overline{\mathfrak{a}}_{1}, \ \ldots, \ \sigma \ \rightarrow \ \mathfrak{a}_{\mathsf{n}}\sigma\overline{\mathfrak{a}}_{\mathsf{n}} \} \,.$$

The importance of Dyck languages will become immediately transparent, since we are going to prove a beautiful characterization theorem for context-free languages by using them. Substitutions and Homomorphisms 0000000000000 Homomorphic Characterization

Chomsky-Schützenberger Theorem I

Theorem 3 (Chomsky-Schützenberger Theorem)

For every context-free language L there are $n \in \mathbb{N}^+$, a homomorphism h and a regular language R_L such that

 $L = h(D_n \cap R_L) .$

Chomsky-Schützenberger Theorem II

Proof. Consider any arbitrarily fixed context-free language L. Without loss of generality we can assume that $\lambda \notin L$. Furthermore, let $\mathcal{G} = [T, N, \sigma, P]$ be a context-free grammar in Chomsky normal form such that $L = L(\mathcal{G})$. Let $T = \{x_1, \ldots, x_m\}$ and consider all productions in P. Since \mathcal{G} is in Chomsky normal form, all productions have the form $h_i \rightarrow h'_i h''_i$ or $h_j \rightarrow x$. Let t be the number of all nonterminal productions, i.e., of all productions $h_i \rightarrow h'_i h''_i$. Note that for any two such productions it is well possible that some but not all nonterminal symbols coincide.

Chomsky-Schützenberger Theorem III

In all we have m terminal symbols and t nonterminal productions. Thus, we try the Dyck language D_{m+t} over

$$X_{m+t} = \{\overline{x}_1, \dots, \overline{x}_m, \overline{x}_{m+1}, \dots, \overline{x}_{m+t}, x_{m+1}, \dots, \overline{x}_{m+t}, x_{m+1}, \dots, x_m\}.$$

Chomsky-Schützenberger Theorem III

In all we have m terminal symbols and t nonterminal productions. Thus, we try the Dyck language D_{m+t} over

$$X_{m+t} = \{\overline{x}_1, \dots, \overline{x}_m, \overline{x}_{m+1}, \dots, \overline{x}_{m+t}, x_{m+1}, \dots, \overline{x}_{m+t}, x_{m+1}, \dots, x_m\}.$$

Next, we consider the mapping $\chi_{m+t} \colon X_{m+t} \longrightarrow T^*$ defined as follows.

$$\chi_{m+t}(x_j) = \begin{cases} x_j, & \text{if } 1 \leqslant j \leqslant m ; \\ \lambda, & \text{if } m+1 \leqslant j \leqslant m+t ; \end{cases}$$

and $\chi_{m+t}(\overline{x}_j) = \lambda$ for all j = 1, ..., m + t. We leave it as an exercise to show that χ_{m+t} is a homomorphism.

Chomsky-Schützenberger Theorem IV

Now we are ready to define the following grammar $G_L = [X_{m+t}, N, \sigma, P_L]$, where

$$\begin{array}{rcl} \mathsf{P}_L &=& \{h \ \rightarrow \ x_i \overline{x}_i \ | \ 1 \leqslant i \leqslant m \ \text{and} \ (h \ \rightarrow \ x_i) \in \mathsf{P} \} \\ & \cup & \{h \ \rightarrow \ x_i \overline{x}_i \overline{x}_{m+j} h_j'' \ | \ 1 \leqslant i \leqslant m, \ (h \ \rightarrow \ x_i) \in \mathsf{P}, \ 1 \leqslant j \leqslant t \} \\ & \cup & \{h_j \ \rightarrow \ x_{m+j} h_j' \ | \ 1 \leqslant j \leqslant t \} \,. \end{array}$$

Clearly, ${\mathfrak G}_L$ is a regular grammar. We set $R_L = L({\mathfrak G}_L),$ and aim to prove that

$$L = \chi_{\mathfrak{m}+\mathfrak{t}}(\mathsf{D}_{\mathfrak{m}+\mathfrak{t}} \cap \mathsf{R}_L) \,.$$

This is done via the following claims and lemmata.

Homomorphic Characterization

Chomsky-Schützenberger Theorem V

Claim 1. $L \subseteq \chi_{m+t}(D_{m+t} \cap R_L)$.

The proof of Claim 1 is mainly based on the following lemma.

Lemma 4

Let § be the grammar for L fixed above, let g_L be the grammar for R_L and let $h\in N.$ If

$$h \xrightarrow{1}_{g} w_{1} \xrightarrow{1}_{g} w_{2} \xrightarrow{1}_{g} \cdots \xrightarrow{1}_{g} w_{n-1} \xrightarrow{1}_{g} w_{n} \in \mathsf{T}^{*}$$

then there exists a $q \in D_{m+t}$ such that $h \stackrel{*}{\Longrightarrow} q$ and g_L

 $\chi_{\mathfrak{m}+\mathfrak{t}}(\mathfrak{q})=w_{\mathfrak{n}}.$

Chomsky-Schützenberger Theorem VI

The lemma is shown by induction on the length n of the derivation. For the induction basis let n = 1. Thus, our assumption is that

 $\mathfrak{h} \overset{1}{\underset{\mathfrak{G}}{\Longrightarrow}} w_1 \in \mathsf{T}^* \; .$

Since \mathcal{G} is in Chomsky normal form, we can conclude that $(h \rightarrow w_1) \in P$. So, by the definition of Chomsky normal form, we must have $w_1 = x$ for some $x \in T$.

We have to show that there is a $q\in D_{m+t}$ such that $h\overset{*}{\underset{\mathcal{G}_{L}}{\Longrightarrow}}q$

and $\chi_{m+t}(q) = x$. By construction, the production $h \rightarrow x\overline{x}$ belongs to P_L (cf. the first set of the definition of P_L). Thus, we can simply set $q = x\overline{x}$. Now, the induction basis follows, since the definition of χ_{m+t} directly yields

$$\chi_{\mathfrak{m}+t}(\mathfrak{q})=\chi_{\mathfrak{m}+t}(x\overline{x})=\chi_{\mathfrak{m}+t}(x)\chi_{\mathfrak{m}+t}(\overline{x})=x\lambda=x\,.$$

Chomsky-Schützenberger Theorem VIII

Assuming the induction hypothesis for $n \ge 1$, we are going to perform the induction step to n + 1. So, let

$$h \stackrel{1}{\Longrightarrow} w_1 \stackrel{1}{\Longrightarrow} \cdots \stackrel{1}{\Longrightarrow} w_n \stackrel{1}{\Longrightarrow} w_{n+1} \in \mathsf{T}^*$$

be a derivation of length n + 1.

Assuming the induction hypothesis for $n \ge 1$, we are going to perform the induction step to n + 1. So, let

$$h \stackrel{1}{\Longrightarrow} w_1 \stackrel{1}{\Longrightarrow} \cdots \stackrel{1}{\Longrightarrow} w_n \stackrel{1}{\Longrightarrow} w_{n+1} \in \mathsf{T}^*$$

be a derivation of length n + 1.

Because of $n \ge 1$, and since the derivation has length at least 2, we can conclude that the production used to derive w_1 must be of the form $h \rightarrow h'h''$, where $h, h', h'' \in N$. Therefore, there must be a j such that $1 \le j \le t$ and $h = h_j$ as well as $w_1 = h'_j h''_j$.

The latter observation implies that there must be v_1 , v_2 such that $w_{n+1} = v_1v_2$ and

$$h'_j \stackrel{*}{\underset{\mathcal{G}}{\Longrightarrow}} \nu_1 \quad \text{and} \quad h''_j \stackrel{*}{\underset{\mathcal{G}}{\Longrightarrow}} \nu_2 \,.$$

Since the length of the complete derivation is n + 1, both the generation of v_1 and of v_2 must have a length smaller than or equal to n.

Hence, we can apply the induction hypothesis. That is, there are strings q_1 and q_2 such that q_1 , $q_2 \in D_{m+t}$ and $\chi_{m+t}(q_1) = \nu_1$ as well as $\chi_{m+t}(q_2) = \nu_2$.

Chomsky-Schützenberger Theorem X

Furthermore, by the induction hypothesis we additionally know that

$$h'_{j} \stackrel{*}{\underset{\mathcal{G}_{L}}{\Longrightarrow}} q_{1} \text{ and } h''_{j} \stackrel{*}{\underset{\mathcal{G}_{L}}{\Longrightarrow}} q_{2}.$$

Taking into account that $(h_j \rightarrow h'_j h''_j) \in P$ we know by construction that $h_j \rightarrow x_{m+j}h'_j$ is a production in P_L . Thus,

$$h = h_j \xrightarrow{1}_{\mathcal{G}_L} x_{m+j} h'_j \xrightarrow{*}_{\mathcal{G}_L} x_{m+j} q_1$$

is a regular derivation. Moreover, the last step of this derivation must look as follows:

$$x_{m+j}q'_1h_k \stackrel{1}{\Longrightarrow} x_{m+j}q'_1x\overline{x} .$$

where $h_k \to x\overline{x}$ is the rule applied and where x is determined by the condition $q_1 = q'_1 x \overline{x}$.

Substitutions and Homomorphisms

Homomorphic Characterization

Chomsky-Schützenberger Theorem XI

Now, we replace this step by using the production $h_k \rightarrow x\overline{x}\overline{x}_{m+j}h''_j$ which also belongs to P_L . Thus, we obtain

$$h = h_{j} \xrightarrow{1}_{\mathcal{G}_{L}} x_{m+j} h'_{j} \xrightarrow{*}_{\mathcal{G}_{L}} x_{m+j} q_{1} \overline{x}_{m+j} h''_{j}$$
$$\xrightarrow{*}_{\mathcal{G}_{L}} x_{m+j} q_{1} \overline{x}_{m+j} q_{2} \eqqcolon q \in D_{m+t}.$$

The containment in D_{m+t} is due to the correct usage of the brackets x_{m+j} and \overline{x}_{m+j} around q_1 and the fact that $q_2 \in D_{m+t}$ as well as by the definition of the Dyck language. Finally, the definition of χ_{m+t} ensures that $\chi_{m+t}(x_{m+j}q_1\overline{x}_{m+j}q_2) = v_1v_2$. This proves the lemma and Claim 1 immediately follows for $h = \sigma$.

Chomsky-Schützenberger Theorem XII

Claim 2. $L \supseteq \chi_{m+t}(D_{m+t} \cap R_L)$.

Again, the proof of the claim is mainly based on a lemma which we state next.

Lemma 5

Let § be the grammar for L fixed above, let ${\tt g}_L$ be the grammar for ${\tt R}_L$ and let ${\tt h}\in N.$ If

$$h \stackrel{1}{\Longrightarrow} w_{1} \stackrel{1}{\Longrightarrow} \cdots \stackrel{1}{\Longrightarrow} w_{n} \in D_{m+t}$$

then
$$h \stackrel{*}{\Longrightarrow} \chi_{m+t}(w_n)$$
.

Chomsky-Schützenberger Theorem XIII

The lemma is shown by induction on the length of the derivation. We perform the induction basis for n = 1. Consider

$$h \stackrel{1}{\Longrightarrow} w_1 \in D_{\mathfrak{m}+\mathfrak{t}} .$$

Hence, we must conclude that $(h \rightarrow w_1) \in P_L$. So, there must exist $x_i \overline{x}_i$ such that $w_1 = x_i \overline{x}_i$, $1 \le i \le m$ and $(h \rightarrow x_i \overline{x}_i) \in P_L$. By the definition of P_L we conclude that $(h \rightarrow x_i) \in P$. Hence

$$h \stackrel{1}{\Longrightarrow} x_i = \chi_{m+t}(x_i \overline{x}_i) = \chi_{m+t}(w_1) .$$

This proves the induction basis.

Chomsky-Schützenberger Theorem XIV

The induction step is provided in the book.

Again, Claim 2 is a direct consequence of the latter lemma for $h = \sigma$.

Claim 1 and Claim 2 together imply the theorem.

Thank you!

