
Substitutions and Homomorphisms Homomorphic Characterization End

Theory of Computation

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/∼thomas/ToC/

Lecture 8: CF and Homomorphisms

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions I

In this lecture we continue with further useful properties and
characterizations of context-free languages. First, we look at
substitutions.

Definition 1
Let Σ and ∆ be any two finite alphabets. A mapping
τ : Σ −→ ℘(∆∗) is said to be a substitution. We extend τ to be a
mapping τ : Σ∗ −→ ℘(∆∗) (i.e., to strings) by defining
(1) τ(λ) = λ,
(2) τ(wx) = τ(w)τ(x) for all w ∈ Σ∗ and x ∈ Σ.

The mapping τ is generalized to languages L ⊆ Σ∗ by setting

τ(L) =
⋃

w∈L

τ(w) .

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions I

In this lecture we continue with further useful properties and
characterizations of context-free languages. First, we look at
substitutions.

Definition 1
Let Σ and ∆ be any two finite alphabets. A mapping
τ : Σ −→ ℘(∆∗) is said to be a substitution. We extend τ to be a
mapping τ : Σ∗ −→ ℘(∆∗) (i.e., to strings) by defining
(1) τ(λ) = λ,
(2) τ(wx) = τ(w)τ(x) for all w ∈ Σ∗ and x ∈ Σ.

The mapping τ is generalized to languages L ⊆ Σ∗ by setting

τ(L) =
⋃

w∈L

τ(w) .

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions II

So, a substitution maps every symbol of Σ to a language over ∆.
The language a symbol is mapped to can be finite or infinite.

Example 1

Let Σ = {0, 1} and let ∆ = {a, b}. Then, the mapping τ defined
by τ(λ) = λ, τ(0) = {a} and τ(1) = {b}∗ is a substitution.

Let us calculate τ(010). By definition,

τ(010) = τ(01)τ(0) = τ(0)τ(1)τ(0) = {a}{b}∗{a} = a〈b〉a ,

where the latter equality is by the definition of regular
expressions.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions II

So, a substitution maps every symbol of Σ to a language over ∆.
The language a symbol is mapped to can be finite or infinite.

Example 1

Let Σ = {0, 1} and let ∆ = {a, b}. Then, the mapping τ defined
by τ(λ) = λ, τ(0) = {a} and τ(1) = {b}∗ is a substitution.

Let us calculate τ(010). By definition,

τ(010) = τ(01)τ(0) = τ(0)τ(1)τ(0) = {a}{b}∗{a} = a〈b〉a ,

where the latter equality is by the definition of regular
expressions.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions III

Next, we want to define what is meant by closure of a language
family L under substitutions. Here special care is necessary. At
first glance, we may be tempted to require that for every
substitution τ the condition τ(L) ∈ L has to be satisfied.
But this is a too strong demand. Why?

Consider Σ = {0, 1}, ∆ = {a, b} and L = REG. Furthermore,
suppose that τ(0) = L, where L is any recursively enumerable
but non-recursive language over ∆.

Then we obviously have τ({0}) = L, too. Consequently,
τ({0}) < REG. On the other hand, {0} ∈ REG, and thus we would
conclude that REG is not closed under substitution. Also, the
same argument would prove that CF is not closed under
substitution.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions III

Next, we want to define what is meant by closure of a language
family L under substitutions. Here special care is necessary. At
first glance, we may be tempted to require that for every
substitution τ the condition τ(L) ∈ L has to be satisfied.
But this is a too strong demand. Why?

Consider Σ = {0, 1}, ∆ = {a, b} and L = REG. Furthermore,
suppose that τ(0) = L, where L is any recursively enumerable
but non-recursive language over ∆.

Then we obviously have τ({0}) = L, too. Consequently,
τ({0}) < REG. On the other hand, {0} ∈ REG, and thus we would
conclude that REG is not closed under substitution. Also, the
same argument would prove that CF is not closed under
substitution.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions III

Next, we want to define what is meant by closure of a language
family L under substitutions. Here special care is necessary. At
first glance, we may be tempted to require that for every
substitution τ the condition τ(L) ∈ L has to be satisfied.
But this is a too strong demand. Why?

Consider Σ = {0, 1}, ∆ = {a, b} and L = REG. Furthermore,
suppose that τ(0) = L, where L is any recursively enumerable
but non-recursive language over ∆.

Then we obviously have τ({0}) = L, too. Consequently,
τ({0}) < REG. On the other hand, {0} ∈ REG, and thus we would
conclude that REG is not closed under substitution. Also, the
same argument would prove that CF is not closed under
substitution.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions IV

The point to be made here is that we have to restrict the set of
allowed substitutions to those ones that map the elements of Σ

to languages belonging to L. Therefore, we arrive at the
following definition.

Definition 2
Let Σ be any alphabet, and let L be any language family over Σ.
We say that L is closed under substitutions if for every
substitution τ : Σ −→ L and every L ∈ L we have τ(L) ∈ L.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Substitutions IV

The point to be made here is that we have to restrict the set of
allowed substitutions to those ones that map the elements of Σ

to languages belonging to L. Therefore, we arrive at the
following definition.

Definition 2
Let Σ be any alphabet, and let L be any language family over Σ.
We say that L is closed under substitutions if for every
substitution τ : Σ −→ L and every L ∈ L we have τ(L) ∈ L.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Homomorphisms I

Definition 3
Let Σ and ∆ be any two finite alphabets. A mapping
ϕ : Σ∗ −→ ∆∗ is said to be a homomorphism if

ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ Σ∗ .

ϕ is said to be a λ-free homomorphism, if additionally

ϕ(w) = λ implies w = λ for all w ∈ Σ∗ .

Moreover, if ϕ : Σ∗ −→ ∆∗ is a homomorphism then we define
the inverse of the homomorphism ϕ to be the mapping
ϕ−1 : ∆∗ −→ ℘(Σ∗) by setting for each s ∈ ∆∗

ϕ−1(s) = {w | w ∈ Σ∗ and ϕ(w) = s} .

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Homomorphisms II

So, a homomorphism is a special case of a substitution.

That is, a homomorphism is a substitution that maps every
symbols of Σ to a singleton set. Clearly, by the definition of
homomorphism, it already suffices to declare the mapping ϕ

for the symbols in Σ. Note that, when dealing with
homomorphisms we usually identify the language containing
exactly one string by the string itself, i.e., instead of {s} we
shortly write s.

Example 2

Let Σ = {0, 1} and let ∆ = {a, b}. Then, the mapping
ϕ : Σ∗ −→ ∆∗ defined by ϕ(0) = ab and ϕ(1) = λ is a
homomorphisms but not a λ-free homomorphism. Applying ϕ to
1100 yields ϕ(1100) = ϕ(1)ϕ(1)ϕ(0)ϕ(0) = λλabab = abab

and to the language 1〈0〉1 gives ϕ(1〈0〉1) = 〈ab〉.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Homomorphisms II

So, a homomorphism is a special case of a substitution.
That is, a homomorphism is a substitution that maps every
symbols of Σ to a singleton set. Clearly, by the definition of
homomorphism, it already suffices to declare the mapping ϕ

for the symbols in Σ. Note that, when dealing with
homomorphisms we usually identify the language containing
exactly one string by the string itself, i.e., instead of {s} we
shortly write s.

Example 2

Let Σ = {0, 1} and let ∆ = {a, b}. Then, the mapping
ϕ : Σ∗ −→ ∆∗ defined by ϕ(0) = ab and ϕ(1) = λ is a
homomorphisms but not a λ-free homomorphism. Applying ϕ to
1100 yields ϕ(1100) = ϕ(1)ϕ(1)ϕ(0)ϕ(0) = λλabab = abab

and to the language 1〈0〉1 gives ϕ(1〈0〉1) = 〈ab〉.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Homomorphisms II

So, a homomorphism is a special case of a substitution.
That is, a homomorphism is a substitution that maps every
symbols of Σ to a singleton set. Clearly, by the definition of
homomorphism, it already suffices to declare the mapping ϕ

for the symbols in Σ. Note that, when dealing with
homomorphisms we usually identify the language containing
exactly one string by the string itself, i.e., instead of {s} we
shortly write s.

Example 2

Let Σ = {0, 1} and let ∆ = {a, b}. Then, the mapping
ϕ : Σ∗ −→ ∆∗ defined by ϕ(0) = ab and ϕ(1) = λ is a
homomorphisms but not a λ-free homomorphism. Applying ϕ to
1100 yields ϕ(1100) = ϕ(1)ϕ(1)ϕ(0)ϕ(0) = λλabab = abab

and to the language 1〈0〉1 gives ϕ(1〈0〉1) = 〈ab〉.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Remarks

For seeing the importance of the notions just introduced
consider the language L = {anbn | n ∈N}. This language is
context-free. Thus, we intuitively know that {0n1n | n ∈N} is
also context-free, since we could go through the grammar and
replace all occurrences of a by 0 and all occurrences of b by 1.

This observation would suggest that if we replace all
occurrences of a and b by strings v and w, respectively, we also
get a context-free language. However, it is much less intuitive
that we also obtain a context-free language if all occurrences of
a and b are replaced by context-free sets of strings V and W,
respectively.
Nevertheless, we just aim to prove this closure property. In the
following we always assume two finite alphabets Σ and ∆ as in
the definition of substitution.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Remarks

For seeing the importance of the notions just introduced
consider the language L = {anbn | n ∈N}. This language is
context-free. Thus, we intuitively know that {0n1n | n ∈N} is
also context-free, since we could go through the grammar and
replace all occurrences of a by 0 and all occurrences of b by 1.

This observation would suggest that if we replace all
occurrences of a and b by strings v and w, respectively, we also
get a context-free language. However, it is much less intuitive
that we also obtain a context-free language if all occurrences of
a and b are replaced by context-free sets of strings V and W,
respectively.

Nevertheless, we just aim to prove this closure property. In the
following we always assume two finite alphabets Σ and ∆ as in
the definition of substitution.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Remarks

For seeing the importance of the notions just introduced
consider the language L = {anbn | n ∈N}. This language is
context-free. Thus, we intuitively know that {0n1n | n ∈N} is
also context-free, since we could go through the grammar and
replace all occurrences of a by 0 and all occurrences of b by 1.

This observation would suggest that if we replace all
occurrences of a and b by strings v and w, respectively, we also
get a context-free language. However, it is much less intuitive
that we also obtain a context-free language if all occurrences of
a and b are replaced by context-free sets of strings V and W,
respectively.
Nevertheless, we just aim to prove this closure property. In the
following we always assume two finite alphabets Σ and ∆ as in
the definition of substitution.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions I

Theorem 1
CF is closed under substitutions.

Proof. Let L ∈ CF be arbitrarily fixed and let τ be a substitution
such that τ(a) is a context-free language for all a ∈ Σ. We have
to show that τ(L) is context-free. We shall do this by providing
a context-free grammar G = [T , N, σ, P] such that L(G) = τ(L).

Since L ∈ CF, there exists a context-free grammar
G = [Σ, N, σ, P] in Chomsky normal form such that L = L(G).
Next, let Σ = {a1, . . . , an} and consider τ(a) for all a ∈ Σ. By
assumption, τ(a) ∈ CF for all a ∈ Σ. Thus, there are
context-free grammars Ga = [Ta, Na, σa, Pa] such that
τ(a) = L(Ga) for all a ∈ Σ. Without loss of generality, we can
assume the sets N, Na1 , . . . , Nan to be pairwise disjoint and
disjoint to all terminal alphabets considered.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions I

Theorem 1
CF is closed under substitutions.

Proof. Let L ∈ CF be arbitrarily fixed and let τ be a substitution
such that τ(a) is a context-free language for all a ∈ Σ. We have
to show that τ(L) is context-free. We shall do this by providing
a context-free grammar G = [T , N, σ, P] such that L(G) = τ(L).

Since L ∈ CF, there exists a context-free grammar
G = [Σ, N, σ, P] in Chomsky normal form such that L = L(G).
Next, let Σ = {a1, . . . , an} and consider τ(a) for all a ∈ Σ. By
assumption, τ(a) ∈ CF for all a ∈ Σ. Thus, there are
context-free grammars Ga = [Ta, Na, σa, Pa] such that
τ(a) = L(Ga) for all a ∈ Σ. Without loss of generality, we can
assume the sets N, Na1 , . . . , Nan to be pairwise disjoint and
disjoint to all terminal alphabets considered.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions I

Theorem 1
CF is closed under substitutions.

Proof. Let L ∈ CF be arbitrarily fixed and let τ be a substitution
such that τ(a) is a context-free language for all a ∈ Σ. We have
to show that τ(L) is context-free. We shall do this by providing
a context-free grammar G = [T , N, σ, P] such that L(G) = τ(L).

Since L ∈ CF, there exists a context-free grammar
G = [Σ, N, σ, P] in Chomsky normal form such that L = L(G).
Next, let Σ = {a1, . . . , an} and consider τ(a) for all a ∈ Σ. By
assumption, τ(a) ∈ CF for all a ∈ Σ. Thus, there are
context-free grammars Ga = [Ta, Na, σa, Pa] such that
τ(a) = L(Ga) for all a ∈ Σ. Without loss of generality, we can
assume the sets N, Na1 , . . . , Nan to be pairwise disjoint and
disjoint to all terminal alphabets considered.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions II

At this point we need an idea how to proceed. To get this idea, we
look at possible derivations in G. Suppose we have a derivation

σ
∗

=⇒
G

x1x2 · · · xm ,

where all xi ∈ Σ for i = 1, . . . , m.

Then, since G is in Chomsky
normal form, we can conclude that there must be productions
(hxi

→ xi) ∈ P, i = 1, . . . , m, and hence achieve the following.

σ
∗

=⇒
G

hx1hx2 · · ·hxm

m
=⇒
G

x1x2 · · · xm , (1)

where all hxi
∈ N.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions II

At this point we need an idea how to proceed. To get this idea, we
look at possible derivations in G. Suppose we have a derivation

σ
∗

=⇒
G

x1x2 · · · xm ,

where all xi ∈ Σ for i = 1, . . . , m. Then, since G is in Chomsky
normal form, we can conclude that there must be productions
(hxi

→ xi) ∈ P, i = 1, . . . , m, and hence achieve the following.

σ
∗

=⇒
G

hx1hx2 · · ·hxm

m
=⇒
G

x1x2 · · · xm , (1)

where all hxi
∈ N.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions III

Taking into account that the image τ(x1 · · · xm) is obtained by
calculating

τ(x1)τ(x2) · · · τ(xm) ,

we see that for every string w1w2 · · ·wm in this image there
must be a derivation

σxi

∗
=⇒
Gxi

wi i = 1, . . . , m .

This directly yields the idea for constructing G.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions IV

We aim to cut the derivation in (1) when having obtained
hx1hx2 · · ·hxm . Instead of deriving x1x2 · · · xm, all we need is to
generate σx1 · · ·σxm , and thus, we have to replace the
productions (hxi

→ xi) ∈ P by (hxi
→ σxi

) ∈ P, i = 1, . . . , m.
So we define:

T =
⋃

a∈Σ

Ta

N = N ∪

(⋃
a∈Σ

Na

)
σ = σ

P =

(⋃
a∈Σ

Pa

)
∪ P[a//σa] .

We set G = [T , N, σ, P].

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions IV

We aim to cut the derivation in (1) when having obtained
hx1hx2 · · ·hxm . Instead of deriving x1x2 · · · xm, all we need is to
generate σx1 · · ·σxm , and thus, we have to replace the
productions (hxi

→ xi) ∈ P by (hxi
→ σxi

) ∈ P, i = 1, . . . , m.
So we define:

T =
⋃

a∈Σ

Ta

N = N ∪

(⋃
a∈Σ

Na

)
σ = σ

P =

(⋃
a∈Σ

Pa

)
∪ P[a//σa] .

We set G = [T , N, σ, P].

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions V

It remains to show that τ(L) = L(G).

Claim 1. τ(L) ⊆ L(G).

If σ
∗

=⇒
G

x1 · · · xm, where xi ∈ Σ and if σxi

∗
=⇒
Gxi

wi, where

wi ∈ T∗
xi

, i = 1, . . . , m, then we derive x1 · · · xm as follows:

σ
∗

=⇒
G

hx1 · · ·hxm

∗
=⇒
G

x1 · · · xm ,

where all hxi
∈ N. By construction, we can thus generate

σ
∗

=⇒
G

hx1 · · ·hxm

∗
=⇒
G

σx1 · · ·σxm

∗
=⇒
G

w1 · · ·wm .

Hence, Claim 1 follows.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions V

It remains to show that τ(L) = L(G).

Claim 1. τ(L) ⊆ L(G).

If σ
∗

=⇒
G

x1 · · · xm, where xi ∈ Σ and if σxi

∗
=⇒
Gxi

wi, where

wi ∈ T∗
xi

, i = 1, . . . , m, then we derive x1 · · · xm as follows:

σ
∗

=⇒
G

hx1 · · ·hxm

∗
=⇒
G

x1 · · · xm ,

where all hxi
∈ N. By construction, we can thus generate

σ
∗

=⇒
G

hx1 · · ·hxm

∗
=⇒
G

σx1 · · ·σxm

∗
=⇒
G

w1 · · ·wm .

Hence, Claim 1 follows.
Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions VI

Claim 2. L(G) ⊆ τ(L).

Now, we start from σ
∗⇒ w , where w ∈ T

∗ . If w = λ, then also
σ → λ in P, and we are done.

Otherwise, the construction of G

ensures that the derivation of w must look as follows.

σ
∗

=⇒
G

σx1 · · ·σxm

∗
=⇒
G

w .

By our construction we then know that σ
∗

=⇒
G

x1 · · · xm as we

have shown in (1). Also, there are strings w1, . . . , wm ∈ T
∗ such

that w = w1 · · ·wm and σxi

∗
=⇒
Gxi

wi for all i = 1, . . . , m.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions VI

Claim 2. L(G) ⊆ τ(L).

Now, we start from σ
∗⇒ w , where w ∈ T

∗ . If w = λ, then also
σ → λ in P, and we are done. Otherwise, the construction of G

ensures that the derivation of w must look as follows.

σ
∗

=⇒
G

σx1 · · ·σxm

∗
=⇒
G

w .

By our construction we then know that σ
∗

=⇒
G

x1 · · · xm as we

have shown in (1). Also, there are strings w1, . . . , wm ∈ T
∗ such

that w = w1 · · ·wm and σxi

∗
=⇒
Gxi

wi for all i = 1, . . . , m.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions VI

Claim 2. L(G) ⊆ τ(L).

Now, we start from σ
∗⇒ w , where w ∈ T

∗ . If w = λ, then also
σ → λ in P, and we are done. Otherwise, the construction of G

ensures that the derivation of w must look as follows.

σ
∗

=⇒
G

σx1 · · ·σxm

∗
=⇒
G

w .

By our construction we then know that σ
∗

=⇒
G

x1 · · · xm as we

have shown in (1). Also, there are strings w1, . . . , wm ∈ T
∗ such

that w = w1 · · ·wm and σxi

∗
=⇒
Gxi

wi for all i = 1, . . . , m.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions VII

Consequently, wi ∈ τ(xi). Therefore, w ∈ τ(L) and we are done.

Finally, putting Claim 1 and 2 together, we see that

τ(L) = L(G) .

Our Theorem allows the following nice corollary.

Corollary 2
CF is closed under homomorphisms.

Proof. Since homomorphisms are a special type of substitution,
it suffices to argue that every singleton subset is context-free.
But this is obvious, because we have already shown that every
finite language belongs to REG and that REG ⊆ CF. Thus, the
corollary follows.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions VII

Consequently, wi ∈ τ(xi). Therefore, w ∈ τ(L) and we are done.

Finally, putting Claim 1 and 2 together, we see that

τ(L) = L(G) .

Our Theorem allows the following nice corollary.

Corollary 2
CF is closed under homomorphisms.

Proof. Since homomorphisms are a special type of substitution,
it suffices to argue that every singleton subset is context-free.
But this is obvious, because we have already shown that every
finite language belongs to REG and that REG ⊆ CF. Thus, the
corollary follows.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Closure under Substitutions VII

Consequently, wi ∈ τ(xi). Therefore, w ∈ τ(L) and we are done.

Finally, putting Claim 1 and 2 together, we see that

τ(L) = L(G) .

Our Theorem allows the following nice corollary.

Corollary 2
CF is closed under homomorphisms.

Proof. Since homomorphisms are a special type of substitution,
it suffices to argue that every singleton subset is context-free.
But this is obvious, because we have already shown that every
finite language belongs to REG and that REG ⊆ CF. Thus, the
corollary follows.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Dyck Languages I

When we started to study context-free languages, we
emphasized that many programming languages use balanced
brackets of different kinds. Therefore, we continue with a closer
look at bracket languages. Such languages are called Dyck
languages.

In order to define Dyck languages, we need the following
notations. Let n ∈N+ and let

Xn = {a1, a1, a2, a2, . . . , an, an} .

We consider the set Xn as a set of different bracket symbols,
where ai is an opening bracket and ai is the corresponding
closing bracket. Thus, it is justified to speak of Xn as a set of n

different bracket symbols.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Dyck Languages I

When we started to study context-free languages, we
emphasized that many programming languages use balanced
brackets of different kinds. Therefore, we continue with a closer
look at bracket languages. Such languages are called Dyck
languages.
In order to define Dyck languages, we need the following
notations. Let n ∈N+ and let

Xn = {a1, a1, a2, a2, . . . , an, an} .

We consider the set Xn as a set of different bracket symbols,
where ai is an opening bracket and ai is the corresponding
closing bracket. Thus, it is justified to speak of Xn as a set of n

different bracket symbols.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Dyck Languages II

Now we are ready to define Dyck languages.

Definition 4
A language L is said to be a Dyck language with n bracket
symbols if L is isomorphic to the language Dn generated by the
following grammar Gn = [Xn, {σ}, σ, Pn], where Pn is given by

Pn = {σ → λ, σ → σσ, σ → a1σa1, . . . , σ → anσan} .

The importance of Dyck languages will become immediately
transparent, since we are going to prove a beautiful
characterization theorem for context-free languages by using
them.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Dyck Languages II

Now we are ready to define Dyck languages.

Definition 4
A language L is said to be a Dyck language with n bracket
symbols if L is isomorphic to the language Dn generated by the
following grammar Gn = [Xn, {σ}, σ, Pn], where Pn is given by

Pn = {σ → λ, σ → σσ, σ → a1σa1, . . . , σ → anσan} .

The importance of Dyck languages will become immediately
transparent, since we are going to prove a beautiful
characterization theorem for context-free languages by using
them.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem I

Theorem 3 (Chomsky-Schützenberger Theorem)

For every context-free language L there are n ∈N+, a
homomorphism h and a regular language RL such that

L = h(Dn ∩ RL) .

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem II

Proof. Consider any arbitrarily fixed context-free language L.
Without loss of generality we can assume that λ < L.
Furthermore, let G = [T , N, σ, P] be a context-free grammar in
Chomsky normal form such that L = L(G). Let T = {x1, . . . , xm}

and consider all productions in P. Since G is in Chomsky
normal form, all productions have the form hi → h ′

ih
′′
i or

hj → x. Let t be the number of all nonterminal productions,
i.e., of all productions hi → h ′

ih
′′
i . Note that for any two such

productions it is well possible that some but not all nonterminal
symbols coincide.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem III

In all we have m terminal symbols and t nonterminal
productions. Thus, we try the Dyck language Dm+t over

Xm+t = {x1, . . . , xm, xm+1, . . . , xm+t,
xm+1, . . . , xm+t, x1, . . . , xm} .

Next, we consider the mapping χm+t : Xm+t −→ T∗ defined as
follows.

χm+t(xj) =

{
xj, if 1 6 j 6 m ;

λ, if m + 1 6 j 6 m + t ;

and χm+t(xj) = λ for all j = 1, . . . , m + t. We leave it as an
exercise to show that χm+t is a homomorphism.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem III

In all we have m terminal symbols and t nonterminal
productions. Thus, we try the Dyck language Dm+t over

Xm+t = {x1, . . . , xm, xm+1, . . . , xm+t,
xm+1, . . . , xm+t, x1, . . . , xm} .

Next, we consider the mapping χm+t : Xm+t −→ T∗ defined as
follows.

χm+t(xj) =

{
xj, if 1 6 j 6 m ;

λ, if m + 1 6 j 6 m + t ;

and χm+t(xj) = λ for all j = 1, . . . , m + t. We leave it as an
exercise to show that χm+t is a homomorphism.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem IV

Now we are ready to define the following grammar
GL = [Xm+t, N, σ, PL], where

PL = {h → xixi | 1 6 i 6 m and (h → xi) ∈ P}

∪ {h → xixixm+jh
′′
j | 1 6 i 6 m, (h → xi) ∈ P, 1 6 j 6 t}

∪ {hj → xm+jh
′
j | 1 6 j 6 t} .

Clearly, GL is a regular grammar. We set RL = L(GL), and aim
to prove that

L = χm+t(Dm+t ∩ RL) .

This is done via the following claims and lemmata.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem V

Claim 1. L ⊆ χm+t(Dm+t ∩ RL).
The proof of Claim 1 is mainly based on the following lemma.

Lemma 4
Let G be the grammar for L fixed above, let GL be the grammar for RL

and let h ∈ N. If

h
1

=⇒
G

w1
1

=⇒
G

w2
1

=⇒
G

· · ·
1

=⇒
G

wn−1
1

=⇒
G

wn ∈ T∗

then there exists a q ∈ Dm+t such that h
∗

=⇒
GL

q and

χm+t(q) = wn.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem VI

The lemma is shown by induction on the length n of the
derivation. For the induction basis let n = 1. Thus, our
assumption is that

h
1

=⇒
G

w1 ∈ T∗ .

Since G is in Chomsky normal form, we can conclude that
(h → w1) ∈ P. So, by the definition of Chomsky normal form,
we must have w1 = x for some x ∈ T .

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem VII

We have to show that there is a q ∈ Dm+t such that h
∗

=⇒
GL

q

and χm+t(q) = x. By construction, the production h → xx

belongs to PL (cf. the first set of the definition of PL). Thus, we
can simply set q = xx. Now, the induction basis follows, since
the definition of χm+t directly yields

χm+t(q) = χm+t(xx) = χm+t(x)χm+t(x) = xλ = x .

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem VIII

Assuming the induction hypothesis for n > 1, we are going to
perform the induction step to n + 1. So, let

h
1

=⇒
G

w1
1

=⇒
G

· · ·
1

=⇒
G

wn

1
=⇒
G

wn+1 ∈ T∗

be a derivation of length n + 1.

Because of n > 1, and since the derivation has length at least 2,
we can conclude that the production used to derive w1 must be
of the form h → h ′h ′′, where h, h ′, h ′′ ∈ N. Therefore, there
must be a j such that 1 6 j 6 t and h = hj as well as w1 = h ′

jh
′′
j .

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem VIII

Assuming the induction hypothesis for n > 1, we are going to
perform the induction step to n + 1. So, let

h
1

=⇒
G

w1
1

=⇒
G

· · ·
1

=⇒
G

wn

1
=⇒
G

wn+1 ∈ T∗

be a derivation of length n + 1.
Because of n > 1, and since the derivation has length at least 2,
we can conclude that the production used to derive w1 must be
of the form h → h ′h ′′, where h, h ′, h ′′ ∈ N. Therefore, there
must be a j such that 1 6 j 6 t and h = hj as well as w1 = h ′

jh
′′
j .

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem IX

The latter observation implies that there must be v1, v2 such that
wn+1 = v1v2 and

h ′
j

∗
=⇒
G

v1 and h ′′
j

∗
=⇒
G

v2 .

Since the length of the complete derivation is n + 1, both the
generation of v1 and of v2 must have a length smaller than or
equal to n.
Hence, we can apply the induction hypothesis. That is, there
are strings q1 and q2 such that q1, q2 ∈ Dm+t and
χm+t(q1) = v1 as well as χm+t(q2) = v2.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem X

Furthermore, by the induction hypothesis we additionally
know that

h ′
j

∗
=⇒
GL

q1 and h ′′
j

∗
=⇒
GL

q2 .

Taking into account that (hj → h ′
jh

′′
j) ∈ P we know by

construction that hj → xm+jh
′
j is a production in PL. Thus,

h = hj

1
=⇒
GL

xm+jh
′
j

∗
=⇒
GL

xm+jq1

is a regular derivation. Moreover, the last step of this derivation
must look as follows:

xm+jq
′
1hk

1
=⇒
GL

xm+jq
′
1xx .

where hk → xx is the rule applied and where x is determined
by the condition q1 = q ′

1xx.
Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem XI

Now, we replace this step by using the production
hk → xxxm+jh

′′
j which also belongs to PL. Thus, we obtain

h = hj

1
=⇒
GL

xm+jh
′
j

∗
=⇒
GL

xm+jq1xm+jh
′′
j

∗
=⇒
GL

xm+jq1xm+jq2 =: q ∈ Dm+t .

The containment in Dm+t is due to the correct usage of the
brackets xm+j and xm+j around q1 and the fact that q2 ∈ Dm+t

as well as by the definition of the Dyck language. Finally, the
definition of χm+t ensures that χm+t(xm+jq1xm+jq2) = v1v2.
This proves the lemma and Claim 1 immediately follows for
h = σ.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem XII

Claim 2. L ⊇ χm+t(Dm+t ∩ RL).

Again, the proof of the claim is mainly based on a lemma which
we state next.

Lemma 5
Let G be the grammar for L fixed above, let GL be the grammar for RL

and let h ∈ N. If

h
1

=⇒
GL

w1
1

=⇒
GL

· · ·
1

=⇒
GL

wn ∈ Dm+t

then h
∗

=⇒
G

χm+t(wn).

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem XIII

The lemma is shown by induction on the length of the
derivation. We perform the induction basis for n = 1. Consider

h
1

=⇒
GL

w1 ∈ Dm+t .

Hence, we must conclude that (h → w1) ∈ PL. So, there must
exist xixi such that w1 = xixi, 1 6 i 6 m and (h → xixi) ∈ PL.
By the definition of PL we conclude that (h → xi) ∈ P. Hence

h
1

=⇒
G

xi = χm+t(xixi) = χm+t(w1) .

This proves the induction basis.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Chomsky-Schützenberger Theorem XIV

The induction step is provided in the book.

Again, Claim 2 is a direct consequence of the latter lemma for
h = σ.

Claim 1 and Claim 2 together imply the theorem.

Theory of Computation c©Thomas Zeugmann

Substitutions and Homomorphisms Homomorphic Characterization End

Thank you!

Theory of Computation c©Thomas Zeugmann

	Substitutions and Homomorphisms
	

	Homomorphic Characterization
	

	End
	

