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Pushdown Automata I

In this lecture we continue with pushdown automata. Recall
that we used finite nondeterministic automata as a machine
model to characterize the regular languages.

Now, we shall use pushdown automata to characterize the
context-free languages. Generally speaking, a pushdown
automaton is an extension of the nondeterministic finite
automaton with λ-transitions.

Here, by λ-transition we mean that the automaton is allowed to
read the empty word λ on its input tape and to change its state
accordingly.
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Pushdown Automata II

The extension to a nondeterministic finite automaton consists in
a stack. The stack allows a pushdown automaton to memorize
any finite string.

But in contrast to a general model for a computer (e.g., a Turing
machine or a random access machine) the access to the stack is
in lifo-mode only. Here lifo stands for “last in first out.”

That is, the stack can be read, pushed, and popped only at the top,
just like the stack data structure you are already familiar with.
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Pushdown Automata III
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Figure 1: A pushdown automaton
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Pushdown Automata IV
More formally, in one transition, the pushdown automaton:
(1) Consumes from the input the symbol it reads. If λ is read

then no input symbol is consumed.

(2) Goes to a new state which may or may not be the same
state as its current state.

(3) Replaces the symbol at the top of the stack by any string.
The string could be λ, which corresponds to a pop of the
stack. It could be the same symbol that appeared at the top
of the stack previously, i.e., no change is made to the stack.
It could also replace the symbol on top of the stack by one
other symbol. In this case, the pushdown automaton
changes the top of the stack but does neither push or pop it.
Finally, the top stack symbol could be replaced by two or
more symbols which has the effect of (possibly) changing
the top stack symbol and then pushing one or more new
symbols onto the stack.
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Example

We informally show L = {wwT | w ∈ {0, 1}∗} to be acceptable by
a pushdown automaton. Let x ∈ {0, 1}∗ be given as input.

(1) Start in a state q0 representing a “guess” that we have not
yet seen the middle of x. While in state q0, we read one
symbol at a time and store the symbol read in the stack by
pushing a copy of each input symbol onto the stack.

(2) At any time, we may guess that we have seen the middle
(i.e., the end of w if x = wwT is an input string from L). At
this time, w will be on the stack with the rightmost symbol
of w at the top and the leftmost symbol of w at the bottom.
We signify this choice by spontaneously changing the state
to q1 (i.e., we read λ instead of the next input symbol).
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Example - continued

(3) Once in state q1, we compare the input symbols with the
symbols at the top of the stack. If the symbol read from
input is equal to symbol at the top of the stack, we proceed
in state q1 and pop the stack. If they are different, we finish
without accepting the input. That is, this branch of
computation dies.

(4) If we reach the end of x and the stack is empty, then we
accept x.
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Remarks

Clearly, if x ∈ L, then by guessing the middle of x rightly, we
arrive at an accepting computation path. If x < L, then
independently of what we are guessing, no computation path
will lead to acceptance. Thus, the pushdown automaton
described above is a nondeterministic acceptor for L.

Note that a pushdown automaton is allowed to change the
stack as described above while performing a spontaneous
transition.

Question
How can we formally define the language accepted by a
pushdown automaton?
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Pushdown Automata V

Looking at the example above, we see that the automaton has
finished its computation with empty stack. Thus, it would be
natural to define the language accepted by a pushdown
automaton to be the set of all strings on which the pushdown
automaton has a computation that ends with empty stack.

Second, we can adopt the method we have used for finite
automata. That is, we choose a subset of the set of all states and
declare each state in this subset to be an accepting state. If
taking this approach, it would be natural to define the language
accepted by a pushdown automaton to be the set of all strings
for which there is a computation ending in an accepting state.

We give both ideas a try.
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Pushdown Automata VI

Definition 1
K = [Q, Σ, Γ , δ, q0, k0, F] is said to be a pushdown automaton
provided
(1) Q is a finite nonempty set (the set of states),
(2) Σ is an alphabet (the so-called input alphabet),
(3) Γ is an alphabet (the so-called stack alphabet),
(4) δ : Q× (Σ ∪ {λ})× Γ −→ ℘fin(Q× Γ∗), the transition

relationa,
(5) q0 ∈ Q is the initial state,
(6) k0 is the so called stack symbol, i.e., k0 ∈ Γ and initially the

stack contains exactly one k0 and nothing else.
(7) F ⊆ Q, the set of final states.

aHere we use ℘fin(Q× Γ∗) to denote the set of all finite subsets of Q× Γ∗.
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Pushdown Automata VII

In the following, we use small letters from the beginning of the
alphabet to denote input symbols, and small letters from the
end of the alphabet to denote strings of input symbols. We use
capital letters to denote stack symbols from Γ and small Greek
letters to denote strings of stack symbols.

Next, consider

δ(q, a, Z) = {(q1, γ1), (q2, γ2), . . . , (qm, γm)} ,

where q, qi ∈ Q for i = 1, . . . , m, a ∈ Σ, Z ∈ Γ and γi ∈ Γ∗ for
i = 1, . . . , m.
Interpretation: K is in state q, reads a on its input tape and Z

on the top of its stack. Then it can nondeterministically choose
exactly one (qi, γi), i ∈ {1, . . . , m} for the transition to be made.
So, it changes its state to qi, moves the head on the input tape
one position to the right provided a , λ and replaces Z by γi.
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Pushdown Automata VIII

We make the convention that the rightmost symbol of γi is
pushed first in the stack, then the second symbol (if any) from
the right, and so on. Hence, the leftmost symbol of γi is the new
symbol which is then on the top of the stack. If γi = λ, then the
interpretation is that Z has been removed from the stack.

If a = λ, the interpretation is the same as above, except that the
head on the input tape is not moved.
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Instantaneous Descriptions

In order to formally deal with computations performed by a
pushdown automaton we define instantaneous descriptions. An
instantaneous description is a triple (q, w, γ), where q ∈ Q,
w ∈ Σ∗ and γ ∈ Γ∗.
Let K = [Q, Σ, Γ , δ, q0, k0, F] be a pushdown automaton. Then
we write

(q, aw, Zα)
1
−→
K

(p, w, βα)

provided (p, β) ∈ δ(q, a, Z). Note that a ∈ Σ ∪ {λ}.

By
∗
−→
K

we denote the reflexive transitive closure of
1
−→
K

.
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Modes of Acceptance

Definition 2
Let K = [Q, Σ, Γ , δ, q0, k0, F] be a pushdown automaton. We
define the language accepted by K via final state to be the set

L(K) = {w | (q0, w, k0)
∗
−→
K

(p, λ, γ) for some p ∈ F , γ ∈ Γ∗} .

The language accepted by K via empty stack is

N(K) = {w | (q0, w, k0)
∗
−→
K

(p, λ, λ) for some p ∈ Q} .

Since the sets of final states is irrelevant if acceptance via empty
stack is considered, we always set F = ∅ in this case.
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Determinism

Definition 3
A pushdown automaton K = [Q, Σ, Γ , δ, q0, k0, F] is said to be
deterministic if
(1) for every q ∈ Q and Z ∈ Γ we have δ(q, a, Z) = ∅ for all

a ∈ Σ if δ(q, λ, Z) , ∅, and
(2) for all q ∈ Q, Z ∈ Γ and a ∈ Σ ∪ {λ} we have

card(δ(q, a, Z)) 6 1.
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Remarks

In the latter definition, we had to include Condition (1) to avoid
a choice between a normal transition and a spontaneous
transition. On the other hand, Condition (2) guarantees that
there is no choice in any step. So, Condition (2) resembles the
condition we had imposed when defining deterministic finite
automata. The language accepted by a deterministic pushdown
automaton is defined in the same way as for nondeterministic
pushdown automata. That is, we again distinguish between
acceptance via final state and empty stack, respectively.

As far as finite automata have been concerned, we could prove
that the class of languages accepted by deterministic finite
automata is the same as the class of languages accepted by
nondeterministic finite automata. Note that an analogous result
cannot be obtained for pushdown automata.
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Comparing the Modes of Acceptance I

Theorem 1
Let L = L(K) for a pushdown automaton K. Then there exists a
pushdown automaton K̃ such that L = N(K̃).

Proof. Clearly, such a theorem is proved by providing a
simulation, i.e., we want to modify K in a way such that the
stack is emptied whenever K reaches a final state. In order to
do so, we introduce a new state qλ and a special stack symbol
X0 to avoid acceptance if K has emptied its stack without
having reached a final state.
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Comparing the Modes of Acceptance II

Let K = [Q, Σ, Γ , δ, q0, k0, F] be any given pushdown automaton
such that L = L(K). We have to construct a pushdown
automaton K̃ such that L = N(K̃). We set

K̃ = [Q ∪ {qλ, q̃0}, Σ, Γ ∪ {X0}, q̃0, X0, δ̃, ∅] ,

where δ̃ is defined as follows:

δ̃(q̃0, λ, X0) = {(q0, k0X0)}

δ̃(q, a, Z) = δ(q, a, Z) for all q ∈ Q \ F, a ∈ Σ ∪ {λ}, Z ∈ Γ

δ̃(q, a, Z) = δ(q, a, Z) for all q ∈ F, a ∈ Σ and Z ∈ Γ

δ̃(q, λ, Z) = δ(q, λ, Z) ∪ {(qλ, λ)} for all q ∈ F, Z ∈ Γ ∪ {X0}

δ̃(qλ, λ, Z) = {(qλ, λ)} for all Z ∈ Γ ∪ {X0} .
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Comparing the Modes of Acceptance II
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Comparing the Modes of Acceptance III

By construction, when starting K̃, it is entering the initial
instantaneous description of K but pushes additionally its own
stack symbol X0 into the stack. Then K̃ simulates K until it
reaches a final state. If K reaches a final state, then K̃ can either
continue to simulate K or it can change its state to qλ. If K̃ is in
qλ, it can empty the stack and thus accept the input.
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Comparing the Modes of Acceptance IV

So, let x ∈ L(K). Then, there is a computation such that

(q0, x, k0)
∗
−→
K

(q, λ, γ) for a q ∈ F .

Consider K̃ on input x. By definition, K̃ starts in state q̃0 and
with stack symbol X0. Using the first spontaneous transition,

(q̃0, x, X0)
1
−→
K̃

(q0, x, k0X0) .

Next, K̃ can simulate every step of K’s work; hence

(q̃0, x, X0)
1
−→
K̃

(q0, x, k0X0)
∗
−→
K̃

(q, λ, γX0)

Using the last two transitions in the definition of δ̃ we obtain

(q0, x, k0X0)
∗
−→
K̃

(qλ, λ, λ) , thus x ∈ N(K̃) .
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Comparing the Modes of Acceptance V

Theorem 2
Let L = N(K) for a pushdown automaton K. Then there exists a
pushdown automaton K̃ such that L = L(K̃).

Proof. Again the proof is done by simulation. The pushdown
automaton K̃ will simulate K until it detects that K has emptied
its stack. If this happens then K̃ will enter a final state and stop.
The formal description is given in the book.
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PDA and CF I

So far, we have only dealt with pushdown automata and their
acceptance behavior. It remains to clarify what languages are
accepted by pushdown automata. This is done by the following
theorem. Recall that a derivation is said to be a leftmost
derivation if at each step in derivation a production is applied
to the leftmost nonterminal.
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PDA and CF II

Theorem 3
Let K = [Q, Σ, Γ , δ, q0, k0, ∅] be any pushdown automaton and let
L = N(K). Then L is context-free.
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The Proof I

Proof. Let K = [Q, Σ, Γ , δ, q0, k0, ∅] be any pushdown automaton.
For proving that L defined as L = N(K) is context-free, we have
to construct a context-free grammar G such that L = L(G). We
set G = [Σ, N, σ, P], where N is defined as follows. The elements
of N are denoted by [q, A, p], where p, q ∈ Q and A ∈ Γ .
Additionally, N contains the symbol σ. Next, we have to define
the set of productions. P contains the following rules.
(1) σ → [q0, k0, q] for every q ∈ Q,
(2) [q, A, qm+1] → a[q1, B1, q2][q2, B2, q3] · · · [qm, Bm, qm+1]

for q1, . . . , qm+1 ∈ Q and A, B1, . . . , Bm ∈ Γ such that
(q1, B1B2 · · ·Bm) ∈ δ(q, a, A) provided m > 0.
If m = 0 then the production is [q, A, q1] → a.
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The Proof II

To understand the proof it helps to know that the nonterminals
and productions of G have been defined in a way such that a
leftmost derivation in G of a string x is a simulation of the
pushdown automaton K when fed the input x. In particular, the
nonterminals that appear in any step of a leftmost derivation in
G correspond to the symbols on the stack of K at a time when K

has seen as much of the input as the grammar has already
generated. In other words, our intention is that [q, A, p] derives
x if and only if x causes K to erase an A from its stack by some
sequence of moves beginning in state q and ending in state p.
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The Proof III

For showing that L(G) = N(K) we prove inductively

[q, A, p]
∗

=⇒
G

x if and only if (q, x, A)
∗
−→
K

(p, λ, λ) . (1)

First, we show by induction on i that if

(q, x, A)
i
−→
K

(p, λ, λ) then [q, A, p]
∗

=⇒
G

x .
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The Proof IV

For the induction basis let i = 1. In order to have

(q, x, A)
1
−→
K

(p, λ, λ) it must hold that (p, λ) ∈ δ(q, x, A).

Consequently, either we have x = λ or x ∈ Σ. In both cases, by
construction of P we know that ([q, A, p] → x) ∈ P. Hence,

[q, A, p]
1

=⇒
G

x. This proves the induction basis.
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The Proof V

Now suppose i > 0. Let x = ay and

(q, ay, A)
1
−→
K

(q1, y, B1B2 · · ·Bn)
i−1
−→
K

(p, λ, λ) .

The string y can be written as y = y1y2 · · ·yn, where yj has the
effect of popping Bj from the stack, possibly after a long
sequence of moves. That is, let y1 be the prefix of y at the end of
which the stack first becomes as short as n − 1 symbols. Let y2
be the symbols of y following y1 such that at the end of y2 the
stack first becomes as short as n − 2 symbols, and so on.
This arrangement is displayed below.
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The Proof VI

Input symbols consumed

height of
the

stack

n

y1 y2 yn

State = p

State = q2

State = qn

State = q1

Figure 2: Hight of stack as a function of input symbols consumed
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The Proof VII

Note that B1 does not need to be the nth stack symbol from the
bottom during the entire time y1 is being read by K, since B1
may be changed if it is at the top of the stack and is replaced by
one or more symbols. However, none of B2B3 · · ·Bn are ever on
top while y1 is being read. Thus, none of B2B3 · · ·Bn can be
changed or influence the computation while y1 is processed. In
general, Bj remains on the stack unchanged while y1 · · ·yj−1 is
read.
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The Proof VIII

There exists states q2, q3, . . . , qn+1, where qn+1 = p such that

(qj, yj, Bj)
∗
−→
K

(qj+1, λ, λ)

by fewer than i moves. Note that qj is the state entered when
the stack first becomes as short as n − j + 1. Thus, we can apply
the induction hypothesis and obtain

[qj, Bj, qj+1]
∗

=⇒
G

yj for 1 6 j 6 n .

Recalling the original move

(q, ay, A)
1
−→
K

(q1, y, B1B2 · · ·Bn) we know that

[q, A, p] ⇒ a[q1, B1, q2][q2, B2, q3] · · · [qn, Bn, qn+1] ,

and thus [q, A, p]
∗

=⇒
G

ay1y2 · · ·yn = x, and (⇐) of (1) is shown.
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The Proof IX

For showing the necessity of (1) suppose [a, A, p]
i

=⇒
G

x. We

prove by induction on i that (q, x, A)
∗
−→
K

(p, λ, λ).

For the induction basis we again take i = 1. If [a, A, p]
1

=⇒
G

x,

then ([a, A, p] → x) ∈ P and therefore (p, λ) ∈ δ(q, x, A).
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The Proof X

Next, for the induction step suppose

[q, A, p] ⇒ a[q1, B1, q2] · · · [qn, Bn, qn+1]
i−1
=⇒
G

x ,

where qn+1 = p. Then we may write x as x = ax1 · · · xn, where

[qj, Bj, qj+1]
∗

=⇒
G

xj for j = 1, . . . , n. Moreover, each derivation

takes fewer than i steps. Thus, we can apply the induction
hypothesis and obtain

(qj, xj, Bj)
∗
−→
K

(qj+1, λ, λ) for j = 1, . . . , n .
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The Proof XI

If we insert Bj+1 · · ·Bn at the bottom of each stack in the above
sequence of instantaneous descriptions we see that

(qj, xj, BjBj+1 · · ·Bn)
∗
−→
K

(qj+1, λ, Bj+1 · · ·Bn) . (2)

Furthermore, from the first step in the derivation of x from
[q, A, p] we know that

(q, x, A)
1
−→
K

(q1, x1x2 · · · xn, B1B2 · · ·Bn)

is a legal move of K. Therefore, from this move and from (2) for
j = 1, 2, . . . , n we directly obtain

(q, x, A)
∗
−→
K

(p, λ, λ) .

This proves the necessity of (1).
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The Proof XII

The proof concludes with the observation that (1) with q = q0
and A = k0 says

[q0, k0, p]
∗

=⇒
G

x if and only if (q0, x, k0)
∗
−→
K

(p, λ, λ) .

This observation together with rule (1) of the construction of P

says that σ
∗

=⇒
G

x if and only if (q0, x, k0)
∗
−→
K

(p, λ, λ) for some

state p. Therefore, we finally arrive at x ∈ L(G) if and only if
x ∈ N(K).
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Thank you!
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