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Greibach Normal Form I

We want to show that all context-free languages are accepted
by pushdown automata. For doing this, it is very convenient to
use another normal form for context-free languages, i.e., the
so-called Greibach normal form.

Definition 1
A context-free grammar G = [T , N, σ, P] with λ < L(G) is said to
be in Greibach normal form if every production of G has the
form h → aα, where a ∈ T and α ∈ N∗.
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Greibach Normal Form II

Clearly, we aim to show that every context-free language does
possess a grammar in Greibach normal form. This is, however,
not as easy as it might seem. Therefore, we skip the proof here
and refer the audience to the book which also contains an
example.

Theorem 1

For every language L ∈ CF with λ < L there exists a grammar G̃ such
that L = L(G̃) and G̃ is in Greibach normal form.

Theory of Computation c©Thomas Zeugmann



Greibach Normal Form CFGs to PDAs Context-Sensitive Languages Beyond End

Greibach Normal Form II

Clearly, we aim to show that every context-free language does
possess a grammar in Greibach normal form. This is, however,
not as easy as it might seem. Therefore, we skip the proof here
and refer the audience to the book which also contains an
example.

Theorem 1

For every language L ∈ CF with λ < L there exists a grammar G̃ such
that L = L(G̃) and G̃ is in Greibach normal form.

Theory of Computation c©Thomas Zeugmann



Greibach Normal Form CFGs to PDAs Context-Sensitive Languages Beyond End

From CFto Pushdown Automata I

Now, we are ready to show the remaining fundamental
theorem concerning the power of pushdown automata.

Theorem 2
For every language L ∈ CF there exists a pushdown automaton K

such that L = N(K).

Proof. We assume that λ < L. It is left as an exercise to modify
the construction for the case that λ ∈ L. Let G = [T , N, σ, P] be a
context-free grammar in Greibach normal form such that
L = L(G).
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From CFto Pushdown Automata II

We need the following notation:

A string α of terminals and nonterminals is called a sentential

form if σ
∗

=⇒ α.

Now, let
K = [{q}, T , N, δ, q, σ, ∅] ,

where (q, γ) ∈ δ(q, a, A) whenever (A → aγ) ∈ P.

The pushdown automaton K simulates leftmost derivations
of G. Since G is in Greibach normal form, each sentential form in
a leftmost derivation consists of a string x of terminals followed
by a string of nonterminals α.
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From CFto Pushdown Automata III

K stores the suffix α of the left sentential form on its stack after
processing the prefix x. Formally, we show the following claim.

Claim 1. σ
∗

=⇒
G

xα by a leftmost derivation if and only if

(q, x, σ)
∗
−→
K

(q, λ, α) .
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From CFto Pushdown Automata IV

We start with the sufficiency. The prove is done by induction.

That is, we assume (q, x, σ)
i
−→
K

(q, λ, α) and show σ
∗

=⇒
G

xα.

For the induction basis, let i = 0. That is, we assume

(q, x, σ)
0
−→
K

(q, λ, α). By the definition of the reflexive transitive

closure
∗
−→
K

, this means nothing else than (q, x, σ) = (q, λ, α).

Consequently, x = λ and α = σ. Obviously, by the definition of

the reflexive transitive closure
∗

=⇒
G

we can conclude σ
∗

=⇒
G

σ,

again in zero steps. This proves the induction basis.
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From CFto Pushdown Automata V

For the induction step, assume i > 1 and let x = ya, where
y ∈ T∗. Now, we consider the next-to-last-step, i.e.,

(q, ya, σ)
i−1
−→
K

(q, a, β)
1
−→
K

(q, λ, α) . (1)

If we remove a from the end of the input string in the first i

instantaneous descriptions of the sequence (1), we discover that

(q, y, σ)
i−1
−→
K

(q, λ, β), since a cannot influence K’s behavior

until it is actually consumed from the input. Thus, we can
apply the induction hypothesis and obtain

σ
∗

=⇒
G

yβ .
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From CFto Pushdown Automata VI

Taking into account that the pushdown automaton K, while

consuming a, is making the move (q, a, β)
1
−→
K

(q, λ, α), we

directly get by construction that β = Aγ for some A ∈ N,
(A → aη) ∈ P and α = ηγ.
Hence, we arrive at

σ
∗

=⇒
G

yβ
1

=⇒
G

yaηγ = xα .

This completes the sufficiency proof.
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From CFto Pushdown Automata VII

For showing the necessity suppose that σ
i

=⇒
G

xα by a leftmost

derivation. We prove by induction on i that

(q, x, σ)
∗
−→
K

(q, λ, α). The induction basis is again done for

i = 0, and can be shown by using similar arguments as above.
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From CFto Pushdown Automata VIII

For the induction step let i > 1 and suppose

σ
i−1
=⇒
G

yAγ
1

=⇒
G

yaηγ , where x = ya, α = ηγ .

By the induction hypothesis we directly get

(q, y, σ)
∗
−→
K

(q, λ, Aγ)

and thus (q, ya, σ)
∗
−→
K

(q, a, Aγ). Since (A → aη) ∈ P, we can

conclude that (q, η) ∈ δ(q, a, A). Thus,

(q, x, σ)
∗
−→
K

(q, a, Aγ)
1
−→
K

(q, λ, α) ,

and the necessity follows. This proves Claim 1.
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From CFto Pushdown Automata IX

To conclude the proof of the theorem, we have only to note that
Claim 1 with α = λ says

σ
∗

=⇒
G

x if and only if (q, x, σ)
∗
−→
K

(q, λ, λ) .

That is, x ∈ L(G) if and only if x ∈ N(K).
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Main Theorem

Now, putting it all together, we directly obtain the following.

Theorem 3
Let L be any language. Then the following three assertions are
equivalent:
(1) L ∈ CF .
(2) There exists a pushdown automaton K1 such that L = L(K1).
(3) There exists a pushdown automaton K2 such that L = N(K2).
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Remarks I

After so much progress we may want to ask questions like
whether or not L(G1) ∩ L(G2) = ∅ for any given context-free
grammars G1, G2.

You may be tempted to think this is not a too difficult task. But
as a matter of fact, nobody succeeded to design an algorithm
solving this problem for all context-free grammars. Maybe,
there is a deeper reason behind this situation. Before we can
explore such problems, we have to deal with computability.
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Remarks II

On the other hand, so far we have studied regular and
context-free languages. But we have already seen a language
which is not context-free, i.e.,

L = {anbncn | n ∈N} .

Thus, it is only natural to ask what other language families are
around. Due to the lack of time, we can only sketch these parts
of formal language theory.
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Context-Sensitive Languages I

First, we provide a formal definition.

Definition 2
A Grammar G = [T , N, σ, P] is said to be context-sensitive if all
its productions satisfy the following conditions.
(1) (α → β) ∈ P iff there are s1, s2, r, and h such that h ∈ N,

s1, s2 ∈ (T ∪N)∗ and r ∈ (T ∪N)+ and
α = s1hs2 and β = s1rs2, or

(2) α = h and β = λ and h does not occur at any right-hand
side of a production from P.
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Context-Sensitive Languages II

Definition 3
A language is said to be context-sensitive if there exists a
context-sensitive grammar G such that L = L(G).

By CS we denote the family of all context-sensitive languages.
The name context-sensitive is quite intuitive, since the
replacement or rewriting of a nonterminal is only possible in a
certain context expressed by a prefix s1 and suffix s2. The
definition provided above directly allows for the observation
that CF ⊆ CS.

Exercise: Prove that CF ⊂ CS.
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Context-Sensitive Languages III

Using similar ideas as we did for REG and CF, one can show
the following.

Theorem 4
The context-sensitive languages are closed under union, product and
Kleene closure.

Proof. The proof is left as an exercise.

Also, in the same way as Theorem 6.4 has been shown, one can
prove the context-sensitive languages to be closed under
transposition. That is, we directly get the next theorem.

Theorem 5
Let Σ be any alphabet, and let L ⊆ Σ∗. Then we have: If L ∈ CS then
LT ∈ CS, too.
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Context-Sensitive Languages IV

Moreover, in contrast to the context-free languages we have:

Theorem 6
The context-sensitive languages are closed under intersection.

For establishing further properties of context-sensitive
languages, we need the following definition.

Definition 4
A Grammar G = [T , N, σ, P] is said to be length-increasing if for
each production (α → β) ∈ P the condition |α| 6 |β| is
satisfied. In addition, P may contain the production σ → λ

and in this case σ does not occur on the right-hand side of any
production from P.
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Context-Sensitive Languages V

Looking at the definition of context-sensitive grammars, we
directly get the following corollary.

Corollary 7
Every context-sensitive grammar is length-increasing.

However, one can prove that there are length-increasing
grammars which are not context-sensitive (see below).

Nevertheless, one can show the following.

Theorem 8
For every length-increasing grammar there exists an equivalent
context-sensitive grammar.
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Context-Sensitive Languages VI

Putting it all together directly yields the following equivalence.

Theorem 9
Let L be any language. Then the following statements are equivalent:
(1) There exists a context-sensitive grammar G such that L = L(G).
(2) There exists a length-increasing grammar G̃ such that L = L(G̃).
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Context-Sensitive Languages VII

Example 1

Let T be any alphabet. We define a grammar G = [T , N, σ, P] as
follows. Let

N = {σ} ∪ {Xi | i ∈ T } ∪ {Ai | i ∈ T } ∪ {Bi | i ∈ T } .

and let P be the following set of productions
1 σ → iσXi

2 σ → AiBi

3 BiXj → XjBi

4 Bi → i

5 AiXj → AiBj

6 Ai → i

where i, j ∈ T .
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Context-Sensitive Languages VIII

Inspecting the productions we see that G is a length-increasing
grammar which is not context-sensitive, since the context in
Production 3 is destroyed.

Nevertheless, by the latter theorem we know that the language
L(G) is context-sensitive.

Exercise: Prove that the grammar G given in the example above
generates

L = {ww | w ∈ T+} .

Theory of Computation c©Thomas Zeugmann



Greibach Normal Form CFGs to PDAs Context-Sensitive Languages Beyond End

Context-Sensitive Languages VIII

Inspecting the productions we see that G is a length-increasing
grammar which is not context-sensitive, since the context in
Production 3 is destroyed.

Nevertheless, by the latter theorem we know that the language
L(G) is context-sensitive.

Exercise: Prove that the grammar G given in the example above
generates

L = {ww | w ∈ T+} .

Theory of Computation c©Thomas Zeugmann



Greibach Normal Form CFGs to PDAs Context-Sensitive Languages Beyond End

Context-Sensitive Languages IX

The notion of length-increasing grammar has another nice
implication which we state next.

Theorem 10
There is an algorithm that on input any context-sensitive grammar
G = [T , N, σ, P] and any string s ∈ T∗ decides whether or not
s ∈ L(G).
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Context-Sensitive Languages X

Proof Sketch: Since every context-sensitive grammar is also a
length-increasing grammar, it suffices to examine all finite
sequences w0, w1, . . . , wn with |wi| < |wi+1|, i = 0, . . . , n − 1
and σ = w0 as well as wn = s, where wi ∈ (T ∪N)+. The
number of all those sequences is finite. Let S be the set of all
such sequences.

Now, the only thing one has to check is whether or not

wi

1
=⇒
G

wi+1 for all i = 0, . . . , n − 1 . (2)

Thus, one either finds a sequence in S fulfilling (2). Then one
can directly conclude that s ∈ L(G). If all sequences in S fail to
satisfy (2) then s < L(G).

Theory of Computation c©Thomas Zeugmann



Greibach Normal Form CFGs to PDAs Context-Sensitive Languages Beyond End

Context-Sensitive Languages X

Proof Sketch: Since every context-sensitive grammar is also a
length-increasing grammar, it suffices to examine all finite
sequences w0, w1, . . . , wn with |wi| < |wi+1|, i = 0, . . . , n − 1
and σ = w0 as well as wn = s, where wi ∈ (T ∪N)+. The
number of all those sequences is finite. Let S be the set of all
such sequences.

Now, the only thing one has to check is whether or not

wi

1
=⇒
G

wi+1 for all i = 0, . . . , n − 1 . (2)

Thus, one either finds a sequence in S fulfilling (2). Then one
can directly conclude that s ∈ L(G). If all sequences in S fail to
satisfy (2) then s < L(G).

Theory of Computation c©Thomas Zeugmann



Greibach Normal Form CFGs to PDAs Context-Sensitive Languages Beyond End

Context-Sensitive Languages XI

Recall that we have proved the regular languages to be closed
under complement and the context-free languages to be not
closed under complement. As curious as we are, we clearly like
to know whether or not the context-sensitive languages are
closed under complement.

To answer this question is by no means easy. As a matter of
fact, it took more than 20 years to resolve this question. So we
have to be a bit patient. We shall provide an answer in the
course on “Complexity and Cryptography.”
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Beyond I

Finally, we mention what happens if we pose no restrictions
whatsoever on the set of productions. We shall call the
resulting family of languages L0, where 0 should remind you to
zero restrictions.

Then, it is quite obvious that all languages L in L0 share the
property that we can algorithmically enumerate all and only the
elements contained in L provided we are given a grammar G

for L. However, as we shall see later, our last Theorem cannot be
generalized to L0. So, we can directly conclude that CS ⊂ L0.
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Beyond II

Putting it all together gives us the famous Chomsky Hierarchy,
i.e.,

REG ⊂ CF ⊂ CS ⊂ L0 .
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Thank you!
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