
Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Theory of Computation

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/∼thomas/ToC/

Lecture 11: Models of Computation

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation I

Looking roughly 100 years back, mathematics faced the
problem that there have been problems for which nobody
could find an algorithm solving them.

One of the famous examples is Hilbert’s tenth problem,
formulated as

Design an algorithm deciding whether a given Diophantine equation
has an integral solution.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation I

Looking roughly 100 years back, mathematics faced the
problem that there have been problems for which nobody
could find an algorithm solving them.

One of the famous examples is Hilbert’s tenth problem,
formulated as

Design an algorithm deciding whether a given Diophantine equation
has an integral solution.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation II

Finally, the idea emerged that there may be problems which
cannot be solved algorithmically.

Let us first see, how this idea could emerge. As a matter of fact,
without Cantor’s work, it would have been much more
difficult.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation II

Finally, the idea emerged that there may be problems which
cannot be solved algorithmically.

Let us first see, how this idea could emerge. As a matter of fact,
without Cantor’s work, it would have been much more
difficult.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation III

Looking at all the algorithms we know, we can say that an
algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation III

Looking at all the algorithms we know, we can say that an
algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation III

Looking at all the algorithms we know, we can say that an
algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation III

Looking at all the algorithms we know, we can say that an
algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation III

Looking at all the algorithms we know, we can say that an
algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation IV

Now, we can also assume that there is a finite alphabet Σ such
that every algorithm can be represented as a string from Σ∗.
Since the number of all strings from Σ∗ is countably infinite there
are at most countably infinite many algorithms.

Recalling Cantor’s famous result that

{f | f : N→ {0, 1}}

is uncountably infinite, we directly arrive at the following
theorem.

Theorem 1
There exists a noncomputable function f : N→ {0, 1}.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation IV

Now, we can also assume that there is a finite alphabet Σ such
that every algorithm can be represented as a string from Σ∗.
Since the number of all strings from Σ∗ is countably infinite there
are at most countably infinite many algorithms.

Recalling Cantor’s famous result that

{f | f : N→ {0, 1}}

is uncountably infinite, we directly arrive at the following
theorem.

Theorem 1
There exists a noncomputable function f : N→ {0, 1}.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation IV

Now, we can also assume that there is a finite alphabet Σ such
that every algorithm can be represented as a string from Σ∗.
Since the number of all strings from Σ∗ is countably infinite there
are at most countably infinite many algorithms.

Recalling Cantor’s famous result that

{f | f : N→ {0, 1}}

is uncountably infinite, we directly arrive at the following
theorem.

Theorem 1
There exists a noncomputable function f : N→ {0, 1}.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation V

While this result is of fundamental epistemological importance,
it is telling nothing about any particular function. For
achieving results in this regard, we have to do much more.
Thus, modern computation theory starts with the question

Which problems can be solved algorithmically ?

In order to answer it, first of all, the intuitive notion of an
algorithm has to be formalized mathematically.

Within this course, we shall study Gödel’s and Turing’s
formalization; i.e., partial recursive functions and Turing
machines, respectively.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation V

While this result is of fundamental epistemological importance,
it is telling nothing about any particular function. For
achieving results in this regard, we have to do much more.
Thus, modern computation theory starts with the question

Which problems can be solved algorithmically ?

In order to answer it, first of all, the intuitive notion of an
algorithm has to be formalized mathematically.

Within this course, we shall study Gödel’s and Turing’s
formalization; i.e., partial recursive functions and Turing
machines, respectively.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Motivation V

While this result is of fundamental epistemological importance,
it is telling nothing about any particular function. For
achieving results in this regard, we have to do much more.
Thus, modern computation theory starts with the question

Which problems can be solved algorithmically ?

In order to answer it, first of all, the intuitive notion of an
algorithm has to be formalized mathematically.

Within this course, we shall study Gödel’s and Turing’s
formalization; i.e., partial recursive functions and Turing
machines, respectively.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions I

For all n ∈N+ we write Pn to denote the set of all partial
recursive functions fromNn intoN. Here we defineN1 =N
andNn+1 =Nn ×N, i.e.,Nn is the set of all ordered n-tuples
of natural numbers.
Gödel’s idea to define the set P of all partial recursive functions
is as follows:

Step (1): Define some basic functions which are intuitively
computable.

Step (2): Define some rules that can be used to construct
new computable functions from functions that are
already known to be computable.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions I

For all n ∈N+ we write Pn to denote the set of all partial
recursive functions fromNn intoN. Here we defineN1 =N
andNn+1 =Nn ×N, i.e.,Nn is the set of all ordered n-tuples
of natural numbers.
Gödel’s idea to define the set P of all partial recursive functions
is as follows:

Step (1): Define some basic functions which are intuitively
computable.

Step (2): Define some rules that can be used to construct
new computable functions from functions that are
already known to be computable.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions I

For all n ∈N+ we write Pn to denote the set of all partial
recursive functions fromNn intoN. Here we defineN1 =N
andNn+1 =Nn ×N, i.e.,Nn is the set of all ordered n-tuples
of natural numbers.
Gödel’s idea to define the set P of all partial recursive functions
is as follows:

Step (1): Define some basic functions which are intuitively
computable.

Step (2): Define some rules that can be used to construct
new computable functions from functions that are
already known to be computable.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions II

In order to complete Step (1), we define the following functions
Z, S, V : N→N by setting:

Z(n) =df 0 for all n ∈N,
S(n) =df n+ 1 for all n ∈N,

V(n) =df

{
0, if n = 0 ;
n− 1, for all n > 1 .

That is, Z is the constant 0 function, S is the successor function
and V is the predecessor function. Clearly, these functions are
intuitively computable. Therefore, by definition we have
Z, S, V ∈ P1. This completes Step (1) of the outline given
above.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions III

Next, we define the rules (cf. Step (2)).

(2.1) (Introduction of fictitious variables)
Let n ∈N+; then we have: if τ ∈ Pn and
ψ(x1, . . . , xn, xn+1) =df τ(x1, . . . , xn), then ψ ∈ Pn+1.

(2.2) (Identifying variables)
Let n ∈N+; then we have: if τ ∈ Pn+1 and
ψ(x1, . . . , xn) =df τ(x1, . . . , xn, xn), then ψ ∈ Pn.

(2.3) (Permuting variables) Let n ∈N+, n > 2 and let
i ∈ {1, . . . ,n}; then we have: if τ ∈ Pn and
ψ(x1, . . . , xi, xi+1, . . . , xn) =df τ(x1, . . . , xi+1, xi, . . . , xn),
then ψ ∈ Pn.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions III

Next, we define the rules (cf. Step (2)).

(2.1) (Introduction of fictitious variables)
Let n ∈N+; then we have: if τ ∈ Pn and
ψ(x1, . . . , xn, xn+1) =df τ(x1, . . . , xn), then ψ ∈ Pn+1.

(2.2) (Identifying variables)
Let n ∈N+; then we have: if τ ∈ Pn+1 and
ψ(x1, . . . , xn) =df τ(x1, . . . , xn, xn), then ψ ∈ Pn.

(2.3) (Permuting variables) Let n ∈N+, n > 2 and let
i ∈ {1, . . . ,n}; then we have: if τ ∈ Pn and
ψ(x1, . . . , xi, xi+1, . . . , xn) =df τ(x1, . . . , xi+1, xi, . . . , xn),
then ψ ∈ Pn.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions III

Next, we define the rules (cf. Step (2)).

(2.1) (Introduction of fictitious variables)
Let n ∈N+; then we have: if τ ∈ Pn and
ψ(x1, . . . , xn, xn+1) =df τ(x1, . . . , xn), then ψ ∈ Pn+1.

(2.2) (Identifying variables)
Let n ∈N+; then we have: if τ ∈ Pn+1 and
ψ(x1, . . . , xn) =df τ(x1, . . . , xn, xn), then ψ ∈ Pn.

(2.3) (Permuting variables) Let n ∈N+, n > 2 and let
i ∈ {1, . . . ,n}; then we have: if τ ∈ Pn and
ψ(x1, . . . , xi, xi+1, . . . , xn) =df τ(x1, . . . , xi+1, xi, . . . , xn),
then ψ ∈ Pn.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions III

Next, we define the rules (cf. Step (2)).

(2.1) (Introduction of fictitious variables)
Let n ∈N+; then we have: if τ ∈ Pn and
ψ(x1, . . . , xn, xn+1) =df τ(x1, . . . , xn), then ψ ∈ Pn+1.

(2.2) (Identifying variables)
Let n ∈N+; then we have: if τ ∈ Pn+1 and
ψ(x1, . . . , xn) =df τ(x1, . . . , xn, xn), then ψ ∈ Pn.

(2.3) (Permuting variables) Let n ∈N+, n > 2 and let
i ∈ {1, . . . ,n}; then we have: if τ ∈ Pn and
ψ(x1, . . . , xi, xi+1, . . . , xn) =df τ(x1, . . . , xi+1, xi, . . . , xn),
then ψ ∈ Pn.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions IV

(2.4) (Composition)
Let n ∈N andm ∈N+. Furthermore, let τ ∈ Pn+1, let
ψ ∈ Pm and define
φ(x1, . . . , xn,y1, . . . ,ym) =df τ(x1, . . . , xn,ψ(y1, . . . ,ym)).

Then φ ∈ Pn+m.

(2.5) (Primitive recursion)
Let n ∈N, let τ ∈ Pn and let ψ ∈ Pn+2. Then we have: if

φ(x1, . . . , xn, 0) =df τ(x1, . . . , xn);
φ(x1, . . . , xn,y+ 1) =df ψ(x1, . . . , xn,y,φ(x1, . . . , xn,y)) ,

then φ ∈ Pn+1.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions IV

(2.4) (Composition)
Let n ∈N andm ∈N+. Furthermore, let τ ∈ Pn+1, let
ψ ∈ Pm and define
φ(x1, . . . , xn,y1, . . . ,ym) =df τ(x1, . . . , xn,ψ(y1, . . . ,ym)).

Then φ ∈ Pn+m.
(2.5) (Primitive recursion)

Let n ∈N, let τ ∈ Pn and let ψ ∈ Pn+2. Then we have: if

φ(x1, . . . , xn, 0) =df τ(x1, . . . , xn);
φ(x1, . . . , xn,y+ 1) =df ψ(x1, . . . , xn,y,φ(x1, . . . , xn,y)) ,

then φ ∈ Pn+1.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions V

(2.6) (µ-recursion)
Let n ∈N+; then we have: if τ ∈ Pn+1 and
ψ(x1, . . . , xn) =df µy[τ(x1, . . . , xn,y) = 1]

=df


the smallest y such that
(1) τ(x1, . . . , xn, v) is defined for all v 6 y;
(2) τ(x1, . . . , xn, v) , 1 for all v < y;
(3) τ(x1, . . . , xn,y) = 1 , if such a y exists;
not defined , otherwise ;

then ψ ∈ Pn.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem I

Note that all operations given above except Operation (2.5) are
explicit. Operation (2.5) itself constitutes an implicit definition,
since φ appears on both the left and right hand side. Thus,
before we can continue, we need to verify whether or not
Operation (2.5) does always defines a function. This is by no
means obvious. Recall that every implicit definition needs a
justification.

Therefore, we have to show the following theorem:

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem II

Theorem 2
If τ and ψ are functions, then there is precisely one function φ
satisfying the scheme given in Operation (2.5).

Proof. We have to show uniqueness and existence of φ.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem II

Theorem 2
If τ and ψ are functions, then there is precisely one function φ
satisfying the scheme given in Operation (2.5).

Proof. We have to show uniqueness and existence of φ.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem III

Claim 1. There is at most one function φ satisfying the scheme given
in Operation (2.5).

Suppose there are functions φ1 and φ2 satisfying the scheme
given in Operation (2.5). We show by induction over y that

φ1(x1, . . . , xn,y) = φ2(x1, . . . , xn,y) for all x1, . . . , xn,y ∈N .

For the induction basis, let y = 0. Then we directly get for all
x1, . . . , xn ∈N

φ1(x1, . . . , xn, 0) = τ(x1, . . . , xn)

= φ2(x1, . . . , xn, 0) .

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem III

Claim 1. There is at most one function φ satisfying the scheme given
in Operation (2.5).

Suppose there are functions φ1 and φ2 satisfying the scheme
given in Operation (2.5). We show by induction over y that

φ1(x1, . . . , xn,y) = φ2(x1, . . . , xn,y) for all x1, . . . , xn,y ∈N .

For the induction basis, let y = 0. Then we directly get for all
x1, . . . , xn ∈N

φ1(x1, . . . , xn, 0) = τ(x1, . . . , xn)

= φ2(x1, . . . , xn, 0) .

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem IV

Now, we assume as induction hypothesis (abbr. IH) that for all
x1, . . . , xn ∈N and some y ∈N

φ1(x1, . . . , xn,y) = φ2(x1, . . . , xn,y) .

The induction step is done from y to y+ 1. Using the scheme
provided in Operation (2.5) we obtain

φ1(x1, . . . , xn,y+ 1) = ψ(x1, . . . , xn,y,φ1(x1, . . . , xn,y))
by def.

= ψ(x1, . . . , xn,y,φ2(x1, . . . , xn,y))
by the IH

= φ2(x1, . . . , xn,y+ 1) by def. .

Consequently φ1 = φ2, and Claim 1 is proved.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem V

Claim 2. There is a function φ satisfying the scheme given in
Operation (2.5).
For showing the existence of φwe replace the inductive and
implicit definition of φ by an infinite sequence of explicit
definitions; i.e., let

φ0(x1, . . . , xn,y) =df

{
τ(x1, . . . , xn), if y = 0 ;
not defined, otherwise .

φ1(x1, . . . , xn,y) =df

 φ0(x1, . . . , xn,y), if y < 1 ;
ψ(x1, . . . , xn, 0,φ0(x1, . . . , xn, 0)), if y = 1 ;
not defined, otherwise .

. . .

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem VI

φi+1(x1, . . . , xn,y) =df

φi(x1, . . . , xn,y), if y < i+ 1 ;
ψ(x1, . . . , xn, i,φi(x1, . . . , xn, i)), if y = i+ 1 ;
not defined, otherwise .

. . .

All definitions of the functions φi are explicit, and thus the
functions φi exist by the set forming axiom. Consequently, for
y ∈N and every x1, . . . , xn ∈N the function φ defined by

φ(x1, . . . , xn,y) =df φy(x1, . . . , xn,y)

does exist.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Dedekind’s Justification Theorem VII

Furthermore, by construction we directly get

φ(x1, . . . , xn, 0) = φ0(x1, . . . , xn, 0)

= τ(x1, . . . , xn) and

φ(x1, . . . , xn,y+ 1) = φy+1(x1, . . . , xn,y+ 1)

= ψ(x1, . . . , xn,y,φy(x1, . . . , xn,y))
= ψ(x1, . . . , xn,y,φ(x1, . . . , xn,y)) ,

and thus, φ is satisfying the scheme given in Operation (2.5).

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions VI

Definition 1
We define the class P of all partial recursive functions to be the
smallest function class containing the functions Z, S and V and
all functions that can be obtained from Z, S and V by finitely
many applications of the Operations (2.1) through (2.6).

Furthermore, we define the important subclass of primitive
recursive functions as follows.

Definition 2
We define the class Prim of all primitive recursive functions to
be the smallest function class containing the functions Z, S and
V and all functions that can be obtained from Z, S and V by
finitely many applications of the Operations (2.1) through (2.5).

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Defining Partial Recursive Functions VI

Definition 1
We define the class P of all partial recursive functions to be the
smallest function class containing the functions Z, S and V and
all functions that can be obtained from Z, S and V by finitely
many applications of the Operations (2.1) through (2.6).

Furthermore, we define the important subclass of primitive
recursive functions as follows.

Definition 2
We define the class Prim of all primitive recursive functions to
be the smallest function class containing the functions Z, S and
V and all functions that can be obtained from Z, S and V by
finitely many applications of the Operations (2.1) through (2.5).

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Example 1 (Identity Function)

The identity function I : N→N defined by I(x) = x for all x ∈N is
primitive recursive.

Proof. We want to apply Operation (2.4). Let n = 0 andm = 1.
By our definition (cf. Step (1)), we know that V , S ∈ P1. So, V
serves as the τ (note that n+ 1 = 0 + 1 = 1) and S serves as
the ψ in Operation (2.4) (note thatm = 1). Consequently, the
desired function I is the φ in Operation (2.4)
(note that n+m = 0 + 1 = 1) and we can set

I(x) =df V(S(x)) .

Hence, the identity function I is primitive recursive.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Example 2 (Binary Addition)

The binary addition function α : N×N→N given by
α(n,m) = n+m for all n,m ∈N is is primitive recursive.

Proof. By assumption, S ∈ P. As shown in Example 1, I ∈ Prim.
First, we define some auxiliary functions by using the
operations indicated below.

ψ(x1, x2) =df S(x1) by using Operation (2.1);
ψ̃(x1, x2) =df ψ(x2, x1) by using Operation (2.3);

τ(x1, x2, x3) =df ψ̃(x1, x2) by using Operation (2.1);
τ̃(x1, x2, x3) =df τ(x1, x3, x2) by using Operation (2.3) .

Now, we apply Operation (2.5) for defining α, i.e., we set

α(n, 0) =df I(n),
α(n,m+ 1) =df τ̃(n,m,α(n,m)) .

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Binary Addition II

Since we only used Operations (2.1) through (2.5), we see that
α ∈ Prim.

So, let us compute α(n, 1). Then we get

α(n, 1) = α(n, 0 + 1) = τ̃(n, 0,α(n, 0))

= τ̃(n, 0, I(n)) by using α(n, 0) = I(n) ,
= τ̃(n, 0,n) by using I(n) = n ,
= τ(n,n, 0) by using the definition of τ̃ ,
= ψ̃(n,n) by using the definition of τ ,
= ψ(n,n) by using the definition of ψ̃ ,
= S(n) = n+ 1 by using the definition of ψ and S .

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Binary Addition II

Since we only used Operations (2.1) through (2.5), we see that
α ∈ Prim.

So, let us compute α(n, 1). Then we get

α(n, 1) = α(n, 0 + 1) = τ̃(n, 0,α(n, 0))

= τ̃(n, 0, I(n)) by using α(n, 0) = I(n) ,
= τ̃(n, 0,n) by using I(n) = n ,
= τ(n,n, 0) by using the definition of τ̃ ,
= ψ̃(n,n) by using the definition of τ ,
= ψ(n,n) by using the definition of ψ̃ ,
= S(n) = n+ 1 by using the definition of ψ and S .

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Binary Addition III

So, our definition may look more complex than necessary. In
order to see, it is not, we compute α(n, 2).

α(n, 2) = α(n, 1 + 1) = τ̃(n, 1,α(n, 1))

= τ̃(n, 1,n+ 1) by using α(n, 1) = n+ 1 ,
= τ(n,n+ 1, 1)

= ψ̃(n,n+ 1)

= ψ(n+ 1,n)

= S(n+ 1) = n+ 2 .

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Binary Multiplication

In the following we shall often omit some of the tedious
technical steps. For example, in order to clarify that binary
multiplication is primitive recursive, we simply point out that
is suffices to set

m(x, 0) = Z(x) ,
m(x,y+ 1) = α(x,m(x,y)) .

Also note that the constant 1 function c is primitive recursive;
i.e., c(n) = 1 for all n ∈N. For seeing this, we set

c(0) = S(0) ,
c(n+ 1) = c(n) .

In the following, instead of c(n) we just write 1.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Binary Multiplication

In the following we shall often omit some of the tedious
technical steps. For example, in order to clarify that binary
multiplication is primitive recursive, we simply point out that
is suffices to set

m(x, 0) = Z(x) ,
m(x,y+ 1) = α(x,m(x,y)) .

Also note that the constant 1 function c is primitive recursive;
i.e., c(n) = 1 for all n ∈N. For seeing this, we set

c(0) = S(0) ,
c(n+ 1) = c(n) .

In the following, instead of c(n) we just write 1.
Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Signum and Arithmetic Difference

Now, it is easy to see that the signum function sg is primitive
recursive, since we have

sg(0) = 0 ,
sg(n+ 1) = 1 .

Since the natural numbers are not closed under subtraction, one
conventionally uses the so-called arithmetic difference defined
asm .− n = m− n ifm > n and 0 otherwise. The arithmetic
difference is primitive recursive, too, since for all n,m ∈Nwe
have

m .− 0 = I(m) ,
m .− (n+ 1) = V(m .− n) .

Generalizations of the examples given so far are in the book.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Signum and Arithmetic Difference

Now, it is easy to see that the signum function sg is primitive
recursive, since we have

sg(0) = 0 ,
sg(n+ 1) = 1 .

Since the natural numbers are not closed under subtraction, one
conventionally uses the so-called arithmetic difference defined
asm .− n = m− n ifm > n and 0 otherwise. The arithmetic
difference is primitive recursive, too, since for all n,m ∈Nwe
have

m .− 0 = I(m) ,
m .− (n+ 1) = V(m .− n) .

Generalizations of the examples given so far are in the book.
Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Case Distinctions I

Quite often one is defining functions by making case dist-
inctions (cf., e.g., our definition of the predecessor function V).
So, it is only natural to ask under what circumstances
definitions by case distinctions do preserve primitive
recursiveness. A convenient way to describe properties is the
usage of predicates. An n-ary predicate p over the natural
numbers is a subset ofNn. Usually, one writes p(x1, . . . , xn)

instead of (x1, . . . , xn) ∈ p. The characteristic function of n-ary
predicate p is the function χp : Nn → {0, 1} defined by

χp(x1, . . . , xn) =

{
1, if p(x1, . . . , xn) ;
0, otherwise .

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Case Distinctions II

Definition 3
A predicate p is said to be primitive recursive if χp is primitive
recursive.

Definition 4
Let p,q be n-ary predicates, then we define p∧ q to be the set
p ∩ q, p∨ q to be the set p ∪ q, and ¬p to be the setNn \ p.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Case Distinctions II

Definition 3
A predicate p is said to be primitive recursive if χp is primitive
recursive.

Definition 4
Let p,q be n-ary predicates, then we define p∧ q to be the set
p ∩ q, p∨ q to be the set p ∪ q, and ¬p to be the setNn \ p.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Case Distinctions III

Lemma 3
Let p,q be any primitive recursive n-ary predicates. Then p∧ q,
p∨ q, and ¬p are also primitive recursive.

Proof. Obviously, it holds

χp∧q(x1, . . . , xn) = χp(x1, . . . , xn) · χq(x1, . . . , xn) ,
χp∨q(x1, . . . , xn) = sg(χp(x1, . . . , xn) + χq(x1, . . . , xn)) ,
χ¬p(x1, . . . , xn) = 1 .− χp(x1, . . . , xn) .

Since we already know addition, multiplication and the
arithmetic difference to be primitive recursive, the assertion of
the lemma follows.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Case Distinctions III

Lemma 3
Let p,q be any primitive recursive n-ary predicates. Then p∧ q,
p∨ q, and ¬p are also primitive recursive.

Proof. Obviously, it holds

χp∧q(x1, . . . , xn) = χp(x1, . . . , xn) · χq(x1, . . . , xn) ,
χp∨q(x1, . . . , xn) = sg(χp(x1, . . . , xn) + χq(x1, . . . , xn)) ,
χ¬p(x1, . . . , xn) = 1 .− χp(x1, . . . , xn) .

Since we already know addition, multiplication and the
arithmetic difference to be primitive recursive, the assertion of
the lemma follows.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Case Distinctions IV

Now, we can show our theorem concerning function definitions
by making case distinctions.

Theorem 4
Let p1, . . . ,pk be pairwise disjoint n-ary primitive recursive
predicates, and let ψ1, . . . ,ψk ∈ Pn be primitive recursive functions.
Then the function γ : Nn →N defined by

γ(x1, . . . , xn) =df



ψ1(x1, . . . , xn), if p1(x1, . . . , xn) ;
·
·
·
ψk(x1, . . . , xn), if pk(x1, . . . , xn) ;
0, otherwise ;

is primitive recursive.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Case Distinctions V

Proof. Since we can write γ as

γ(x1, . . . , xn) =

k∑
i=1

χpi
(x1, . . . , xn) ·ψi(x1, . . . , xn) ,

the theorem follows from the primitive recursiveness of general
addition and multiplication.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions I

Quite often it would be very useful to have a bijection from
N×N toN. So, first we have to ask whether or not such a
bijection does exist.

This is indeed the case.

Recall that the elements ofN×N are ordered pairs of natural
numbers. So, we may easily represent all elements ofN×N in
a two dimensional array, where row x contains all pairs (x,y),
i.e., having x in the first component and y = 0, 1, 2, . . .
(cf. Figure 1).

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions I

Quite often it would be very useful to have a bijection from
N×N toN. So, first we have to ask whether or not such a
bijection does exist.

This is indeed the case.

Recall that the elements ofN×N are ordered pairs of natural
numbers. So, we may easily represent all elements ofN×N in
a two dimensional array, where row x contains all pairs (x,y),
i.e., having x in the first component and y = 0, 1, 2, . . .
(cf. Figure 1).

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions II

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) . . .
(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) . . .
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) . . .
(3, 0) (3, 1) (3, 2) (3, 3) (3, 4) . . .
(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) . . .
(5, 0) . . .

. . . . . .

Figure 1: A two dimensional array representingN×N.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions III
Now, the idea is to arrange all these pairs in a sequence starting

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), . . . (1)

In this order, all pairs (x,y) appear before all pairs (x ′,y ′) if and
only if x+ y < x ′ + y ′. That is, they are arranged in order of
incrementally growing component sums. The pairs with the
same component sum are ordered by the first component
starting with the smallest one. That is, pair (x,y) is located in
the segment

(0, x+ y), (1, x+ y− 1), . . . , (x,y), . . . , (x+ y, 0) .

Note that there are x+ y+ 1 many pairs having the component
sum x+ y. Thus, in front of pair (0, x+ y) we have in the
Sequence (1) x+ y many segments containing a total of

1 + 2 + 3 + · · ·+ (x+ y)

many pairs.
Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions IV

Taking into account that

n∑
i=0

i =
n(n+ 1)

2
=

n∑
i=1

i

we thus can define the desired bijection c : N×N→N by
setting

c(x,y) =
(x+ y)(x+ y+ 1)

2
+ x

=
(x+ y)2 + 3x+ y

2
. (2)

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions V

All the operations involved in computing c have already been
shown to be primitive recursive, thus we can conclude that c is
primitive recursive, too.

Exercise. Determine the functions d1 and d2 such that for all
x,y ∈N, if z = c(x,y) then x = d1(z) and y = d2(z).

Exercise. Show that for every fixed k ∈N, k > 2, there is a
primitive recursive bijection ck : Nk →N.

Exercise. LetN∗ be the set of all finite sequences of natural numbers.
Show that there is a primitive recursive bijection c∗ : N∗ →N.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions V

All the operations involved in computing c have already been
shown to be primitive recursive, thus we can conclude that c is
primitive recursive, too.

Exercise. Determine the functions d1 and d2 such that for all
x,y ∈N, if z = c(x,y) then x = d1(z) and y = d2(z).

Exercise. Show that for every fixed k ∈N, k > 2, there is a
primitive recursive bijection ck : Nk →N.

Exercise. LetN∗ be the set of all finite sequences of natural numbers.
Show that there is a primitive recursive bijection c∗ : N∗ →N.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions V

All the operations involved in computing c have already been
shown to be primitive recursive, thus we can conclude that c is
primitive recursive, too.

Exercise. Determine the functions d1 and d2 such that for all
x,y ∈N, if z = c(x,y) then x = d1(z) and y = d2(z).

Exercise. Show that for every fixed k ∈N, k > 2, there is a
primitive recursive bijection ck : Nk →N.

Exercise. LetN∗ be the set of all finite sequences of natural numbers.
Show that there is a primitive recursive bijection c∗ : N∗ →N.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Pairing Functions V

All the operations involved in computing c have already been
shown to be primitive recursive, thus we can conclude that c is
primitive recursive, too.

Exercise. Determine the functions d1 and d2 such that for all
x,y ∈N, if z = c(x,y) then x = d1(z) and y = d2(z).

Exercise. Show that for every fixed k ∈N, k > 2, there is a
primitive recursive bijection ck : Nk →N.

Exercise. LetN∗ be the set of all finite sequences of natural numbers.
Show that there is a primitive recursive bijection c∗ : N∗ →N.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

General Recursive Functions

Next, we define the class of general recursive functions.

Definition 5
For all n ∈N+ we define Rn to be the set of all functions
f ∈ Pn such that f(x1, . . . , xn) is defined for all x1, . . . , xn ∈N.
Furthermore, we set R =

⋃
n∈N+ Rn.

In other words, R is the set of all functions that are total and
partial recursive. Now, we can show the following theorem:

Theorem 5
Prim ⊂ R ⊂ P.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

General Recursive Functions

Next, we define the class of general recursive functions.

Definition 5
For all n ∈N+ we define Rn to be the set of all functions
f ∈ Pn such that f(x1, . . . , xn) is defined for all x1, . . . , xn ∈N.
Furthermore, we set R =

⋃
n∈N+ Rn.

In other words, R is the set of all functions that are total and
partial recursive. Now, we can show the following theorem:

Theorem 5
Prim ⊂ R ⊂ P.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Proof I

Proof. Clearly Z, S, V ∈ R. Furthermore, after a bit of reflection
it should be obvious that any finite number of applications of
Operations (2.1) through (2.5) results only in total functions.
This shows Prim ⊆ R.
Also, R ⊆ P is obvious by definition. So, it remains to show
that the two inclusions are proper.

Claim 1. P \ R , ∅.
By definition, S ∈ P and using Operation (2.4) it is easy to see
that δ(n) =df S(S(n)) is in P, too. Now, note that
δ(n) = n+ 2 > 1 for all n ∈N.
Using Operation (2.1) we define τ(x,y) = δ(y), and thus τ ∈ P.
Consequently,

ψ(x) = µy[τ(x,y) = 1]

is the nowhere defined function and hence ψ < R. On the other
hand, by construction ψ ∈ P. Therefore, we get ψ ∈ P \ R.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Proof I

Proof. Clearly Z, S, V ∈ R. Furthermore, after a bit of reflection
it should be obvious that any finite number of applications of
Operations (2.1) through (2.5) results only in total functions.
This shows Prim ⊆ R.
Also, R ⊆ P is obvious by definition. So, it remains to show
that the two inclusions are proper.
Claim 1. P \ R , ∅.
By definition, S ∈ P and using Operation (2.4) it is easy to see
that δ(n) =df S(S(n)) is in P, too. Now, note that
δ(n) = n+ 2 > 1 for all n ∈N.
Using Operation (2.1) we define τ(x,y) = δ(y), and thus τ ∈ P.
Consequently,

ψ(x) = µy[τ(x,y) = 1]

is the nowhere defined function and hence ψ < R. On the other
hand, by construction ψ ∈ P. Therefore, we get ψ ∈ P \ R.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Proof II

Claim 2. R \ Prim , ∅.
Showing this claim is much more complicated. First, we define
a function

ap(0,m) =df m+ 1 ,
ap(n+ 1, 0) =df ap(n, 1) ,

ap(n+ 1,m+ 1) =df ap(n, ap(n+ 1,m)) ,

which is the so-called Ackermann-Péter function. Hilbert
conjectured in 1926 that every total and computable function is
also primitive recursive. This conjecture was disproved by
Ackermann in 1928 and Péter simplified Ackermann’s
definition in 1955.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Proof III

Now, it suffices to show that function ap is not primitive
recursive and that function ap is general recursive. Both parts
are not easy to prove. So, due to the lack of time, we must skip
some parts. But before we start, let us confine ourselves that the
function ap is intuitively computable. For doing this, consider
the following fragment of pseudo-code implementing the
function ap as peter.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Proof IV

function peter(n, m)
if n = 0
return m + 1

else if m = 0
return peter(n - 1, 1)

else
return peter(n - 1, peter(n, m - 1))

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Proof V

Next, we sketch the proof that ap cannot be primitive recursive.
First, for every primitive recursive function φ, one defines a
function fφ as follows. Let k be the arity of φ; then we set

fφ(n) = max

{
φ(x1, . . . , xk) |

k∑
i=1

xi 6 n

}
.

Then, by using the inductive construction of the class Prim, one
can show by structural induction that for every primitive
recursive function φ there is a number nφ ∈N such that

fφ(n) < ap(nφ,n) for all n > nφ .

Intuitively, the latter statement shows that the Ackermann-
Péter function grows faster than every primitive recursive
function.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Proof VI

The rest is then easy. Suppose ap ∈ Prim. Then, taking into
account that the identity function I is primitive recursive, one
directly sees by application of Operation (2.4) that

κ(n) = ap(I(n), I(n))

is primitive recursive, too. Now, for κ there is a number nκ ∈N
such that

fκ(n) < ap(nκ,n) for all n > nκ .

But now,

κ(nκ) 6 fκ(nκ) < ap(nκ,nκ) = κ(nκ) ,

a contradiction.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Proof VII

For the second part, one has to prove that ap ∈ R which mainly
means to provide a construction to express the function ap
using the Operations (2.1) through (2.5) and the µ-operator. We
refer the interested reader to Hermes.

Theory of Computation c©Thomas Zeugmann



Motivation Partial Recursive Functions Examples Pairing General Recursive Functions End

Thank you!

Theory of Computation c©Thomas Zeugmann


	Motivation
	

	Partial Recursive Functions
	

	Examples
	

	Pairing
	

	General Recursive Functions
	

	End
	


