
Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Theory of Computation

Thomas Zeugmann

Hokkaido University
Laboratory for Algorithmics

http://www-alg.ist.hokudai.ac.jp/∼thomas/ToC/

Lecture 12: Turing Machines

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Machines I

After having dealt with partial recursive functions, we turn our
attention to Turing machines introduced by Alan Turing.

His idea was to formalize the notion of “intuitively
computable” functions by using the four properties of an
algorithm which we have stated at the beginning of Lecture 11.
Starting from these properties, he observed that the primitive
operations could be reduced to a level such that a machine can
execute the whole algorithm. For the sake of simplicity, here we
consider one-tape Turing machines.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Machines II

A one-tape Turing machine consists of an infinite tape which is
divided into cells. Each cell can contain exactly one of the
tape-symbols. Initially, we assume that all cells of the tape
contain the symbol ∗ except those in which the actual input has
been written. Moreover, we enumerate the tape cells as shown
in Figure 1.

0 2 3 4 5125 34 1

**** * * * b1 b2 b3

Figure 1: The tape of a Turing machine with input b1b2b3.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Machines III

Furthermore, the Turing machine possesses a read-write head.
This head can observe one cell at a time. Additionally, the
machine has a finite number of states it can be in and a set of
instructions it can execute. Initially, it is always in the start state
zs and the head is observing the leftmost symbol of the input,
i.e., the cell 0. We indicate the position of the head by an arrow
pointing to it.

Then, the machine works as follows. When in state z and
reading tape symbol b, it writes tape symbol b ′ into the
observed cell, changes its state to z ′ and moves the head either
to the left (denoted by L) or to the right (denoted by R) or does
not move the head (denoted by N) provided (z,b,b ′,H, z ′) is in
the instruction set of the Turing machine, where H ∈ {L,N,R}.
The execution of one instruction is called step.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Machines III

Furthermore, the Turing machine possesses a read-write head.
This head can observe one cell at a time. Additionally, the
machine has a finite number of states it can be in and a set of
instructions it can execute. Initially, it is always in the start state
zs and the head is observing the leftmost symbol of the input,
i.e., the cell 0. We indicate the position of the head by an arrow
pointing to it.

Then, the machine works as follows. When in state z and
reading tape symbol b, it writes tape symbol b ′ into the
observed cell, changes its state to z ′ and moves the head either
to the left (denoted by L) or to the right (denoted by R) or does
not move the head (denoted by N) provided (z,b,b ′,H, z ′) is in
the instruction set of the Turing machine, where H ∈ {L,N,R}.
The execution of one instruction is called step.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Machines IV

When the machine reaches the distinguished state zf (the final
state), it stops. Thus, formally, we can define a Turing machine
as follows.

Definition 1
M = [B,Z,A] is called deterministic one-tape Turing machine if
B, Z, A are non-empty finite sets such that B ∩ Z = ∅ and
(1) card(B) > 2 (B = {∗, |, . . .}) (tape-symbols),
(2) card(Z) > 2 (Z = {zs, zf, . . .}) (set of states),
(3) A ⊆ Z \ {zf}× B× B× {L,N,R}× Z (instruction set),

where for every z ∈ Z \ {zf} and every b ∈ B there is
precisely one 5-tuple (z,b, ·, ·, ·).

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Machines V

Often, we represent the instruction set A in a table, e.g.,

∗ | b2 . . . bm

zs b ′Nz3
z1 ·
· ·
· ·
· ·
zn ·

A Turing table

If the instruction set is small, it often convenient to write
zb → b ′Hz ′, where H ∈ {L,N,R} instead of (z,b,b ′,H, z ′).
Also, we usually refer to the instruction set of a Turing machine
M as to the program ofM.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Computations I

Next, we have to explain how a Turing machine is computing a
function. Our primary concern are functions fromNn toN, i.e.,
f : Nn →N. Therefore, the inputs are tuples (x1, . . . , xn) ∈Nn.

We shall reserve the special tape symbol # to separate xi from
xi+1. Moreover, for the sake of simplicity, in the following we
shall assume that numbers are unary encoded, e.g., number 0 is
represented by ∗, number 1 by |, number 2 by ||, number 3 by |||,
a.s.o. Note that this convention is no restriction as long as we
do not consider the complexity of a Turing computation.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Computations II

Furthermore, it is convenient to introduce the following
notations. Let f : Nn →N be any function. If the value
f(x1, . . . , xn) is not defined for a tuple (x1, . . . , xn) ∈Nn then
we write f(x1, . . . , xn) ↑. If f(x1, . . . , xn) is defined then we write
f(x1, . . . , xn) ↓.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Computations III

Definition 2
LetM be any Turing machine, let n ∈N+ and let f : Nn →N
be any function. We say thatM computes the function f if for
all (x1, . . . , xn) ∈Nn the following conditions are satisfied:
(1) If f(x1, . . . , xn) ↓ and if x1# . . . #xn is written on the empty

tape ofM andM is started on the leftmost symbol of
x1# . . . #xn in state zs, thenM stops after having executed
finitely many steps in state zf. Moreover, if
f(x1, . . . , xn) = 0, then the symbol observed byM in state
zf is ∗. If f(x1, . . . , xn) , 0, then the string beginning in the
cell observed byM in state zf (read from left to right) of
consecutive | denotes the results (cf. Figure 2).

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

0 2 3 4 5125 34 1

**** * * * | | |

zf

Figure 2: The tape of a Turing machine with result 3 (written as |||).

Definition 3 (continued)

(2) If f(x1, . . . , xn) ↑ and if x1# . . . #xn is written on the empty
tape ofM (beginning in cell 0) andM is started on the
leftmost symbol of x1# . . . #xn in state zs thenM does not
stop.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Computations IV

By fnM we denote the function fromNn toN computed by
Turing machineM.

Definition 4
Let n ∈N+ and let f : Nn →N be any function. The function f
is said to be Turing computable if there exists a Turing machine
M such that fnM = f. Furthermore, we set

Tn = the set of all n-ary Turing computable functions.

T =
⋃

n>1

Tn = the set of all Turing computable functions.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Turing Computations V

Now, it is only natural to ask which functions are Turing
computable. The answer is provided by the following theorem.

Theorem 1
The class of Turing computable functions is equal to the class of
partial recursive functions, i.e., T = P.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof I

For showing P ⊆ T it suffices to prove the following:

(1) The functions Z, S and V are Turing computable.
(2) The class of Turing computable functions is closed under

the Operations (2.1) through (2.6) defined in Lecture 11.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof II

A Turing machine computing the constant zero function can be
easily defined as follows. LetM = [{∗, |}, {zs, zf},A], where A is
the following set of instructions:

zs| → |Lzf

zs∗ → ∗Nzf .

That is, if the input is not zero, thenMmove its head one
position to the left and stops. By our definition of a Turing
machine, thenM observes in cell −1 a ∗, and thus its output
is 0. If the input is zero, thenM observes in cell 0 a ∗, leaves it
unchanged, does not move its head and stops. Clearly,
f1
M(x) = 0 for all x ∈N.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof III

The successor function S is computed by the following Turing
machineM = [{∗, |}, {zs, zf},A], where A is the following set of
instructions:

zs| → |Lzs

zs∗ → |Nzf .

That is, the machine just adds a | to its input and stops. Thus,
we have f1

M(x) = S(x) for all x ∈N.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof IV

Furthermore, the predecessor function is computed by
M = [{∗, |}, {zs, zf},A], where A is the following set of
instructions:

zs| → ∗Rzf
zs∗ → ∗Nzf .

Now, the Turing machine either observes a | in cell 0 which it
removes and then the head goes one cell to the right or it
observes a ∗, and stops without moving its head. Consequently,
f1
M(x) = V(x) for all x ∈N. This proves Part (1).

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof V

Next, we sketch the proof of Part (2). This is done in a series of
claims.

Claim 1. (Introduction of fictitious variables)
Let n ∈N+; then we have: if τ ∈ Tn and
ψ(x1, . . . , xn, xn+1) = τ(x1, . . . , xn), then ψ ∈ Tn+1.

Intuitively, it is clear that Claim 1 holds. In order to compute ψ,
all we have to do is to remove xn+1 from the input tape, then
moving the head back into the initial position and then we start
the Turing program for τ. Consequently, ψ ∈ Tn+1. We omit
the details.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof VI

Claim 2. (Identifying variables)
Let n ∈N+; then we have: if τ ∈ Tn+1 and
ψ(x1, . . . , xn) = τ(x1, . . . , xn, xn), then ψ ∈ Tn.

For proving Claim 2, we only need a Turing program that
copies the last variable (that is, xn). Thus, the initial tape
inscription

∗ ∗ x1# . . . #xn ∗ ∗

is transformed into

∗ ∗ x1# . . . #xn#xn ∗ ∗

and the head is moved back into its initial position andM is
put into the initial state of the program computing τ. Now, we
start the program for τ. Consequently, ψ ∈ Tn. Again, we omit
the details.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof VII

Claim 3. (Permuting variables)
Let n ∈N+, n > 2 and let i ∈ {1, . . . ,n}; then we have:
if τ ∈ Tn and
ψ(x1, . . . , xi, xi+1, . . . , xn) = τ(x1, . . . , xi+1, xi, . . . , xn), then
ψ ∈ Tn.

Claim 3 can be shown mutatis mutandis as Claim 2, and we
therefore omit its proof here.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof VIII

Claim 4. (Composition)
Let n ∈N andm ∈N+. Let τ ∈ Tn+1, let ψ ∈ Tm and let
φ(x1, . . . , xn,y1, . . . ,ym) = τ(x1, . . . , xn,ψ(y1, . . . ,ym)).
Then φ ∈ Tn+m.

The proof of Claim 4 is a bit more complicated. Clearly, the idea
is to move the head to the right until it observes the first symbol
of y1. Then we could start the Turing program for ψ. If
ψ(y1, . . . ,ym) ↑, then the machine for φ also diverges on input
x1, . . . , xn,y1, . . . ,ym. But if ψ(y1, . . . ,ym) ↓, our goal would be
to obtain the new tape inscription

∗ ∗ x1# . . . #xn#ψ(y1, . . . ,ym) ∗ ∗

and then to move the head to the left such that it observes the
first symbol of x1. This would allow us to start then the Turing
program for τ.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof IX

So, the difficulty we have to overcome is to ensure that the
computation of ψ(y1, . . . ,ym) does not overwrite the xi.
Thus, we need the following lemma.

Lemma 2 (M+)

For every Turing machineM there exists a Turing machineM+ such
that
(1) fnM = fnM+ for all n.
(2) M+ is never moving left to the initial cell observed when

starting its computation.
(3) For all x1, . . . , xn: If fnM+(x1, . . . , xn) ↓, then the computation

stops with the head observing the same cell it has observed when
the computation started and right to the result computed there
are only ∗ on the tape.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof of Lemma M+

The idea to show LemmaM+ is as follows. M+ does the
following.

It moves the whole input one cell to the right,
it marks the initial cell with a special symbol, say L,
it marks the first cell right to the moved input with a
special symbol, say E,
it works then asM does except the following three
exceptions.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof of Lemma M+

IfM+ reaches the cell marked with E, say in state z, then it
moves the marker E one cell to the right, moves the head
then one position to the left and writes a ∗ into this cell (that
is into the cell that originally contained E) and continues to
simulateM in state zwith the head at this position (that is,
the cell originally containing E and now containing ∗).
IfM in state z enters the cell containing L, then the whole
tape inscription between L and E (including E but
excluding L) is moved one position to the right. In the cell
rightmost to L a ∗ is written andM+ continues to simulate
M observing this cell.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof of Lemma M+

IfM stops, thenM+ moves the whole result left such that
the first symbol of the result is now located in the cell
originally containing L. Furthermore, into all cells starting
from the first position right to the moved result and ending
in E a ∗ is written and then the head is moved back to the
leftmost cell containing the result. ThenM+ also stops.

This proves LemmaM+.
Having LemmaM+, now Claim 4 follows as described above.

The remaining claims for primitive recursion and µ-recursion
are left as an exercise. This shows P ⊆ T.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof X

Finally, we have to show T ⊆ P. Let n ∈N+, let f ∈ Tn and let
M be any Turing machine computing f. We define the functions
t (time) and r (result) as follows.

t(x1, . . . , xn,y) =

1 , ifM, when started on x1, . . . , xn,

stops after having executed at most
y steps;

0 , otherwise.

r(x1, . . . , xn,y) =

{
f(x1, . . . , xn) , if t(x1, . . . , xn,y) = 1;

0 , otherwise.

Now, one can show that t, r ∈ Prim. Furthermore, Kleene
showed the following normal form theorem using t and r as
defined above.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Proof XI

Theorem 3 (Kleene)

For every f ∈ Tn, n ∈N+ there are functions t, r ∈ Prim such that

f(x1, . . . , xn) = r(x1, . . . , xn,µy[t(x1, . . . , xn,y) = 1]) (1)

for all x1, . . . , xn ∈Nn.

We do not prove this theorem here, since a proof is beyond the
scope of this course.
Now, T ⊆ P follows from the primitive-recursiveness of t and r
and Equation (1), since the latter one shows that one has to
apply the µ-operator exactly ones (Operation (2.6)) and the
resulting function is composed with r by using Operation (2.4).
Consequently, f ∈ P.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Church’s Thesis

The latter theorem is of fundamental epistemological
importance. Though we started from completely different
perspectives, we finally arrived the same set of computable
functions. Subsequently, different approaches have been
proposed to formalize the notion of “intuitively computable”
functions. These approaches comprise, among others, Post
algorithms, Markov algorithms, Random-access machines
(abbr. RAM), and Church’ λ-calculus. As it turned out, all these
formalizations define the same set of computable functions, i.e.,
the resulting class of functions is equal to the Turing
computable functions. This led Church to his famous thesis.

Church’s Thesis. The class of the “intuitively computable”
functions is equal to the class of Turing computable functions.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine I

Now, we aim to show that there is one Turing machine which
can compute all partial recursive functions.

First, using our results concerning pairing functions, it is easy
to see that we can encode any n-tuple of natural numbers into a
natural number. Moreover, as we have seen, this encoding is
even primitive recursive. Thus, in the following, we use P to
denote the set of all partial recursive functions fromN toN.

Next, let us consider any partial recursive function ψ(i, x), i.e.,
ψ : N2 →N. Thus, if we fix the first argument i, then we obtain
a partial recursive function of one argument denoted ψi.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine I

Now, we aim to show that there is one Turing machine which
can compute all partial recursive functions.

First, using our results concerning pairing functions, it is easy
to see that we can encode any n-tuple of natural numbers into a
natural number. Moreover, as we have seen, this encoding is
even primitive recursive. Thus, in the following, we use P to
denote the set of all partial recursive functions fromN toN.

Next, let us consider any partial recursive function ψ(i, x), i.e.,
ψ : N2 →N. Thus, if we fix the first argument i, then we obtain
a partial recursive function of one argument denoted ψi.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine I

Now, we aim to show that there is one Turing machine which
can compute all partial recursive functions.

First, using our results concerning pairing functions, it is easy
to see that we can encode any n-tuple of natural numbers into a
natural number. Moreover, as we have seen, this encoding is
even primitive recursive. Thus, in the following, we use P to
denote the set of all partial recursive functions fromN toN.

Next, let us consider any partial recursive function ψ(i, x), i.e.,
ψ : N2 →N. Thus, if we fix the first argument i, then we obtain
a partial recursive function of one argument denoted ψi.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine II

Thus, we can visualize all functions of one argument computed
by ψ as follows (cf. Figure 3).

ψ0 ψ(0, 0) ψ(0, 1) ψ(0, 2) ψ(0, 3) ψ(0, 4) . . .
ψ1 ψ(1, 0) ψ(1, 1) ψ(1, 2) ψ(1, 3) ψ(1, 4) . . .
ψ2 ψ(2, 0) ψ(2, 1) ψ(2, 2) ψ(2, 3) ψ(2, 4) . . .
ψ3 ψ(3, 0) ψ(3, 1) ψ(3, 2) ψ(3, 3) ψ(3, 4) . . .
ψ4 ψ(4, 0) ψ(4, 1) ψ(4, 2) ψ(4, 3) ψ(4, 4) . . .
ψ5 ψ(5, 0) . . .
·
·
·
ψi
. . .

Figure 3: A two dimensional array representing all ψi.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine III

For having an example, consider ψ(i, x) = ix; then e.g.,
ψ7(x) = 7x.
Therefore, it is justified to call every function ψ ∈ P2 a
numbering.

Definition 5

A function ψ ∈ P2 is said to be universal for P if

{ψi | i ∈N} = P .

Clearly, now the interesting question is whether or not a
universal ψ ∈ P2 for P does exist. If there is a universal ψ for P,
then, since P = T, we know that ψ is Turing computable, too.
Therefore, we could interpret any Turing machine computing ψ
as a universal Turing machine. The following theorem
establishes the existence of a universal ψ.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine III

For having an example, consider ψ(i, x) = ix; then e.g.,
ψ7(x) = 7x.
Therefore, it is justified to call every function ψ ∈ P2 a
numbering.

Definition 5

A function ψ ∈ P2 is said to be universal for P if

{ψi | i ∈N} = P .

Clearly, now the interesting question is whether or not a
universal ψ ∈ P2 for P does exist. If there is a universal ψ for P,
then, since P = T, we know that ψ is Turing computable, too.
Therefore, we could interpret any Turing machine computing ψ
as a universal Turing machine. The following theorem
establishes the existence of a universal ψ.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine IV

Theorem 4

There exists a universal function ψ ∈ P2 for P.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine V

The idea is easily explained. By our theorem P = T we know
that for every τ ∈ P there is Turing machineM such that
f1
M = τ. Therefore, we aim to encode every Turing machine

into a natural number. Thus, we need an injective partial
recursive function cod such that cod(M) ∈N. Furthermore, in
order to make this idea work we also need a general recursive
function decod such that

decod(cod(M)) = Program ofM .

If the input i to decod is not a correct encoding of some Turing
machine, then we set decod(i) = 0.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine VI

The universal function ψ is then described by a Turing machine
U taking two arguments as input, i.e., i and x. When started as
usual, it first computes decod(i). If decod(i) = 0, then it
computes the function Z (constant zero). Otherwise, it should
simulate the program of the machineM returned by decod(i).

For realizing this behavior, the following additional conditions
must be met:
(1) U is not allowed to overwrite the program obtained from

the computation of decod(i),
(2) Umust be realized by using only finitely many tape

symbols and a finite set of states.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine VI

The universal function ψ is then described by a Turing machine
U taking two arguments as input, i.e., i and x. When started as
usual, it first computes decod(i). If decod(i) = 0, then it
computes the function Z (constant zero). Otherwise, it should
simulate the program of the machineM returned by decod(i).

For realizing this behavior, the following additional conditions
must be met:
(1) U is not allowed to overwrite the program obtained from

the computation of decod(i),
(2) Umust be realized by using only finitely many tape

symbols and a finite set of states.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine VII

Next, we shortly explain how all our conditions can be realized.
For the sake of better readability, in the following we always
denote the tape symbols by bi and the state sets always starts
with zs, zf, Let

M = [{b1, . . . ,bm}, {zs, zf, z1, . . . , zk},A]

be given.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine VIII

Then we use the following coding (here we write 0n to denote
the string consisting of exactly n zeros):

cod(L) = 101
cod(R) = 1001
cod(N) = 10001
cod(zs) = 1041
cod(zf) = 1061
cod(z`) = 102(`+3)1 for all ` ∈ {1, . . . ,k} ,
cod(b`) = 102(`+1)+11 for all ` ∈ {1, . . . ,m} .

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine IX

The instruction set is then encoded by concatenating the
codings of its parts, that is

cod(zb → b ′Hz ′) = cod(z)cod(b)cod(b ′)cod(H)cod(z ′) .

For example, zsb1 → b2Nz1 is then encoded as

104110511071100011081 .

Now, we havem tape symbols and k+ 2 states. Thus, there
must bem(k+ 1) many instructions I1, . . . , Im(k+1) which we
assume to be written down in canonical order. Consequently,
we finally encode the program ofM by concatenating the
encodings of all these instructions, i.e.,

cod(M) = cod(I1) · · · cod(Im(k+1)) .

This string is interpreted as a natural number written in binary.
Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine X

Now, it is easy to see that cod is injective, i.e., ifM ,M ′ then
cod(M) , cod(M ′).

Furthermore, if we use the function cod as described above,
then decode reduces to check that an admissible string is given.
If it is, the program ofM can be directly read from the string.

Finally, we have to describe how the simulation is done. First,
we have to ensure that U is not destroying the program ofM.
This is essentially done as outlined in LemmaM+.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

The Universal Turing Machine XI

Thus, it remains to explain how the Condition (2) is realized.
Clearly, U cannot memorize the actual state ofM during
simulation in its state set, since this would potentially require
an unlimited number of states. But U can mark the actual state
in whichM is on its tape (e.g., by using bold letters).

In order to ensure that U is only using finitely many tape
symbols, U is not using directly b` fromM’s tape alphabet but
just cod(b`) = 102(`+1)+11. This requires just two tape symbols
for the simulation. We omit the details.
The Turing machine U can thus be expressed as a partial
recursive function ψ ∈ P2 via our theorem P = T.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Accepting Languages I

Next, we define what does it mean that a Turing machine is
accepting a language L.

Definition 6
A language L ⊆ Σ∗ is accepted by Turing machineM if for
every string w ∈ Σ∗ the following conditions are satisfied.
If w is written on the empty tape ofM (beginning in cell 0) and
the Turing machineM is started on the leftmost symbol of w in
state zs thenM stops after having executed finitely many steps
in state zf. Moreover,
(1) ifw ∈ L then the cell observed byM in state zf contains a | .

In this case we also writeM(w) = |.
(2) Ifw < L then the cell observed byM in state zf contains a ∗.

In this case we also writeM(w) = ∗.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Accepting Languages II

Of course, in order to accept a language L ⊆ Σ∗ by a Turing
machineM = [B,Z,A] we always have to assume that Σ ⊆ B.
Moreover, for every Turing machineMwe define

L(M) =df {w | w ∈ Σ∗ ∧ M(w) = |} ,

and we refer to L(M) as to the language accepted byM.

The book contains several examples.

Theory of Computation c©Thomas Zeugmann

Turing Machines Turing Computations Proof of 1. Theorem Church’s Thesis Universal TM End

Thank you!

Theory of Computation c©Thomas Zeugmann

	Turing Machines
	

	Turing Computations
	

	Proof of 1. Theorem
	

	Church's Thesis
	

	Universal TM
	

	End
	

