
Bulletin of Informatics and Cybernetics, Vol. 27, No. 1, 1995

Trading Monotonicity Demands versus E�ciency

By

Ste�en Lange

�

and Thomas Zeugmann

y

Abstract

The present paper deals with the learnability of indexed families L of

uniformly recursive languages from positive data. We consider the inu-

ence of three monotonicity demands and their dual counterparts to the

e�ciency of the learning process. The e�ciency of learning is measured

in dependence on the number of mind changes a learning algorithm is

allowed to perform. The three notions of (dual) monotonicity reect dif-

ferent formalizations of the requirement that the learner has to produce

better and better (specializations) generalizations when fed more and

more data on the target concept.

We distinguish between exact learnability (L has to be inferred with

respect to L), class preserving learning (L has to be inferred with respect

to some suitably chosen enumeration of all the languages from L), and

class comprising inference (L has to be learned with respect to some

suitably chosen enumeration of uniformly recursive languages containing

at least all the languages from L).

In particular, we prove that a relaxation of the relevant (dual) monotonic-

ity requirement may result in an arbitrarily large speed-up. However,

whether or not such a speed-up may be achieved crucially depends on

the set of allowed hypothesis spaces as well as of the (dual) monotonicity

demands involved.

1. Introduction

Inductive inference is the process of hypothesizing a general rule from eventually

incomplete data. Within the last three decades it received much attention from com-

puter scientists. Nowadays inductive inference can be considered as a form of machine

learning with potential applications to arti�cial intelligence (cf., e.g., Angluin and Smith

[3, 4], Osherson, Stob and Weinstein [36]). For more information concerning recent de-

velopments in inductive inference, the reader is referred to the annual Workshops on

Computational Learning Theory, COLT (cf., e.g., Rivest et al. [37], Fulk and Case [15],

Haussler [18], and Warmuth [39]), the International Workshops on Algorithmic Learn-

ing Theory, ALT (cf., e.g., Arikawa et al. [5, 6, 7]) and the International Workshops

�

HTWK Leipzig, Fachbereich Mathematik und Informatik, PF 66, 04251 Leipzig, Germany, Email:

ste�en@informatik.th-leipzig.de

y

Research Institute of Fundamental Information Science, Kyushu University 33, Fukuoka 812, Japan,

Email: thomas@ri�s.kyushu-u.ac.jp

2 Steffen Lange and Thomas Zeugmann

on Analogical and Inductive Inference, AII (cf., e.g., Jantke [20, 22], and Arikawa and

Jantke [7]).

The present paper deals with inductive inference of formal languages, a �eld in

which many interesting and sometimes surprising results have been obtained (cf., e.g.,

Case and Lynes [12], Case [11], Fulk [14]). Looking at potential applications, Angluin

[1, 2] started the systematic study of learning enumerable families of uniformly recursive

languages, henceforth called indexed families. Recently, this topic has attracted much

attention (cf., e.g., [23, 24, 25, 27, 28, 29, 34, 38, 43]).

Next we specify the information from which the target languages have to be learned.

A text of a language L is an in�nite sequence of strings that eventually contains all

strings of L. Alternatively, one can consider learning from informant. An informant of

a language L is an in�nite sequence of all strings over the underlying alphabet that are

classi�ed with respect to their containment in L. In this paper we exclusively deal with

the learnability from text.

An algorithmic learner, henceforth called inductive inference machine (abbr. IIM),

takes as input initial segments of a text, and outputs, from time to time, a hypothesis

about the target language. The set G of all admissible hypotheses is called hypothesis

space. Furthermore, the sequence of hypotheses has to converge to a hypothesis correctly

describing the language to be learned, i.e., after some point, the IIM stabilizes to an

accurate hypothesis. If there is an IIM that learns a language L from all texts for it,

then L is said to be learnable in the limit from text with respect to the hypothesis space

G. Consequently, when dealing with learning in the limit, we are faced with an ongoing

inference process. If d

0

; :::; d

x

, x = 0; 1; 2; :::, denotes the sequence of data the IIM M

is successively fed, then we use j

x

to denote the last hypothesis output by M , if any,

on successive input d

0

; :::; d

x

. We say that M changes its mind, or synonymously, M

performs a mind change, i� j

x

6= j

x+1

. The number of mind changes is a measure

of e�ciency and has been introduced by Barzdin and Freivalds [8]. Subsequently, this

measure of e�ciency has been intensively studied (cf., e.g., Barzdin et al. [9], Case and

Smith [13], Wiehagen et al. [41], Gasarch and Velauthapillai [16]). However, all the

mentioned papers considered the learnability of recursive functions. Hence, it is only

natural to ask whether or not this measure of e�ciency is of equal importance in the

setting of language learning. This is indeed the case as recently obtained results show

(cf., e.g., Mukouchi [34, 35], Lange and Zeugmann [29], Lange [26]).

In this paper we study problems of higher granularity. In order to explain them

we have to describe the monotonicity constraints and their dual counterparts we are

going to deal with. The three notions of monotonicity reect di�erent formalizations

of the requirement that the learner has to produce better and better generalizations

when fed more and more data on the target concept (cf. Jantke [21], Wiehagen [40]).

Interpreting generalization in its strongest sense yields that the learner is forced to

produce an augmenting chain of languages, i.e., L

i

� L

j

in case L

j

is hypothesized later

than L

i

. This learning model is referred to as strong monotonic inference. Restricting

\better generalization" to the language L to be learned results in demanding L

i

\ L �

Trading Monotonicity Demands versus E�ciency 3

L

j

\ L provided L

j

is later guessed than L

i

. Learning algorithms behaving thus are

called monotonic.

Weakening the strong-monotonicity constraint in the same way as the monotonicity

principle of classical logic is generalized to cumulativity (cf., e.g., Brewka [10]) yields

weak-monotonic learning, i.e., now the learner is required to behave strong-monotonically

as long as it does not receive data contradicting its actual guess (cf. De�nition 2.3).

All the models of monotonic learning share the common property that they model

\learning by generalization." Hence, it is only natural to consider their dual counter-

parts, that is \learning by specialization." These learning models have been introduced

by Kapur [23]. The resulting learning types are referred to as dual strong-monotonic,

dual monotonic and dual weak-monotonic learning (cf. De�nition 2.4). As Jantke [21]

pointed out, the (dual) monotonicity requirements described above reect di�erent de-

grees of non-monotonic reasoning that may be incorporated into the learning process.

However, it is well imaginable that the use of non-monotonic reasoning does not only

a�ect the learnability at all but also the e�ciency of learning. Kinber [25] �rst studied

this problem for learning recursively enumerable languages. We continue along this line

in the setting of uniformly recursive languages.

Clearly, this question is directly related to the problem of what a natural learning

algorithm might look like. In particular, it is well imaginable that one may succeed

in designing a learning algorithm that ful�lls a desirable (dual) monotonicity demand.

However, it seems to be interesting to know what price one might have to pay concerning

the resulting e�ciency. Therefore, we study the inuence of di�erent (dual) monotonicity

constraints to the number of mind changes an IIM has to perform when inferring a

target indexed family. Then, the right question to ask is whether a weakening of the

monotonicity requirement may yield a speed-up. Therefore, we always start with a

target indexed family inferable under some (dual) monotonicity constraint with an a

priori �xed number of mind changes. Then we ask whether or not the least or some

possible relaxation of the corresponding (dual) monotonicity requirement might help to

uniformly reduce the number of mind changes. As we shall see, there is no unique answer

to this problem.

2. Preliminaries

Let IN = f0; 1; 2; :::g be the set of all natural numbers. We set IN

+

= IN n f0g.

Let '

0

; '

1

; '

2

; ::: denote any �xed acceptable programming system of all (and

only all) partial recursive functions over IN, and let �

0

; �

1

; �

2

; ::: be any associated

complexity measure (cf. Machtey and Young [33]). Furthermore, let k; x 2 IN. If

'

k

(x) is de�ned (abbr. '

k

(x) #) then we also say that '

k

(x) converges; otherwise, '

k

(x)

diverges (abbr. '

k

(x) "). By h�; �i: IN�IN! IN we denote Cantor's pairing function.

In the sequel we assume familiarity with formal language theory (cf., e.g., Hopcroft

and Ullman [19]). By � we denote any �xed �nite alphabet of symbols. Let �

�

be

the free monoid over �, and let �

+

= �

�

n f"g, where " denotes the empty string.

4 Steffen Lange and Thomas Zeugmann

Any L � �

�

is called a language. By co�L we denote the complement of L. Let L

be a language and t = s

0

; s

1

; s

2

; ::: an in�nite sequence of strings from �

�

such that

range(t) = fs

k

k 2 INg = L. Then t is said to be a text for L or, synonymously,

a positive presentation. Let L be a language. By text(L) we denote the set of all

positive presentations of L. Moreover, let t be a text and let x 2 IN. Then t

x

denotes

the initial segment of t of length x+ 1, and t

+

x

its range, i.e., t

+

x

= fs

k

k � xg.

Next, we introduce the notion of the canonical text that turned out to be very

helpful in proving several theorems. Let s

0

; s

1

; s

2

; ::: be the lexicographically ordered

text of �

�

, i.e., all strings over the corresponding underlying alphabet � ordered by

increasing length, where strings having the same length are lexicographically ordered.

Let L � �

�

be any non-empty recursive language. Then the canonical text of L is

obtained as follows. Test sequentially whether s

z

2 L for z = 0; 1; 2; ::: until the �rst z

is found such that s

z

2 L. Since L 6= ; there must be at least one z ful�lling the test.

Set t

0

= s

z

. We proceed inductively. For all x 2 IN we de�ne:

t

x+1

=

(

t

x

� s

z+x+1

; if s

z+x+1

2 L;

t

x

� s; otherwise; where s is the last string in t

x

:

Note that the canonical text of every non-empty recursive language can be e�ec-

tively computed provided an e�ective procedure deciding membership in L is given.

In this paper we deal with the learnability of indexed families de�ned as follows:

A sequence L

0

; L

1

; L

2

; ::: is said to be an indexed family provided all languages L

j

are non-empty and membership in L

j

is uniformly decidable for all j 2 IN. Note that

the de�nition of an indexed family includes both, a description for every language L

j

,

and a particular enumeration of all the languages. In particular, every indexed family is

directly connected with the grammars behind the enumerated languages. Consequently,

we can consider the indices as compiled grammars (cf. Hopcroft and Ullman [19]).

As in Gold [17], we de�ne an inductive inference machine (abbr. IIM) to be an

algorithmic device which works as follows: The IIM takes as its input larger and larger

initial segments of a text t and it either requests the next input string, or it �rst outputs

a hypothesis, i.e., a number, and then it requests the next input string.

At this point we have to clarify what hypothesis space we should choose. Since we

exclusively deal with the learnability of indexed families L = (L

j

)

j2IN

we always take as

hypothesis space an enumerable family of grammars G = G

0

; G

1

; G

2

; ::: over the terminal

alphabet � satisfying range(L) � fL(G

j

) j 2 INg, and require that membership in

L(G

j

) is uniformly decidable for all j 2 IN and all s 2 �

�

. When an IIM outputs a

number j, we interpret it to mean that the machine is hypothesizing the grammar G

j

.

Furthermore, let G = (G

j

)

j2IN

be any hypothesis space. For notational convenience we

use L(G) to denote (L(G

j

))

j2IN

. Note that L(G) constitutes itself an indexed family for

all hypothesis spaces G = (G

j

)

j2IN

.

Let t be a text, and x 2 IN. Then we use M(t

x

) to denote the last hypothesis

produced byM when successively fed t

x

. The sequence (M(t

x

))

x2IN

is said to converge

in the limit to the number j if and only if either (M(t

x

))

x2IN

is in�nite and all but

Trading Monotonicity Demands versus E�ciency 5

�nitely many terms of it are equal to j, or (M(t

x

))

x2IN

is non-empty and �nite, and its

last term is j. Now we are ready to de�ne learning in the limit from positive data.

Definition 2.1. (Gold [17]) Let L be an indexed family, let L be a language,

and let G = (G

j

)

j2IN

be a hypothesis space. An IIM M CLIM{identi�es L from

text with respect to G i� for every text t for L, there exists a j 2 IN such that the

sequence (M(t

x

))

x2IN

converges in the limit to j and L = L(G

j

).

Furthermore, M CLIM{identi�es L with respect to G if and only if, for each L 2

range(L), M CLIM{identi�es L with respect to G.

Finally, let CLIM denote the collection of all indexed families L for which there

are an IIM M and a hypothesis space G such that M CLIM{identi�es L with respect to

G.

In the above De�nition LIM stands for \limit." Furthermore, the pre�x C is

used to indicate class comprising learning, i.e., the fact that L may be learned with

respect to some hypothesis space comprising range(L). The restriction of CLIM to

class preserving inference is denoted by LIM . That means LIM is the collection of

all indexed families L that can be learned in the limit with respect to a hypothesis space

G = (G

j

)

j2IN

such that range(L) = fL(G

j

) j 2 INg. Moreover, if a target indexed

family L has to be inferred with respect to the hypothesis space L itself, then we replace

the pre�x C by E, i.e., ELIM is the collection of indexed families that can be exactly

learned in the limit. Finally, we adopt this convention in de�ning all the learning types

below.

By the de�nition of convergence, whenever an IIM identi�es the language L, then

it performs at most �nitely many mind changes. However, the precise number of mind

changes may well vary from text to text as well as for every language L 2 range(L). In

particular, the number of allowed mind changes is not required to be universally bounded

for all L 2 range(L). Within the next de�nition we consider the special case that the

number of allowed mind changes is universally bounded by an a priori �xed number.

Definition 2.2. (Barzdin and Freivalds [8]) Let L be an indexed family, let

L be a language, let G = (G

j

)

j2IN

be a hypothesis space, and let n 2 IN [f�g. An IIM

CLIM

n

{identi�es L from text with respect to G i�

(1) M CLIM{identi�es L from text with respect to G,

(2) for every text t for L the IIM M performs, when fed t, at most n (n = � means at

most �nitely many) mind changes, i.e., card(fx jM(t

x

) 6=M(t

x+1

)g) � n.

Moreover, M CLIM

n

{identi�es L with respect to G if and only if, for each L 2 range(L),

M CLIM

n

{identi�es L with respect to G.

CLIM

n

, LIM

n

and ELIM

n

are de�ned in the same way as above.

Obviously, �LIM

�

= �LIM for all � 2 fE; "; Cg. Moreover, �LIM

0

is also referred

to as �nite learning for � 2 fE; "; Cg, since the IIM is only allowed to produce a single

guess that cannot be changed later (cf. Gold [17]). Note that the learning types �LIM

n

do heavily depend on � 2 fE; "; Cg for all n � 1 (cf. Lange and Zeugmann [29], Lange

6 Steffen Lange and Thomas Zeugmann

[26]).

The following proposition summarizes the known results concerning learning in the

limit from text with respect to the number of allowed mind changes.

Proposition 2.1.

ELIM = LIM = CLIM

[[[

S

n2IN

ELIM

n

�

S

n2IN

LIM

n

�

S

n2IN

CLIM

n

[[[

� � �

� � �

� � �

[[[

ELIM

3

� LIM

3

� CLIM

3

[[[

ELIM

2

� LIM

2

� CLIM

2

[[[

ELIM

1

� LIM

1

� CLIM

1

[[[

ELIM

0

= LIM

0

= CLIM

0

Note that the hierarchy in the �rst column has been independently obtained by

Mukouchi [34].

Next, we want to formally de�ne strong-monotonic, monotonic and weak-monot-

onic inference.

Definition 2.3. (Jantke [21]; Wiehagen [40]) Let L be a language, and let

G = (G

j

)

j2IN

be a hypothesis space. An IIM M is said to identify the language L

from text with respect to G

(A) strong-monotonically

(B) monotonically

(C) weak-monotonically

i�

M CLIM{identi�es L with respect to G and for every text t of L as well as for

any two consecutive hypotheses j

x

, j

x+k

which M has produced when fed t

x

and t

x+k

,

respectively, where k � 1; k 2 IN, the following conditions are satis�ed:

(A) L(G

j

x

) � L(G

j

x+k

)

(B) L(G

j

x

) \ L � L(G

j

x+k

) \ L

(C) if t

+

x+k

� L(G

j

x

), then L(G

j

x

) � L(G

j

x+k

).

We denote by CSMON , CMON , CWMON the collection of all those indexed

families L for which there are a hypothesis space G and an IIM inferring them strong-

monotonically, monotonically, and weak-monotonically from text with respect to G.

Trading Monotonicity Demands versus E�ciency 7

Note that the learning types �SMON , �MON , and �WMON do heavily depend on

� 2 fE; ";Cg (cf. Lange and Zeugmann [30, 31] and Lange, Zeugmann and Kapur [32]).

Proposition 2.2.

ELIM = LIM = CLIM

[[[

EWMON � WMON � CWMON

[[[

EMON � MON � CMON

[[[

ESMON � SMON � CSMON

[[[

ELIM

0

= LIM

0

= CLIM

0

Furthermore, we use CSMON

n

, CMON

n

, CWMON

n

, where n 2 IN, to denote

the collections of all those indexed families L for which there are a hypothesis space G

and an IIM inferring them strong-monotonically, monotonically, and weak-monotonically

from text with at most n mind changes with respect to G.

We continue in formally de�ning the three types of dual monotonic language learn-

ing mentioned in Section 1.

Definition 2.4. (Kapur [23]) Let L be a language, and let G = (G

j

)

j2IN

be a

hypothesis space. An IIM M is said to identify the language L from text with

respect to G

(A) dual strong-monotonically

(B) dual monotonically

(C) dual weak-monotonically

i�

M CLIM{identi�es L with respect to G and for every text t of L as well as for

any two consecutive hypotheses j

x

, j

x+k

which M has produced when fed t

x

and t

x+k

,

respectively, where k � 1; k 2 IN, the following conditions are satis�ed:

(A) co�L(G

j

x

) � co�L(G

j

x+k

)

(B) co�L(G

j

x

) \ co�L � co�L(G

j

x+k

) \ co�L

(C) if t

+

x+k

� L(G

j

x

), then co�L(G

j

x

) � co�L(G

j

x+k

).

By CSMON

d

, CMON

d

, and CWMON

d

we denote the collections of all those

indexed families L for which there are a hypothesis space G and an IIM identifying them

dual strong-monotonically, dual monotonically and dual weak-monotonically from text

with respect to G, respectively.

Note that the learning types �SMON

d

, �MON

d

, and �WMON

d

do heavily de-

pend on � 2 fE; "; Cg (cf. Lange and Zeugmann [30, 31] and Lange, Zeugmann and

Kapur [32]). The following proposition summarizes the results obtained.

8 Steffen Lange and Thomas Zeugmann

Proposition 2.3.

ELIM = LIM = CLIM

[[jj

EWMON

d

� WMON

d

� CWMON

d

[[[

EMON

d

� MON

d

� CMON

d

[[[

ESMON

d

= SMON

d

� CSMON

d

jj jj [

ELIM

0

= LIM

0

= CLIM

0

Finally, we use CSMON

d

n

, CMON

d

n

, CWMON

d

n

, where n 2 IN, to denote the

collections of all those indexed families L for which there are a hypothesis space G and

an IIM inferring them dual strong-monotonically, dual monotonically, and dual weak-

monotonically from text with at most n mind changes with respect to G.

3. Results

In this section we study the problem whether or not any of the monotonicity

constraints and their dual counterparts de�ned above may be traded versus the e�ciency

of learning. Since each monotonicity and dual monotonicity demand has its peculiarities,

we handle each of them separately in a special subsection. Moreover, in the following

we exclusively consider the case where at least one mind change is mandatory, since

otherwise �nite learning is compared with some type of monotonic learning.

3.1. Strong-Monotonic Inference

We start our investigations with the strongest possible monotonicity constraint,

i.e., with SMON and its variations.

Theorem 3.1. Let L be an indexed family. Then, for every n 2 IN

+

we have:

(1) L 2 ESMON

n+1

nESMON

n

implies L 62 CLIM

n

,

(2) L 2 SMON

n+1

n SMON

n

implies L 62 CLIM

n

.

Proof. The proof is based on the following observations. Let

^

M be any strong-

monotonic IIM, and let G = (G

j

)

j2IN

be any hypothesis space such that

^

M witnesses

L 2 SMON

n+1

with respect to G. Then the IIM

^

M can be simulated by an IIM M

such that for all texts t 2

S

L2range(L)

text(L) and all x 2 IN

(A) if M on input t

x

makes an output j

x

then t

+

x

� L(G

j

x

), i.e., M is consistent,

and if M(t

x

) 6=M(t

x+1

), then t

+

x+1

6� L(G

j

x

), i.e., M is conservative,

(B) M witnesses L 2 SMON

n+1

with respect to G, i.e., M performs at most as many

mind changes as

^

M does (cf. Lange and Zeugmann [28]).

Trading Monotonicity Demands versus E�ciency 9

Let L be any indexed family with L 2 SMON

n+1

n SMON

n

. Furthermore, let

L 2 SMON

n+1

be witnessed byM , whereM is chosen in accordance with (A) and (B).

Since L 62 SMON

n

, there have to be an L 2 range(L) and a text t for L such that

M changes its mind exactly n + 1 times when fed t. Let j

0

; : : : ; j

n+1

denote the �nite

sequence of M 's mind changes produced on t. Since M is strong-monotonic, consistent

and conservative, we directly obtain that L(G

j

0

) � � � � � L(G

j

n+1

) = L.

Now, L 62 CLIM

n

is a direct consequence of Proposition 3.7 by Mukouchi [35].

This proves Assertion (2), and the same arguments prove Assertion (1). 2

The latter theorem allows the following interpretation. Relaxing the requirement

to learn exactly (class preservingly) strong-monotonically as much as possible does not

increase the e�ciency. This is even true, if we are allowed to choose an arbitrary class

comprising hypothesis space provided that the target indexed family is inferable in

the sense of ESMON

n+1

(SMON

n+1

), but cannot be exactly (class preservingly) and

strong-monotonically learned with at most n mind changes for some n 2 IN. Hence,

in the case considered in Theorem 3.1 the possible e�ciency of learning is completely

determined by the topology of the target indexed family.

Next we consider the class comprising case. Interestingly enough, now the sit-

uation considerably changes. The following theorem shows that a suitable choice of

the hypothesis space may increase the e�ciency of learning, even under the strong-

monotonicity constraint.

Theorem 3.2. For every n 2 IN

+

there exists an indexed family L such that

L 2 (CSMON

n+1

\ELIM

n

) n CSMON

n

.

Proof. First we prove the n = 1 case. Moreover, we use this case to fully explain

the basic proof technique developed. The �rst idea is to incorporate a non-recursive but

recursively enumerable problem in the de�nition of the target indexed family. Note that

this incorporation has to be done in a way such that membership in the enumerated

languages remains uniformly decidable. For that purpose, we used the halting problem.

Without loss of generality, we may assume that �

j

(j) � 1 for all j 2 IN.

The desired indexed family is de�ned as follows. For all k 2 IN, we set L

3k

=

fa

k

b

z

z 2 IN

+

g. By convention, a

0

equals the empty string. The remaining languages

are de�ned via their characteristic functions. Let k 2 IN and let s denote any string in

fa; b; c; dg

�

.

f

3k+1

(s) =

8

>

>

<

>

>

:

1; if s = a

k

b

m

for some m 2 IN and : �

k

(k) � m;

1; if s = a

k

c

m

for some m 2 IN and �

k

(k) = m;

0; otherwise:

f

3k+2

(s) =

8

>

>

<

>

>

:

1; if s = a

k

b

m

for some m 2 IN;

1; if s = a

k

d

m

for some m 2 IN and �

k

(k) = m;

0; otherwise:

10 Steffen Lange and Thomas Zeugmann

Since the predicate \�

i

(x) � y" is uniformly decidable for all i; x; y 2 IN, it is

easy to verify that L = (L

j

)

j2IN

is an indexed family. Next, we present an alternative

de�nition which gives some more insight into the topological structure of L.

Case 1. '

k

(k) "

Then we set L

3k+1

= L

3k+2

= L

3k

.

Case 2. '

k

(k) #

Then, let m = �

k

(k). We set L

3k+1

= fa

k

b

z

1 � z � mg [fa

k

c

m

g, and

L

3k+2

= L

3k

[fa

k

d

m

g.

Whenever '

k

(k) #, the main problem for any strong-monotonic IIM consists in

learning the �nite language L

3k+1

with at most one mind change. Hence, for proving

L 2 CSMON

2

, another ingredient is required, i.e., a suitable choice of a hypothesis

space (cf. Claim 1). The harder part is to show that L =2 CSMON

1

. As long as

only class preserving hypothesis spaces are allowed, it is intuitively obvious that any

IIM M strong-monotonically learning L has to solve the halting problem. However,

we have additionally to show that no choice of the hypothesis space may prevent M

to recursively handle the halting problem. This part of the proof exploits to a larger

extend the assumption that membership is uniformly decidable (cf. Claim 3).

We continue with the formal proof.

Claim 1. L 2 CSMON

2

.

First of all we de�ne a suitable hypothesis space

^

L = (

^

L

j

)

j2IN

. For all k 2 IN, we

set

^

L

4k

= L

3k

,

^

L

4k+1

= L

3k+1

,

^

L

4k+2

= L

3k+2

, and

^

L

4k+3

= L

3k

\ L

3k+1

.

Taking into consideration that L constitutes an indexed family it is not hard to see

that

^

L is an indexed family as well. Now we de�ne an IIMM which strong-monotonically

identi�es L with respect to

^

L.

Let L 2 range(L), let t be any text for L, and let x 2 IN.

IIM M: \On input t

x

do the following: Determine the unique k such that a

k

b

z

2 t

+

x

for some z 2 IN. Test whether or not t

+

x

�

^

L

4k+3

. In case it is, output 4k+3, and

request the next input.

Otherwise, goto (A).

(A) Compute m = maxfm a

k

b

m

2

^

L

4k+3

g. In case that a

k

c

m

2 t

+

x

, output

4k + 1, and request the next input.

Otherwise, goto (B).

(B) If a

k

d

m

2 t

+

x

, then output 4k + 2, and request the next input.

Else, output 4k, and request the next input."

Now, one easily veri�es that M CSMON

2

{learns L. This proves Claim 1.

Claim 2. L 2 ELIM

1

.

The desired IIM is de�ned as follows. Let L 2 range(L), let t 2 text(L), and let

x 2 IN. We de�ne:

Trading Monotonicity Demands versus E�ciency 11

IIM M: \On input t

x

do the following: Determine the unique k such that a

k

b

z

2 t

+

x

for

some z 2 IN. Test whether or not t

+

x

� L

3k

. In case it is, output 3k, and request

the next input.

Otherwise, goto (A).

(A) Compute m = �

k

(k). In case that a

k

c

m

2 t

+

x

, output 3k+1, and request the

next input.

Otherwise, output 3k + 2, and request the next input."

It remains to show that M ELIM

1

{infers L. By construction, if M performs a mind

change, then it has detected an inconsistency. But in accordance with the de�nitions of

L and M , t

+

x

6� L

3k

can happen if and only if �

k

(k) is de�ned. Hence, the IIM may

compute m = �

k

(k). By construction, only two cases are possible, i.e., either L contains

a

k

c

m

or it comprises a

k

d

m

. Looking at the de�nitions of M and L it directly follows

that M 's second guess is correct. Hence, M ELIM

1

{infers L. This proves Claim 2.

Claim 3. L =2 CSMON

1

.

Suppose, there are a class comprising hypothesis space G for L, and an IIM M

witnessing L 2 CSMON

1

with respect to G. Then M may be used to design an

e�ective procedure solving the halting problem for the acceptable programming system

'

0

; '

1

; :::. This can be seen as follows.

Procedure H

\Let k 2 IN, and let t be the canonical text for L

3k

. For x = 0; 1; :::, compute

M(t

x

) until the minimal index z is found such that M , on successive input t

z

outputs

its �rst guess, say j. Test whether or not �

k

(k) � z + 1. In case it is, output '

k

(k) #.

Otherwise, output '

k

(k) "."

First, we show that H is an e�ective procedure. In particular, M has to infer L

3k

from t. Hence, there is a z such that M on input t

z

computes a hypothesis j. Thus, H

is recursive and terminates for all k 2 IN.

It remains to show that H correctly works. Obviously, if the output is '

k

(k) #,

then '

k

(k) is indeed de�ned. Suppose, H outputs '

k

(k) " but '

k

(k) is de�ned. Hence,

�

k

(k) is de�ned, too. Let m = �

k

(k). By construction, m > z + 1. Since M is a

strong-monotonic IIM, one easily veri�es that L(G

j

) 62 range(L). Furthermore, M has

to infer L

3k

from its canonical text. Hence, there has to be a y > z such thatM(t

y

) = r

and L(G

r

) = L

3k

. Therefore, M performs at least one mind change when seeing t

y

.

Finally, due to our construction, '

k

(k) # implies L

3k+2

= L

3k

[fa

k

d

m

g. Consequently,

t

y

may be extended to a text for L

3k+2

on which M has to perform an additional mind

change, a contradiction.

The cases n > 1 may be proved using the same \lifting" technique as in Lange and

Zeugmann [29] (cf. the proof of Theorem 3.3 below for more details). 2

At this point it is only natural to ask whether the latter theorem generalizes to all

indexed families from CSMON

n+1

nCSMON

n

not belonging to SMON . The negative

answer is provided by our next theorem.

12 Steffen Lange and Thomas Zeugmann

Theorem 3.3. For all n 2 IN, there exists an indexed family L such that

(1) L 2 CSMON

n+1

n SMON ,

(2) L 62 CLIM

n

.

Proof. We consider the following indexed family L

sep

0

= (L

j

)

j2IN

. For all k 2 IN,

we de�ne L

2k

= fa

k

b

j

j 2 IN

+

g and L

2k+1

= fa

k

b

j

1 � j � �

k

(k)g [fc

�

k

(k)

g.

Note that the set fc

�

k

(k)

g is de�ned to be empty, if '

k

(k) diverges. Then it is easy to

show that L

sep

0

2 CSMON

1

n SMON . L

sep

0

2 CSMON

1

can be straightforwardly

veri�ed, if one selects the following hypothesis space G = (G

j

)

j2IN

. For all k 2 IN,

set L(G

3k

) = L

2k

, L(G

3k+1

) = L

2k+1

, and L(G

3k+2

) = L

2k

\ L

2k+1

. Furthermore,

an easy application of the idea underlying the proof of Claim 3 in Theorem 3.2 yields

L

sep

0

62 SMON . Since CLIM

0

� SMON (cf. Proposition 2.2), L

sep

0

cannot be �nitely

inferred. This proves the n = 0 case.

Again, an application of the same \lifting" technique as in Lange and Zeugmann

[29] yields the theorem for all n 2 IN. Let us briey describe the underlying construction.

First we separate CSMON

2

and CLIM

1

via a family L

sep1

which does not belong to

SMON . Thereby, we explain the basic idea. Then we describe how the construction

can be generalized.

Let L

sep

0

be the indexed family introduced above. For any L

m

2 L

sep

0

, m 2 IN,

we de�ne

~

L

m

= L

m

[fdg. Moreover, let L

sep

1

be any canonical enumeration of all the

languages L

m

and

~

L

m

. Similarly to the n = 0 case, L

sep

1

2 CSMON

2

nSMON can be

easily veri�ed. We omit the details. It remains to prove that L

sep

1

62 CLIM

1

. This is

indirectly done via the following claim.

Claim 1. If L

sep

1

2 CLIM

1

, then L

sep

0

2 CLIM

0

.

Let M be any IIM and G = (G

j

)

j2IN

any hypothesis space such that M CLIM

1

{

identi�es L

sep

1

with respect to G. Furthermore, let

~

L

m

= L

m

[fdg be arbitrarily

�xed, and let t be any text for L

m

. Since M has to infer L

m

too, there must be a

z such that M (t

x

) = j for all x � z and L

m

= L(G

j

). But now we may feed the

following text

~

t for

~

L

m

to M . First, we input the initial segment t

z

, then the string

d, and subsequently all the remaining strings of t. By construction, M(t

z

) = j but

~

L

m

6= L(G

j

). Consequently, M has to perform one more mind change. That means, on

t the machine has never changed its mind, since otherwiseM does not CLIM

1

{identi�es

L

sep

1

. Hence, M witnesses L

sep

0

2 CLIM

0

. This proves Claim 1.

On the other hand, as we have already seen, there is no IIM �nitely inferring L.

Thus, by contraposition of Claim 1 we directly obtain that L

sep

1

62 CLIM

1

. This proves

the theorem in case n = 1.

The general case is handled by induction. Suppose, we have already separated

CSMON

n+1

and CLIM

n

in using the indexed family L

sep

n

with L

sep

n

62 SMON . For

any m 2 IN, we set

~

L

m

= L

m

[fd; d

2

; : : : ; d

n+1

g and de�ne L

sep

n+1

to be any canonical

enumeration of all the languages from L

sep

n

and of all

~

L

m

. Again, one straightforwardly

Trading Monotonicity Demands versus E�ciency 13

shows that L

sep

n+1

2 CSMON

n+2

n SMON . Moreover, an easy modi�cation of the

demonstration above directly yields the following claim.

Claim 2. If L

sep

n+1

2 CLIM

n+1

, then L

sep

n

2 CLIM

n

.

Finally, the latter claim immediately contradicts the induction hypothesis that

L

sep

n

62 CLIM

n

. Thus, by contraposition of Claim 2 one obtains L

sep

n+1

62 CLIM

n+1

.

We omit the details. 2

Note that the proof of the latter theorem directly allows the following corollary

which sharpens the assertion SMON � CSMON pointed out in Proposition 2.2.

Corollary 3.4. CSMON

1

n SMON 6= ;.

Theorem 3.3 directly yields the problem whether or not Theorem 3.2 can be

strengthened, i.e., whether or not the number of mind changes that can be traded versus

the strong-monotonicity constraint is bounded by one. The answer is provided by our

next theorem.

Theorem 3.5. For every n 2 IN

+

there exists an indexed family L such that

L 2 (CSMON

n+1

\EMON

1

) n CSMON

n

.

Proof. Again, we only sketch the proof using the n = 2 case, thereby explaining

the proof technique developed. The main idea is to suitably iterate the proof technique

presented in the demonstration of Theorem 3.2. Therefore, we incorporate one more

halting problem into the de�nition of the indexed family L witnessing L 2 CSMON

3

n

CSMON

2

, and L 2 EMON

1

. This is done as follows. Without loss of generality, we

may assume that �

j

(j) � 1 for all j 2 IN. We de�ne:

L

4hk

1

;k

2

i

= fa

hk

1

;k

2

i

b

z

z 2 IN

+

g for all k

1

; k

2

2 IN. The remaining languages of L

are de�ned as follows.

Case 1. '

k

1

(k

1

) "

Then L

4hk

1

;k

2

i+1

= L

4hk

1

;k

2

i+2

= L

4hk

1

;k

2

i+3

= L

4hk

1

;k

2

i

.

Case 2. '

k

1

(k

1

) # and '

k

2

(k

2

) "

Then, let ` = �

k

1

(k

1

). We set L

4hk

1

;k

2

i+1

= fa

hk

1

;k

2

i

b

z

1 � z � `g [fa

hk

1

;k

2

i

c

`

g,

and L

4hk

1

;k

2

i+2

= L

4hk

1

;k

2

i+3

= L

4hk

1

;k

2

i

.

Case 3. '

k

1

(k

1

) # and '

k

2

(k

2

) #

Then, let ` = �

k

1

(k

1

), and m = �

k

2

(k

2

).

We set L

4hk

1

;k

2

i+1

= fa

hk

1

;k

2

i

b

z

1 � z � `g [fa

hk

1

;k

2

i

c

`

g,

L

4hk

1

;k

2

i+2

= fa

hk

1

;k

2

i

b

z

1 � z � `+mg [fa

hk

1

;k

2

i

d

`+m

g, and

L

4hk

1

;k

2

i+3

= L

4hk

1

;k

2

i

[fa

hk

1

;k

2

i

e

`+m

g.

Now, it is easy to see that L = (L

z

)

z2IN

constitutes an indexed family. It remains

to show that L ful�lls the stated requirements. As in the proof of Theorem 3.2 one

proves mutatis mutandis that L 2 EMON

1

, and L 2 CSMON

3

.

The remaining part, i.e., L =2 CSMON

2

, is much harder to prove. For that purpose

14 Steffen Lange and Thomas Zeugmann

we need some additional insight into the behavior of every IIM M that learns L. In

particular, we are mainly interested in knowing howM works when successively fed the

text t = a

hk

1

;k

2

i

b; a

hk

1

;k

2

i

b

2

; a

hk

1

;k

2

i

b

3

; � � � for L

4hk

1

;k

2

i

. That is, t contains all strings from

L

4hk

1

;k

2

i

ordered by increasing length. Since L

4hk

1

;k

2

i

is in�nite, t indeed constitutes

a text for it. Moreover, this text is e�ectively computable. Furthermore, we refer

to t as to the lexicographically ordered text, since the order in which the strings are

enumerated coincides with the lexicographical order of all strings from L

4hk

1

;k

2

i

. The

desired information is provided by the following lemma.

Lemma 3.1. Let G = (G

j

)

j2IN

be any class comprising hypothesis space for L and

let M be any IIM witnessing L 2 CLIM with respect to G. Then we have:

For all k

2

there are numbers k

1

; x; j 2 IN such that

(1) M(t

x

) = j,

(2) �

k

1

(k

1

) > x+ 1 and '

k

1

(k

1

) #,

where t is the lexicographically ordered text of L

4hk

1

;k

2

i

.

Suppose the converse. Then there is a k

2

such that for all k

1

; x; j we have: M(t

x

) =

j implies �

k

1

(k

1

) � x + 1 or '

k

1

(k

1

) ". Assuming the latter statement we have the

following claim.

Claim. Provided the latter statement is true, any program for M may be used to

obtain non-e�ectively an algorithm deciding \'

k

1

(k

1

) #."

By assumption, there is a k

2

such that for all k

1

; x; j: If (1) is ful�lled, then either

�

k

1

(k

1

) � x+ 1 or '

k

1

(k

1

) ". Using this k

2

we can de�ne the following algorithm A.

Algorithm A: \On input k

1

execute (A1) and (A2).

(A1) Generate successively the lexicographically ordered text t of L

4hk

1

;k

2

i

and

simulate M until the �rst hypothesis j is produced.

Let x

0

be the least x such that M(t

x

) = j.

(A2) Test whether �

k

1

(k

1

) � x

0

+ 1.

In case it is, output \'

k

1

(k

1

) #."

Otherwise, output \'

k

1

(k

1

) "" and stop."

First we observe that M has to infer L

4hk

1

;k

2

i

from its lexicographically ordered

text t. Hence, M should eventually output a hypothesis j when fed t. Furthermore,

Instruction (A2) can be e�ectively accomplished, too. Hence, A is an algorithm and

the execution of (A1) and (A2) must eventually terminate. Finally, by assumption we

immediately obtain the correctness of A's output. This proves the claim. Since the

halting problem is algorithmically undecidable, Lemma 3.1 follows.

Lemma 3.2. L =2 CSMON

2

.

Suppose the converse, i.e., there exist a hypothesis space G = (G

j

)

j2IN

and an IIM

M that CSMON

2

{learns L with respect to G. Then we can prove the following lemma.

Trading Monotonicity Demands versus E�ciency 15

Lemma 3.3. Given any hypothesis space G = (G

j

)

j2IN

and any program for M

witnessing L 2 CSMON

2

, one can e�ectively construct an algorithm deciding the halting

problem.

Let K = fk '

k

(k) #g and let j

0

; j

1

; j

2

; ::: be any �xed e�ective enumeration of K.

We de�ne an algorithm B as follows.

Algorithm B: \On input k

2

execute (B1) and (B2).

(B1) For z = 0; 1; 2; ::: successively compute the lexicographically ordered texts

t

j

0

; t

j

1

; t

j

2

; :::; t

j

z

for L

4hj

0

;k

2

i

; L

4hj

1

;k

2

i

; :::; L

4hj

z

;k

2

i

of length z + 1, respec-

tively. Then, dovetail the simulation of M on successive input of each of

these initial segments until the �rst initial segment t

j

r

x

(r; x � z) and the �rst

hypothesis j are found such that

(�1) M(t

j

r

x

) = j,

(�2) �

j

r

(j

r

) > x+ 1.

(* By Lemma 3.1, the execution of (B1) has to terminate. *)

(B2) Let f = hj

r

; k

2

i and ` = �

j

r

(j

r

). Furthermore, we de�ne

^

t

`+y

as follows:

^

t

`+y

= a

f

b; :::; a

f

b

x+1

; :::; a

f

b

`

| {z }

=t

j

r

`�1

; a

f

b

`

; a

f

b

`+1

; :::; a

f

b

`+y

| {z }

y�strings

.

For y = 0; 1; 2; ::: execute in parallel (�1) and (�2) until (�3) or (�4)

happens.

(�1) Test whether �

k

2

(k

2

) � `+ y.

(�2) Compute j

`+y

=M(

^

t

`+y

).

(�3) �

k

2

(k

2

) � `+ y is veri�ed. Then output \'

k

2

(k

2

) #."

(�4) In (�2) a hypothesis j

`+y

= M(

^

t

`+y

) is computed such that a

f

b

`+1

2

L(G

j

`+y

). Then output \'

k

2

(k

2

) "" and stop."

It remains to show that B terminates on every input, and behaves correctly.

Claim 1. On every input k

2

, the algorithm B terminates.

As we have already mentioned, by Lemma 3.1 we know that the execution of (B1)

has to terminate. Hence, it su�ces to show that either (�3) or (�4) happens. Suppose,

(�3) does not happen. Then, for all y 2 IN we have :�

k

2

(k

2

) � ` + y. Consequently,

'

k

2

(k

2

) ". Therefore, when y tends to in�nite, then

^

t

`+y

converges to a text for L

4hj

r

;k

2

i

,

and hence, M eventually has to output a hypothesis j

`+y

such that a

f

b

`+1

2 L(G

j

`+y

).

Thus, (�4) must happen. This proves Claim 1.

Claim 2. Algorithm B works correctly.

Obviously, if (�3) happens then '

k

2

(k

2

) is indeed de�ned. Suppose, (�4) happens.

We have to show that '

k

2

(k

2

) ". Suppose the converse, i.e., '

k

2

(k

2

) #. Thus, �

k

2

(k

2

)

converges, too. We distinguish the following cases.

Case 1. The hypothesis j

`+y

satis�es L(G

j

`+y

) = L

4hj

r

;k

2

i

.

16 Steffen Lange and Thomas Zeugmann

ThenM fails to infer L

4hj

r

;k

2

i+2

strong-monotonically. This can be seen as follows.

Since (�3) did not happen, we have �

k

2

(k

2

) > `+y. Hence,

^

t

`+y

is an initial segment of

a text for L

4hj

r

;k

2

i

and of a text

~

t for L

4hj

r

;k

2

i+2

. On the other hand, when successively

fed

~

t, the IIM M sometimes outputs j

`+y

, and L(G

j

`+y

) = L

4hj

r

;k

2

i

. Since L

4hj

r

;k

2

i

6�

L

4hj

r

;k

2

i+2

, we directly see that M violates the strong-monotonicity constraint.

Case 2. The hypothesis j

`+y

does not satisfy L(G

j

`+y

) = L

4hj

r

;k

2

i

.

Then, M fails to learn L with at most two mind changes. Recall that M has

already generated the guesses j and j

`+y

when successively fed

^

t

`+y

. First, we show

that j 6= j

`+y

. Suppose to the contrary that j = j

`+y

. Remember that ` = �

j

r

(j

r

).

Then M fails to infer L

4hj

r

;k

2

i+1

strong-monotonically. This can be seen as follows. By

construction, a

f

b

`+1

2 L(G

j

`+y

), and hence, a

f

b

`+1

2 L(G

j

). But j = M(t

j

r

x

), and

x < `. Therefore, t

j

r

x

is an initial segment of some text for L

4hj

r

;k

2

i+1

, too. On the other

hand, a

f

b

`+1

62 L

4hj

r

;k

2

i+1

. Consequently, L(G

j

) 6� L

4hj

r

;k

2

i+1

, a contradiction.

Finally, since j 6= j

`+y

, M has already performed at least one mind change when

successively fed

^

t

`+y

. Moreover, �

k

2

(k

2

) = m > `+y, since (�3) did not happen. Hence,

^

t

`+y

is an initial segment of a text for L

4hj

r

;k

2

i

as well as for L

4hj

r

;k

2

i+3

. In accordance

with L's de�nition we additionally have L

4hj

r

;k

2

i

� L

4hj

r

;k

2

i+3

. Thus, we may extend

^

t

`+m

with a

f

b

`+y+1

; a

f

b

`+y+2

; ::: until M learns L

4hj

r

;k

2

i

. This forces M to change its

mind again. Afterwards, we present a

f

e

`+m

, and hence, one more mind change has to

occur. Thus, L =2 CSMON

2

. This contradiction proves Claim 2. Thus, Lemma 3.3 is

shown, and Lemma 3.2 follows. 2

Note that the proof of the latter theorem directly allows the following corollary.

Corollary 3.6. EMON

1

n SMON 6= ;.

3.2. Monotonic Inference

This subsection deals with monotonic inference, and possible relaxations of the

monotonicity requirement. But there is a peculiarity which we point out with the fol-

lowing theorem.

Theorem 3.7. �LIM

1

= �MON

1

for all � 2 fE; "; Cg.

Proof. Here, we discuss exact learning, only. The same idea applies mutatis

mutandis to handle the remaining cases. By de�nition EMON

1

� ELIM

1

. Now, let L

be an indexed family and M be an IIM which ELIM

1

{identi�es L. It su�ces to show

that M ful�lls the monotonicity constraint as well. In the worst case, M performs at

most one mind change, say from j to k, when fed any text t for any L 2 range(L).

Since M learns L from t, we have L

k

= L. Therefore, L

j

\ L � L

k

\ L = L no matter

whatever L

j

is. 2

Next we show that the monotonicity constraint can be traded versus e�ciency.

This is even true, if the relaxation is as weak as possible, i.e., if the requirement to learn

monotonically is relaxed to weak-monotonic inference.

Trading Monotonicity Demands versus E�ciency 17

Theorem 3.8. For every n 2 IN, n � 2, there is an indexed family L such that

L 2 (EMON

n+1

\EWMON

n

) n CMON

n

.

Proof. For the sake of presentation, we consider the case n = 2. The extension

to all n � 3 may be easily obtained by applying the lifting technique of Lange and

Zeugmann [29]. The desired indexed family is de�ned as follows. Initially, we set L

0

=

fag

+

. For all k 2 IN, we set L

3k+1

= L

0

[fa

k

bg. In order to de�ne the remaining

languages we distinguish the following cases:

Case 1. '

k

(k) "

We set L

3k+3

= L

3k+2

= L

3k+1

.

Case 2. '

k

(k) #

Then, let m = �

k

(k), and let

^

L

k

= fa

z

1 � z � mg [fa

k

bg.

We set L

3k+2

=

^

L

k

[fa

k

c

m

g, and L

3k+3

=

^

L

k

[fa

k

c

m

; a

k

d

m

g.

After a bit of reection it is not hard to see that L = (L

j

)

j2IN

is an indexed family.

Claim 1. L 2 EMON

3

.

We de�ne the desired IIM M as follows. Let L 2 range(L), let t 2 text(L), and

let x 2 IN.

IIM M: \ On input t

x

do the following: As long as t

+

x

� L

0

, output the hypothesis 0,

and request the next input.

Otherwise, goto (A).

(A) If a

k

b 2 t

+

x

for some k 2 IN, then determine k and goto (B). Otherwise, repeat

the guess 0, and request the next input.

(B) If a

k

d

m

2 t

+

x

for some m 2 IN, then output 3k + 3, and request the next

input.

If a

k

c

m

2 t

+

x

for some m 2 IN, then output 3k + 2.

Otherwise, output 3k + 1, and request the next input."

Obviously,M monotonically infers L. In the worst case, M changes its mind three

times, namely it outputs successively the hypotheses 0, 3k+1, 3k+2, and 3k+3. Since

L

0

\ L

3k+2

= L

0

\ L

3k+3

� L

3k+1

\ L

3k+2

= L

3k+1

\ L

3k+3

� L

3k+2

\ L

3k+3

, it is easy

to verify that each of these mind changes satis�es the monotonicity requirement. This

proves Claim 1.

Claim 2. L 2 EWMON

2

.

The desired IIM is de�ned as follows. Let L 2 range(L), let t 2 text(L), and let

x 2 IN.

IIM M: \On input t

x

do the following: As long as t

+

x

� L

0

output the hypothesis 0,

and request the next input.

Otherwise, goto (A).

18 Steffen Lange and Thomas Zeugmann

(A) If a

k

b 2 t

+

x

for some k 2 IN, then determine k and goto (B). Otherwise, repeat

the guess 0, and request the next input.

(B) As long as t

+

x

� L

3k+2

output 3k + 2, and request the next input.

Otherwise, execute Instruction (C).

(C) If a

k

d

m

2 t

+

x

for some m 2 IN output 3k + 3, and request the next input.

Otherwise, output 3k + 1, and request the next input."

Obviously, M weak-monotonically infers L. Thereby, M changes its mind at most

twice. This proves Claim 2.

Note that the IIM M de�ned in the latter proof may subsequently output the

hypotheses 0, 3k+ 2, and 3k+ 1 when fed a text for L

3k+1

. It is easy to verify that the

�rst mind change violates the monotonicity requirement. Moreover, it is easy to argue

that L 62 EMON

2

. But again, we show a slightly stronger result.

Claim 3. L 62 CMON

2

.

Suppose there are a hypothesis space G and an IIMM such thatM CMON

2

{learns

L with respect to G. By assumption, M , in particular, infers the language L

0

from its

text t = a; a

2

; a

3

; : : : Thus, there has to be a least index z such that M(t

z

) = j and

L(G

j

) = L

0

. Given this index z the following recursive predicate solves the halting

problem.

Let k 2 IN; the desired predicate is de�ned as follows.

 (k) = \Test whether or not �

k

(k) � z + 1. In case it is, output 1.

Otherwise, execute Instructions (A) and (B).

(A) For x = 0; 1; 2; : : : simulate M , when fed

^

t

z+1+x

= a; : : : ; a

z+1

| {z }

=t

z

; a

k

b; a; :::; a

x

, until the �rst y is found such that

j

z+1+y

=M(

^

t

z+1+y

) and a

k

b 2 L(G

j

z+1+y

).

(B) Test whether or not �

k

(k) � z + 1 + y. In case it is, output 1.

Otherwise, output 0."

Obviously, if x tends to in�nite then the limit

^

t of

^

t

z+1+x

constitutes a text for

L

3k+1

. Since M has to infer the language L

3k+1

from

^

t, it is easy to verify that the

procedure de�ned above terminates for every k 2 IN. Hence, is recursive. It remains

to show that '

k

(k) is unde�ned, if (k) = 0. Suppose the converse, i.e., (k) = 0 as

well as '

k

(k) is de�ned. Therefore, �

k

(k) = m > z + 1 + y.

Recall that M has already performed at least one mind change when fed

^

t

z+1+y

,

namely from j to j

z+1+y

. Since M monotonically infers L

3k+1

from

^

t and a

k

b 2

L(G

j

z+1+y

), we obtain L(G

j

z+1+y

) � L

3k+1

. Otherwise, M violates the monotonicity

constraint when inferring L

3k+1

from its text

^

t. Consequently, L(G

j

z+1+y

) 6= L

3k+2

.

Now, taking L's de�nition into account, it follows that

^

t

z+1+y

may also serve as an

initial segment of a text for the language L

3k+2

because �

k

(k) = m > z+1+y. Finally,

Trading Monotonicity Demands versus E�ciency 19

since L

3k+2

� L

3k+3

, it is easy to verify that

^

t

z+1+y

can be extended to a text for

L

3k+3

such thatM has to perform at least two additional mind changes in order to infer

L

3k+3

from this particular text. This contradicts our assumption thatM monotonically

infers L with at most two mind changes. Therefore, '

k

(k) is unde�ned, if (k) = 0.

Consequently, the recursive predicate solves the halting problem for the '-system. 2

Re�ning mutatis mutandis the latter proof analogously as the demonstration of

Theorem 3.2 has been extended to show Theorem 3.5, one obtains the following result.

Theorem 3.9. For every n 2 IN, n � 2, there is an indexed family L such that

L 2 (EMON

n+1

\EWMON

2

) n CMON

n

.

Proof. We present an indexed family which witnesses the desired separation in

the n = 3 case. This may help to illustrate how the family used in the proof of Theorem

3.8 has to be modi�ed. We de�ne:

L

0

= fag

+

and L

4hk

1

;k

2

i+1

= L

0

[fa

hk

1

;k

2

i

bg for all k

1

; k

2

2 IN. In order to de�ne

the remaining languages of L we distinguish the following cases.

Case 1. '

k

1

(k

1

) "

Then we set L

4hk

1

;k

2

i+2

= L

4hk

1

;k

2

i+3

= L

4hk

1

;k

2

;ji+4

= L

4hk

1

;k

2

i+1

.

Case 2. '

k

1

(k

1

) # and '

k

2

(k

2

) "

Then, let ` = �

k

1

(k

1

), and

^

L

hk

1

;k

2

i

= fa

z

1 � z � `g [fa

hk

1

;k

2

i

bg.

We set L

4hk

1

;k

2

i+2

= L

4hk

1

;k

2

i+3

= L

4hk

1

;k

2

i+4

=

^

L

hk

1

;k

2

i

[fa

hk

1

;k

2

i

c

`

g.

Case 3. '

k

1

(k

1

) # and '

k

2

(k

2

) #

Then, let ` = �

k

1

(k

1

), m = �

k

2

(k

2

), and

^

L

hk

1

;k

2

i

= fa

z

1 � z � `g [fa

hk

1

;k

2

i

bg.

We set L

4hk

1

;k

2

i+2

=

^

L

hk

1

;k

2

i

[fa

hk

1

;k

2

i

c

`

; a

`+m

g,

L

4hk

1

;k

2

i+3

=

^

L

hk

1

;k

2

i

[fa

hk

1

;k

2

i

c

`

; a

hk

1

;k

2

i

d

`+m

g, and

L

4hk

1

;k

2

i+4

=

^

L

hk

1

;k

2

i

[fa

hk

1

;k

2

i

c

`

; a

hk

1

;k

2

i

d

`+m

; a

hk

1

;k

2

i

e

`+m

g.

Again, it is easy to see that L = (L

j

)

j2IN

constitutes an indexed family. 2

The latter theorems allow the following interpretation. Removing the constraint

to learn monotonically may considerably increase the e�ciency of the learning process.

Next, we ask whether the overall insight achieved for strong-monotonic and mo-

notonic learning extends to dual strong-monotonic and dual monotonic learning. This

is indeed the case as the following two subsections show.

3.3. Dual Strong-Monotonic Learning

First of all recall that SMON

d

= LIM

0

= ELIM

0

(cf. Proposition 2.3). Conse-

quently, a relaxation of the dual strong-monotonicity constraint may only improve the

e�ciency of learning, if class comprising hypothesis spaces are admissible. Our next

theorem impressively shows that even the weakest possible relaxation, namely allowing

to use dual monotonic IIMs instead of dual strong-monotonic machines, may yield a

20 Steffen Lange and Thomas Zeugmann

considerable speed-up.

Theorem 3.10. For every n 2 IN

+

there exists an indexed family L such that

L 2 (CSMON

d

n+1

\ EMON

d

1

) n CSMON

d

n

.

Proof. It turns out that our main proof technique, namely incorporating a non-

recursive but recursively enumerable problem in the de�nition of the target indexed

families, applies mutatis mutandis to show the theorem on hand. Therefore, we restrict

ourselves to give some insights how to handle the n = 1 case.

Without loss of generality, we may assume that �

j

(j) � 1 for all j 2 IN. For all

k

1

; k

2

2 IN, we set L

3hk

1

;k

2

i

= fa

hk

1

;k

2

i

b

z

z 2 IN

+

g. The remaining languages are

de�ned as follows.

Case 1. '

k

1

(k

1

) "

Then L

3hk

1

;k

2

i+1

= L

3hk

1

;k

2

i+2

= L

3hk

1

;k

2

i

.

Case 2. '

k

1

(k

1

) # and '

k

2

(k

2

) "

Then, let ` = �

k

1

(k

1

). We set

L

3hk

1

;k

2

i+1

= L

3hk

1

;k

2

i+2

= fa

hk

1

;k

2

i

b

z

1 � z � `g [fa

hk

1

;k

2

i

c

`

g.

Case 3. '

k

1

(k

1

) # and '

k

2

(k

2

) #

Then, let ` = �

k

1

(k

1

), and m = �

k

2

(k

2

).

We set L

3hk

1

;k

2

i+1

= fa

hk

1

;k

2

i

b

z

1 � z � `g [fa

hk

1

;k

2

i

c

`

; a

hk

1

;k

2

i

c

`+m

g, and

L

3hk

1

;k

2

i+2

= fa

hk

1

;k

2

i

b

z

1 � z � `g [fa

hk

1

;k

2

i

c

`

; a

hk

1

;k

2

i

d

`+m

g.

Similar to the demonstration of Theorem 3.5, L 2 EMON

d

1

n CSMON

d

1

can be

easily shown. In order to verify L 2 CSMON

d

2

the choice of the underlying hypothesis

space is of particular importance. Assume the following hypothesis space

^

L = (

^

L

j

)

j2IN

.

For all k

1

; k

2

2 IN, let

^

L

5hk

1

;k

2

i+z

= L

3hk

1

;k

2

i+z

for all z 2 f0; 1; 2g, and

^

L

5hk

1

;k

2

i+3

=

S

z2f0;1;2g

L

3hk

1

;k

2

i+z

, and

^

L

5hk

1

;k

2

i+4

=

S

z2f1;2g

L

3hk

1

;k

2

i+z

.

Finally, it is not hard to design an IIM M which CSMON

d

2

{learns L with respect

to

^

L. We omit the details. 2

3.4. Dual Monotonic Learning

When dealing with dual-monotonic inference we have to take the following pecu-

liarity into consideration. Applying the same idea as in the proof of Theorem 3.7 one

directly obtains:

Theorem 3.11. �LIM

1

= �MON

d

1

for all � 2 fE; "; Cg.

Furthermore, removing the requirement to learn dual monotonically may allow the

design of IIMs which learn much more e�ciently.

Theorem 3.12. For every n 2 IN, n � 2, there is an indexed family L such that

L 2 (EMON

d

n+1

\EWMON

d

2

) n CMON

d

n

.

Proof. Notice that the same families witnessing the corresponding speed-up for

Trading Monotonicity Demands versus E�ciency 21

monotonic learning can be used to prove the desired separations. To see this, we inves-

tigate the n = 2 case in some more detail. Recall the de�nition of the family L used

in the proof of Theorem 3.8. By de�nition, L

0

= fag

+

and L

3k+1

= L

0

[fa

k

bg for all

k 2 IN. Moreover, the remaining languages are de�ned as follows.

Case 1. '

k

(k) "

We set L

3k+3

= L

3k+2

= L

3k+1

.

Case 2. '

k

(k) #

Then, let m = �

k

(k), and let

^

L

k

= fa

z

1 � z � mg [fa

k

bg.

We set L

3k+2

=

^

L

k

[fa

k

c

m

g, and L

3k+3

=

^

L

k

[fa

k

c

m

; a

k

d

m

g.

Within the proof of Theorem 3.8 we have already shown that L 2 EWMON

2

.

Since every weak-monotonic IIM

^

M can be transformed into a dual weak-monotonic

IIM which performs at most as many mind changes as

^

M does (cf. Lange, Zeugmann

and Kapur [32]), it follows L 2 EWMON

d

2

. Moreover, it is not hard to verify that the

IIM M used in the demonstration of L 2 EMON

3

behaves dual monotonically, too.

Finally, L 62 CMON

d

2

can be shown by reducing the halting problem to L 2

CMON

d

2

. Suppose to the contrary that there are a hypothesis space G and an IIM M

such that M CMON

d

2

{learns L with respect to G. By assumption, M , in particular,

infers the language L

0

from its text t = a; a

2

; a

3

; : : : Consequently, there has to be a

least index z such that M(t

z

) = j and L(G

j

) = L

0

. Given k and z, simulate M when

fed L

3k+1

's text

^

t = t

z

; a

k

b; a; a

2

; : : : Obviously, M has to change its mind when fed

^

t. Now, let r 2 IN be the least index such that M(t

z

) 6= M(

^

t

z+r

). It su�ces to show

that the following recursive predicate � may be used to decide whether or not '

k

(k) is

de�ned. Let k 2 IN. We de�ne:

�(k) = \Given z and r; test whether or not �

k

(k) � z + r + 1. In case it is, output 1.

Otherwise, output 0 and stop."

It remains to show that '

k

(k) is unde�ned if �(k) = 0. Suppose the converse, i.e.,

�(k) = 0 but '

k

(k) is de�ned. Therefore, �

k

(k) = m > z + r + 1.

Suppose the best case, i.e., M has performed exactly one mind change when fed

^

t

z+r

. By de�nition of L, the segment

^

t

z+r

may serve as an initial segment of a text for

each of the pairwise disjoint languages L

3k+1

, L

3k+2

, and L

3k+3

. Since L

3k+2

� L

3k+3

,

it is easy to see thatM 's second guess has to be L

3k+2

. Otherwise, one can easily de�ne

a text for L

3k+3

on whichM needs more than two mind changes in order to infer L

3k+3

.

On the other hand, M dual monotonically infers L

3k+1

from

^

t. Therefore, M 's second

guess has to be di�erent from L

3k+2

, since otherwise a

k

c

m

2 co�L

0

\ co�L

3k+1

, but

a

k

c

m

62 co�L

3k+2

\ co�L

3k+1

. Consequently, M either fails to work dual monotonically

or it needs more than two mind changes, a contradiction. Hence, the predicate � solves

the halting problem. 2

The following subsections are devoted to weak-monotonic inference and dual weak-

monotonic learning.

22 Steffen Lange and Thomas Zeugmann

3.5. Weak-Monotonic Learning

Next we consider weak-monotonic learning. Possible relaxations include learning

in the limit. However, less is known. First, Theorem 3.7 directly implies ELIM

1

=

EWMON

1

as well as LIM

1

=WMON

1

, since every monotonic IIM that learns exactly

and class preservingly, respectively, is weak-monotonic, too (cf. Lange and Zeugmann

[28]). However, it remains open whether or not CLIM

1

= CWMON

1

. Nevertheless, we

succeeded to obtain results that shed considerable light on the power of learning with

at most one mind change.

Theorem 3.13.

(1) MON

1

nEWMON 6= ;,

(2) ELIM

2

nWMON 6= ;,

(3) CMON

1

nWMON 6= ;.

Proof. Lange and Zeugmann [29] proved LIM

1

n EWMON 6= ;, and recently

Lange [26] shows CLIM

1

nWMON 6= ;. Combining these results with Theorem 3.7

we directly get Assertion (1) and (3). Finally, for a proof of Assertion (2) we refer the

reader to Lange [26]. 2

Consequently, relaxing the weak-monotonicity constraint may considerably increase

the inference capabilities. However, the latter theorem dealt with indexed families that

are themselves not weak-monotonically learnable. Therefore, it is only natural to ask

whether or not there are indexed families that can be weak-monotonically inferred within

an a priori bounded number of mind changes and that are learnable in the limit with less

mind changes. The a�rmative answer is provided by our next theorem. In particular,

we show that unconstrained IIMs may be much more e�cient than weak-monotonic ma-

chines. In Kinber [25] a similar result concerning the learnability of classes of recursively

enumerable languages has been shown. We modify the construction underlying Kinber's

proof in order to achieve the following result.

Theorem 3.14. For every n 2 IN, n � 2, there is an indexed family L such that

L 2 (ELIM

2

\ CWMON

n+1

) n CWMON

n

.

Proof. Assume any n � 2. Let s

0

; s

1

; s

2

; : : : be the lexicographical enumeration

of all strings over the underlying terminal alphabet � = fa; bg. Given any string s 2 �

�

we denote by #(s) the unique indexm such that s

m

= s. Moreover, assume any standard

enumeration M

0

; M

1

; M

2

; : : : of all inductive inference machines which accept �nite

sequences of strings from �

�

as input. Without loss of generality, we may assume that

each of these IIMs, when fed any �nite sequence of strings from �

�

, either outputs a

guess or requests the next input (cf. Gold [17]).

Conceptually, the underlying idea is as follows: Given any j 2 IN, we de�ne a

particular family L

j

such that either M

j

fails to learn L

j

in a weak-monotonic fashion

or M

j

needs more than n mind changes. Obviously, in order to show that M

j

violates

Trading Monotonicity Demands versus E�ciency 23

the weak-monotonicity constraint some a priori knowledge about the semantics of M

j

's

hypotheses is required. In order to provide this knowledge we choose the following

approach.

Let '

0

; '

1

; '

2

; : : : be any acceptable programming system, and let �

0

; �

1

, �

2

,

: : : be any �xed associated complexity measure (cf. Section 2). For every z 2 IN, let

L('

z

) = fs

m

m 2 IN; '

z

(m) #; '

z

(m) = 1g. Then, we use G = (L('

j

))

j2IN

, as the

universal hypothesis space, i.e., if any of the enumerated IIMs outputs a hypothesis,

say k, then we interpret it to mean that the IIM is guessing the language L('

k

). The

following lemma guarantees that this approach is successful.

Lemma 3.4. Let L be any indexed family over the terminal alphabet �, and

^

M

be any IIM which CLIM{identi�es L with respect to an admissible hypothesis space

^

G = (

^

G

z

)

z2IN

. Then, there exists an IIM M which infers L with respect to the universal

hypothesis space G.

Recall that membership is uniformly decidable in

^

G. For every z 2 IN, we de�ne

the recursive predicate f

z

as follows. For all m 2 IN we set f

z

(m) = 1 if and only

if s

m

2 L(

^

G

z

). Hence, f

0

; f

1

; f

2

; : : : de�nes an e�ective enumeration of recursive

predicates. Since '

0

; '

1

; '

2

; : : : is an acceptable programming system, there exists a

recursive compiler c such that f

z

= '

c(z)

for all z 2 IN. Finally, given this particular

compiler c one can easily de�ne an IIM M which learns L with respect to G. Therefore,

let L 2 range(L), t 2 text(L), and x 2 IN.

IIM M: \Simulate

^

M when fed t

x

. If

^

M outputs a guess, say z, then output c(z).

Otherwise, output nothing, and request the next input."

Obviously,M learns L as required. Note that the above transformation guarantees that

any additional constraint

^

M sati�es, e.g., any of the de�ned monotonicity constraints or

even any requirement on the maximal number of mind changes

^

M is allowed to perform,

is satis�ed by M as well. This proves Lemma 3.4.

Let j 2 IN. The following procedure P is used to de�ne the family L

j

= (L

hj;ki

)

k2IN

in a way such that M

j

fails to learn L

j

as required. Thereby, the language L

hj;0i

is

speci�ed via its characteristic function f

hj;0i

as a �nite subset of fa

j+1

b

m

m 2 INg.

Therefore, it su�ces to determine f

hj;0i

(a

j+1

b

m

) for all m 2 IN. Additionally, all the

remaining languages L

hj;ki

, k � 1, either equal the singleton language fbg or form a

proper subset of L

hj;0i

.

Procedure P

Given j 2 IN, set initially f

hj;0i

(a

j+1

) = 1, m = 1, and W = f#(a

j+1

)g.

Stage 0: Given m, and W proceed as follows: Test whether or not M

j

, when fed

t

m�1

= a

j+1

; : : : ; a

j+1

| {z }

m�times

, outputs a guess. In case it does, execute Instruction (A).

Otherwise, goto (B).

(A) Set f

hj;0i

(a

j+1

b

m

) = 1, and L

hj;mi

= fbg. Furthermore, set inp = t

m�1

,

24 Steffen Lange and Thomas Zeugmann

max = m, W = W [f#(a

j+1

b

max

)g, and m = m+ 1. Goto Stage 1.

(B) Set f

hj;0i

(a

j+1

b

m

) = 0, and L

hj;mi

= fbg. Finally, set m = m + 1, and stay

in Stage 0.

(* Notice that, in case P never leaves Stage 0, L

hj;0i

= fa

j+1

g but M

j

never

outputs a guess when fed L

hj;0i

's text t = a

j+1

; a

j+1

; : : :. *)

Stage z (z � n): (* Recall that n is the number of allowed mind changes. *) Given m,

max, inp, and W proceed as follows:

Determine t

m�1

= inp; a

j+1

b

max

; : : : ; a

j+1

b

max

| {z }

(m�max)�times

. Test whether or not M

j

(inp) 6=

M

j

(t

m�1

). In case it does, goto (A).

Otherwise, determine p =M

j

(inp). Test whether or not �

p

(r) � m for all r 2W .

If not, follow Instruction (B).

In case it is, test for all r 2 W whether or not '

p

(r) = 1. If yes, then goto (C).

Otherwise, execute Instruction (B) as well.

(A) Set f

hj;0i

(a

j+1

b

m

) = 1, and L

hj;mi

= fbg. Additionally, set inp = t

m�1

,

max = m, W = W [f#(a

j+1

b

m

)g, and m = m+ 1. Goto Stage z + 1.

(* Notice that inp forms an initial segment of a text for the �nite language

L = fa

j+1

b

m

m � max� 1g \ L

hj;0i

on which M

j

, when successively fed it,

performs z mind changes. *)

(B) Set f

hj;0i

(a

j+1

b

m

) = 0, and L

hj;mi

= fbg. Do not change max and inp.

Furthermore, set m = m+ 1, and stay in Stage z.

(C) Set f

hj;0i

(a

j+1

b

m

) = 0, and L

hj;mi

= fbg. Finally, set m = m + 1, and goto

Stage n+ 1.

(* Notice that, in case P never leaves Stage z, L

hj;0i

= inp

+

[fa

j+1

b

max

g, and

M

j

, when fed the text t = inp; a

j+1

b

max

; a

j+1

b

max

; : : : for L

hj;0i

, converges to

p =M

j

(inp). *)

Stage n+ 1: Given m, inp, and max proceed as follows: Set f

hj;0i

(a

j+1

b

k

) = 0 and set

L

hj;ki

= L

hj;0i

n fa

j+1

b

max

g = inp

+

for all k � m. This �nishes the construction

of the family L

j

.

Since M

j

is an IIM and the predicate `�

i

(x) � y' is recursive, it is not hard to

verify that L

j

constitutes an indexed family.

Finally, the target indexed family is de�ned as L = (L

hj;ki

)

j;k2IN

, i.e., the canonical

enumeration of all families L

j

.

Lemma 3.5. L 62 CWMON

n

.

Suppose to the contrary that L 2 CWMON

n

. Hence, there are an IIM

^

M and

an admissible hypothesis space

^

G such that

^

M CWMON

n

{identi�es L with respect to

^

G. By Lemma 3.4 there is an IIM M

j

such that M

j

weak-monotonically infers L with

Trading Monotonicity Demands versus E�ciency 25

respect to the universal hypothesis space G. Thereby, M

j

performs at most n mind

changes.

Claim 1. For all z � n, P leaves Stage z.

Suppose the converse. First, let z = 0. As already mentioned, if P never leaves

Stage 0, then L

hj;0i

= fa

j+1

g. Moreover, M

j

never outputs a guess, when successively

fed the uniquely de�ned text for L

hj;0i

. Hence, M

j

fails to learn L

hj;0i

, a contradiction.

Second, let 0 � z < n. Suppose that P has successfully �nished Stage z, but it never

leaves Stage z + 1. Let inp and max be given as de�ned when P is entering Stage

z + 1. By P 's de�nition, L

hj;0i

= inp

+

[fa

j+1

b

max

g and M

j

, when fed L

hj;0i

's text

t = inp; a

j+1

b

max

; a

j+1

b

max

; : : : converges to p. SinceM

j

learns L

hj;0i

, L('

p

) = L

hj;0i

.

Obviously, this implies '

p

(#(w)) = 1 for all w 2 L

hj;0i

. Consequently, P sometimes

execute Instruction (C). Thus, P would leave Stage z + 1, a contradiction. This proves

Claim 1.

Furthermore, by assumption, M

j

is a weak-monotonic IIM. Hence, M

j

never out-

puts an overgeneralized hypothesis. This implies directly that P never leaves some Stage

z, for some 1 � z � n, via Instruction (C). Together with Claim 1 we obtain that P

leaves every Stage via Instruction (A).

Thus, if P is entering Stage n+ 1, a �nite sequence of strings inp has been found

such thatM

j

changes its mind n times when fed inp. LetM

j

(inp) = p. By construction,

inp

+

� L

hj;0i

. Now, consider any text t for L

hj;0i

having the pre�x inp. Since the �nite

language inp

+

belongs to L

j

as well, we may conclude L('

p

) 6= L

hj;0i

. Otherwise, M

j

has generated an overgeneralized hypothesis when fed an initial segment of a text for

the language inp

+

. Consequently, M

j

has to perform at least n+1 mind changes when

inferring L

hj;0i

from t.

Finally, the IIM M

j

fails to learn the subfamily L

j

with at most n mind changes.

Hence, due to the choice of M

j

, in particular

^

M does not witness L

j

2 CWMON

n

.

Consequently,

^

M does not CWMON

n

{identify L, a contradiction. This �nishes the

proof of Lemma 3.5.

Lemma 3.6. L 2 CWMON

n+1

.

Taking L's de�nition into account it is not hard to see that L contains exclusively

�nite languages having a cardinality less than or equal to n + 2. This immediately

implies L 2 CWMON

n+1

, since the whole family of all �nite languages of cardinality of

at most n + 2 belongs to CWMON

n+1

(cf. Lange and Zeugmann [29]). Thus, Lemma

3.6 is proved.

Lemma 3.7. L 2 ELIM

2

.

Let L 2 range(L), t 2 text(L), and x 2 IN. A desired IIM M may work as follows.

If t

+

x

= fbg, then M outputs the least number for the singleton language fbg in L. In

this case, M clearly learns L. Otherwise, the �rst string s

0

in t

x

determines the unique

subfamily L

j

which contains the target language. Then, M starts its work with respect

to this subfamily. The only problem M has to handle is to check whether or not there is

a proper sublanguage L

hj;xi

of L

hj;0i

. However,M has no a priori knowledge whether or

26 Steffen Lange and Thomas Zeugmann

not such a language does exist. On the other hand, if there is any such sublanguage, then

it equals all the other proper sublanguages of L

hj;0i

. Therefore, M may initially output

hj; 0i. Subsequently, it uses x + 1, i.e., the length of its input, to perform a bounded

search for the �rst language L

hj;yi

, 1 � y � x+1, that does not contain the string b. In

case that this search has been successful, M outputs the corresponding hypothesis, say

hj; yi, as long as this guess ful�lls t

+

x

� L

hj;yi

. Finally, ifM has once veri�ed t

+

x

6� L

hj;yi

,

then it outputs subsequently hj; 0i on every input t

x

. Hence, it performs at most two

mind changes.

Moreover, M 's correctness immediately follows from the de�nition of the corre-

sponding subfamily L

j

. We omit the details. 2

3.6. Dual Weak-Monotonic Learning

Concerning dual weak-monotonic learning much less is known. Nevertheless, our

last result points to one major di�erence between weak-monotonic and dual weak-

monotonic inference. In contrast to Theorem 3.14, removing the requirement to learn

dual weak-monotonically may never result in an arbitrary large speed-up.

Theorem 3.15. For all n 2 IN

+

: CLIM

n

� CWMON

d

2n

.

Proof. Let n 2 IN, and L 2 CLIM

n

. Assume an IIM M and a hypothesis space

G = (G

j

)

j2IN

such that M CLIM

n

{identi�es L with respect to G. Without loss of

generality, we may assume that M is a consistent IIM (cf. Lange et al. [32]), i.e., if M

on input t

x

makes an output j

x

then t

+

x

� L(G

j

x

).

Let

^

L = (

^

L

j

)

j2IN

denote any canonical enumeration of all singleton languages over

the underlying alphabet and all languages of L(G). Now we de�ne an IIM

^

M that dual

weak-monotonically infers L with respect to

^

L. Let L 2 range(L), t 2 text(L), and

x 2 IN.

IIM

^

M: \On input t

x

do the following: If x = 0 or M when fed t

x�1

does not output

any hypothesis, goto (A). Otherwise, goto (B).

(A) Simulate M when fed t

x

. If M outputs a guess, say j, then set FLAG = 1,

output the canonical number of L(G

j

) in

^

L, and request the next input.

Otherwise, set FLAG = 0, output nothing, and request the next input.

(B) If FLAG = 1, test whether or not M (t

x�1

) = M(t

x

). In case it is, repeat

^

M 's last guess and request the next input. Otherwise, set FLAG = 0, output

the canonical index of the singleton language t

+

0

in

^

L and request the next

input.

If FLAG = 0, test whether or not card(t

+

x

) � 2. If not, repeat

^

M 's last

guess and request the next input. Otherwise, let M(t

x

) = j. Set FLAG = 1,

output the canonical number of L(G

j

) in

^

L, and request the next input."

First, we show that

^

M satis�es the dual weak-monotonical constraint. Let

^

M(t

x

) = k 6=

^

M(t

x+1

). If FLAG = 1 when fed t

x+1

, then

^

L

k

= L(G

j

) where M(t

x

) = j. Since M

Trading Monotonicity Demands versus E�ciency 27

is a consistent IIM, t

+

x

� L(G

j

). Hence,

^

M specializes its former guess to the singleton

language L = t

+

0

�

^

L

k

. Otherwise, let FLAG = 0 when fed t

x+1

. By de�nition,

^

L

k

= t

+

0

and card(t

+

x

) � 2. Thus, t

+

x

6�

^

L

k

. Consequently,

^

M 's mind change is caused by an

inconsistency. Hence,

^

M is a dual weak-monotonic IIM.

By construction, it is not hard to verify that card(L) � 2 immediately implies that

^

M converges to the same language M converges to. Furthermore,

^

M performs at most

twice as many mind changes as

^

M . Finally, let card(L) = 1. By construction,

^

M learns

L with at most one mind change. Consequently, we may conclude that

^

M witnesses

L 2 CWMON

d

2n

. 2

4. Conclusions and Open Problems

In the present paper we have investigated the problem whether or not di�erent

monotonicity and dual monotonicity constraints may inuence the e�ciency of learning

algorithms. As we have seen there is no unique answer to this problem. In particular,

it turns out that the answer heavily depends on both the (dual) monotonicity demand

involved and the set of allowed hypothesis spaces.

For example, if class comprising strong-monotonic and dual strong-monotonic in-

ference is investigated, an arbitrarily large speed-up can be sometimes achieved, even in

case that (dual) strong-monotonicity demand is relaxed as weak as possible (cf. Theo-

rems 3.5 and 3.10). However, the situation completely changes in the exact and class

preserving strong-monotonic and dual strong-monotonic learning model. If a target in-

dexed family is (dual) strong-monotonically learnable in one of those models then there

is de�nitely no IIM at all which learns the same family more e�ciently (cf. Theorem 3.1

and Proposition 2.3).

In the case of monotonic and dual monotonic inference, respectively, all resulting

models share the common property that sometimes an arbitrarily large speed-up may

be realized provided that the set of admissible learning algorithms is enlarged to weak-

monotonic and dual weak-monotonic IIMs, respectively (cf. Theorems 3.9 and 3.12).

Concerning weak-monotonic learning the resulting picture is less complete. Nev-

ertheless, we have been able to show that the e�ciency of weak-monotonic IIMs can

arbitrarily increase, if unconstrainted IIMs are admissible (cf. Theorem 3.14). Up to

now, this trade o� has been detected in the class comprising case, only. Naturally, the

question arises whether or not a similar speed-up can be achieved in the exact and class

preserving case, too.

Furthermore, we have studied dual weak-monotonic inference. Concerning this

approach much less is known. In particular, it remains open what happens in the

exact and class preserving case. On the other hand, Theorem 3.15 nicely contrasts

Theorem 3.14, i.e., dropping the dual weak-monotonicity constraint can never result in

an arbitrarily large speed-up. In the best case it is still conceivable that one can halve

the number of necessary mind changes if one uses unconstrainted IIMs instead of dual

weak-monotonic ones. Nevertheless, it is also imaginable that this relaxation does not

28 Steffen Lange and Thomas Zeugmann

increase the e�ciency of learning at all.

Finally, our results show that a relaxation of the corresponding (dual) monotonicity

demands may yield a signi�cant speed-up of the learning process. Hence, it seems highly

desirable to investigate necessary and su�cient conditions C

smon

(C

dsmon

), C

mon

(C

dmon

),

and C

wmon

(C

dwmon

) allowing assertions of the following type.

Let LT as well as LT

0

be any learning type, and let L 2 LT . Then one may learn

L more e�ciently in the sense of LT

0

if and only if C

lt

0

is satis�ed but C

lt

is not.

Moreover, it would be very interesting to relate possible relaxations of our (dual)

monotonicity requirements to problems studied in complexity theory. Recently, such an

approach has been undertaken concerning consistent and inconsistent learning resulting

in a proof for the superiority of an inconsistent learning algorithm (cf. Wiehagen and

Zeugmann [42]). We will see what the future brings concerning these problems.

References

[1] Angluin, D.: Finding patterns common to a set of strings. Journal of Computer

and System Sciences 21 (1980), 46 { 62.

[2] Angluin, D.: Inductive inference of formal languages from positive data. Informa-

tion and Control 45 (1980), 117 { 135.

[3] Angluin, D., and Smith, C.H.: Inductive inference: theory and methods. Comput-

ing Surveys 15 (1983), 237 { 269.

[4] Angluin, D., and Smith, C.H.: Formal inductive inference. In Encyclopedia of

Arti�cial Intelligence (St.C. Shapiro, Ed.), Vol. 1 (1987), pages 409 { 418, Wiley-

Interscience Publication, New York.

[5] Arikawa, S., Goto, S., Ohsuga, S., and Yokomori, T. (Eds.): Proceedings 1st In-

ternational Workshop on Algorithmic Learning Theory. Japanese Society for Ar-

ti�cial Intelligence, Tokyo, (1990).

[6] Arikawa, S., Maruoka, A., and Sato, T. (Eds.): Proceedings 2nd International

Workshop on Algorithmic Learning Theory. Japanese Society for Arti�cial Intel-

ligence, Tokyo, (1991).

[7] Arikawa, S., and Jantke, K.P. (Eds.): Proceedings 5th International Workshop on

Algorithmic Learning Theory and Proceedings of the 4th International Workshop

on Analogical and Inductive Inference. Lecture Notes in Arti�cial Intelligence Vol.

872 (1994), Springer Verlag, Berlin.

[8] Barzdin, Ya.M., and Freivalds, R.V.: On the prediction of general recursive func-

tions. Sov. Math. Dokl. 13 (1972), 1224 { 1228.

[9] Barzdin, Ya.M., Kinber, E.B., and Podnieks, K.M.: Ob uskorenii sinteza i

prognozirovani� funkci�i. In Teori� Algoritmov i Programm Vol. 1 (1974),

(Ya.M. Barzdin, Ed.) Latvian State University, Riga, pages 117 { 128.

Trading Monotonicity Demands versus E�ciency 29

[10] Brewka, G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense.

Cambridge University Press, Cambridge, (1991).

[11] Case, J.: The power of vacillation. In Proceedings 1st Workshop on Computational

Learning Theory, (D. Haussler and L. Pitt, Eds.), (1988), pages 196 { 205, Morgan

Kaufmann Publishers Inc., San Mateo.

[12] Case, J., and Lynes, C.: Machine inductive inference and language identi�ca-

tion. In Proceedings 9th International Colloquium on Automata, Languages and

Programming, (M. Nielsen and E.M. Schmidt, Eds.), Lecture Notes in Computer

Science Vol. 140 (1982), pages 107 { 115, Springer-Verlag, Berlin.

[13] Case, J., and Smith, C.H.: Comparison of identi�cation criteria for machine in-

ductive inference. Theoretical Computer Science 25 (1983), 193 - 220.

[14] Fulk, M.: Prudence and other restrictions in formal language learning. Informa-

tion and Computation 85 (1990), 1 { 11.

[15] Fulk, M., and Case, J. (Eds.): Proceedings 3rd Annual ACM Workshop on Compu-

tational Learning Theory. Morgan Kaufmann Publishers Inc., San Mateo, (1990).

[16] Gasarch, W.I., and Velauthapillai, M.: Asking questions versus veri�ability. In

Proceedings 3rd International Workshop on Analogical and Inductive Inference,

(K.P. Jantke, Ed.), Lecture Notes in Arti�cial Intelligence Vol. 642 (1992), pages

197 { 213, Springer-Verlag, Berlin.

[17] Gold, M.E.: Language identi�cation in the limit. Information and Control 10

(1967), 447 { 474.

[18] Haussler, D. (Ed.): Proceedings 5th Annual ACM Workshop on Computational

Learning Theory. ACM Press, New York, (1992).

[19] Hopcroft, J.E., and Ullman, J.D.: Formal Languages and their Relation to Au-

tomata. Addison-Wesley, Reading, Massachusetts, (1969).

[20] Jantke, K.P. (Ed.): Proceedings 2nd International Workshop on Analogical and

Inductive Inference. Lecture Notes in Arti�cial Intelligence Vol. 397, (1989),

Springer-Verlag, Berlin.

[21] Jantke, K.P.: Monotonic and non-monotonic inductive inference. New Generation

Computing 8 (1991), 349 { 360.

[22] Jantke, K.P. (Ed.): Proceedings 3rd International Workshop on Analogical and

Inductive Inference. Lecture Notes in Arti�cial Intelligence Vol. 642, (1992),

Springer-Verlag, Berlin.

[23] Kapur, S.: Monotonic language learning. In Proceedings 3rd Workshop on Algo-

rithmic Learning Theory, (S. Doshita, K. Furukawa, K.P. Jantke and T. Nishida,

Eds.), Lecture Notes in Arti�cial Intelligence Vol. 743 (1992), pages 147 { 158,

Springer-Verlag, Berlin.

30 Steffen Lange and Thomas Zeugmann

[24] Kapur, S., and Bilardi, G.: Language learning without overgeneralization. In

Proceedings 9th Annual Symposium on Theoretical Aspects of Computer Science,

(A. Finkel and M. Jantzen, Eds.), Lecture Notes in Computer Science Vol. 577

(1992), pages 245 { 256, Springer-Verlag, Berlin.

[25] Kinber, E.B.: Monotonicity versus e�ciency for learning languages from texts.

In Proceedings 5th Workshop on Algorithmic Learning Theory, (S. Arikawa and

K.P. Jantke, Eds.) Lecture Notes in Arti�cial Intelligence Vol. 872 (1994), pages

395 { 406, Springer-Verlag, Berlin.

[26] Lange, S.: The representation of recursive languages and its impact on the e�-

ciency of learning. In Proceedings 7th Annual ACM Conference on Computational

Learning Theory, (M. Warmuth, Ed.) pages 256 { 267, (1994), ACM Press, New

York.

[27] Lange, S., and Zeugmann, T.: Types of monotonic language learning and their

characterization. In Proceedings 5th Annual ACM Workshop on Computational

Learning Theory, (D. Haussler, Ed.), pages 377 { 390, (1992), ACM Press, New

York.

[28] Lange, S., and Zeugmann, T.: Monotonic versus non-monotonic language learn-

ing. In Proceedings 2nd International Workshop on Nonmonotonic and Inductive

Logic, (G. Brewka, K.P. Jantke and P.H. Schmitt, Eds.), Lecture Notes in Arti�cial

Intelligence Vol. 659 (1993), pages 254 { 269, Springer-Verlag, Berlin.

[29] Lange, S., and Zeugmann, T.: Learning recursive languages with bounded mind

changes. International Journal of Foundations of Computer Science 4 (1993), 157

{ 178.

[30] Lange, S., and Zeugmann, T.: Language learning in dependence on the space of hy-

potheses. In Proceedings 6th Annual ACM Conference on Computational Learning

Theory, pages 127 { 136, (1993), ACM Press, New York.

[31] Lange, S., and Zeugmann, T.: The learnability of recursive languages in dependence

on the space of hypotheses. Fachbereich Mathematik und Informatik, TH Leipzig,

GOSLER{Report 20/93, (July 1993).

[32] Lange, S., Zeugmann, T., and Kapur, S.: Monotonic and dual-monotonic language

learning. Theoretical Computer Science, to appear.

[33] Machtey, M., and Young, P.: An Introduction to the General Theory of Algorithms.

North-Holland, New York, (1978).

[34] Mukouchi, Y.: Inductive inference with bounded mind changes. In Proceedings 3rd

Workshop on Algorithmic Learning Theory, (S. Doshita, K. Furukawa, K.P. Jantke

and T. Nishida, Eds.), Lecture Notes in Arti�cial Intelligence Vol. 743 (1992),

pages 125 { 134, Springer-Verlag, Berlin.

Trading Monotonicity Demands versus E�ciency 31

[35] Mukouchi, Y.: Inductive inference of recursive concepts. Ph.D. Thesis, RIFIS,

Kyushu University 33, RIFIS-TR-CS-82, (March 1994).

[36] Osherson, D., Stob, M., and Weinstein, S.: Systems that Learn, An Introduction to

Learning Theory for Cognitive and Computer Scientists. MIT-Press, Cambridge,

Massachusetts, (1986).

[37] Rivest, R., Haussler, D., and Warmuth,M. (Ed.): Proceedings 2nd Annual ACM

Workshop on Computational Learning Theory. Morgan Kaufmann Publishers Inc.,

San Mateo, (1989).

[38] Shinohara, T.: Inductive Inference from Positive Data is Powerful. In Proceedings

3rd Annual Workshop on Computational Learning Theory, pages 97 - 110, (1991),

Morgan Kaufmann Publishers Inc.

[39] Warmuth, M. (Ed.): Proceedings 7th Annual ACM Conference on Computational

Learning Theory. ACM Press, New York, (1994).

[40] Wiehagen, R.: A thesis in inductive inference. In Proceedings First Interna-

tional Workshop on Nonmonotonic and Inductive Logic, (J. Dix, K.P. Jantke and

P.H. Schmitt, Eds.), Lecture Notes in Arti�cial Intelligence Vol. 543 (1991), pages

184 { 207, Springer-Verlag, Berlin.

[41] Wiehagen, R., Freivalds, R., and Kinber, B.: On the power of probabilistic strategies

in inductive inference. Theoretical Computer Science 28 (1984), 111 { 133.

[42] Wiehagen, R., and Zeugmann, T.: Ignoring data may be the only way to learn

e�ciently. Journal Experimental and Theoretical Arti�cial Intelligence 6 (1994),

131 { 144.

[43] Zeugmann, T., and Lange, S.: A guided tour across the boundaries of learning

recursive languages. Technische Hochschule Leipzig, FB Mathematik und Infor-

matik, GOSLER-Report 26/94, (July 1994).

Received November 30, 1994

Revised January 25, 1995

Communicated by T. Yanagawa

