
Fundamental Research for Knowledge Federation

Jan POLAND and Thomas ZEUGMANN
Graduate School of Information Science and Technology

Hokkaido University

Abstract

We present and relate recent results in prediction based on countable classes
of either probability (semi-)distributions or base predictors. Learning by Bayes,
MDL, and stochastic model selection will be considered as instances of the first
category. In particular, we will show how analog assertions to Solomonoff’s uni-
versal induction result can be obtained for MDL and stochastic model selection.
The second category is based on prediction with expert advice. We will present
a recent construction to define a universal learner in this framework.

1 Introduction

If one aims at knowledge federation over the web, learning is indispensable. As a
motivating example, we may consider all research papers available on the web. Clearly,
not all papers are relevant to our own research. Assuming the papers to be distributed
by some unknown probability distribution, we may aim to learn this distribution by
interaction. That is, whenever a new paper is detected, the learner predicts whether or
not it is relevant. Then the human user provides the true classification. Over time, we
want to converge to predictor which (mostly) correctly classifies papers as relevant or
not relevant. Then we could reduce or stop human interaction and use the predictor
within an agent searching the web and selecting the papers relevant to our research.
Such a task could be modeled within the following framework.

Consider the following general online induction setup. An agent (in the following
also called learner or predictor) and an environment play a game that proceeds in
rounds t = 1, 2, . . . In each round t, the environment first provides some input zt ∈ Z to
the agent, where Z is the input space. Note that we also allow Z = {∅}. However, input
is convenient to state important applications such as knowledge federation or pattern
classification. After seeing the input zt, the agent and the environment simultaneously
fix a decision dt ∈ D and a current state st ∈ S, respectively, such that no player knows
the other’s move while making his own move. Here, D is the space of possible decisions of
the agent, and S the space of possible states of the environment. Now the environment
learns the decision of the agent dt and provides an observation xt = G(st, dt) to the
agent. The observation function G may depend on the current state and decision and
possibly on some additional randomness. Finally, the current performance of the agent
is measured in terms of a loss function `t = `(st, dt), which may depend on the current
state and the agent’s decision. Note that the agent does not necessarily get to know
its own loss `t. Throughout this paper, we will assume uniformly bounded losses, i.e.,
(possibly after rescaling) ` : S × D → [0, 1].

1

We will focus on two variants of this induction framework. First, cases will be
considered where the current decision dt is meant as an estimate of the current state
st. Here, the agent will work with a base class of possible stochastic environments, one
of which is the data generating or true one. According to the observations, the agent
updates its belief state by using Bayes rule. This setup is subject of Section 2.

In the other setup, which is studied in Section 3, the agent directly tries to minimize
the cumulative loss. Here we may assume that we play against an adversary who
chooses the state st (and even the input zt) in order to maximize the agent’s cumulative
loss L1:T :=

∑T
t=1 `t, while of course the agent aims to minimize this quantity. We

consider the worst case, without any assumption on the data generating process. Both
observation function and loss function are assumed to be deterministic in this setup.
The agent has access to the recommendations of a class of base agents or experts and
follows the advice of one of them (if the decision space and the loss function are convex,
it could also follow a mixture recommendation). Experts are weighted according to
their past performance. All performance guarantees for the agent will be relative to the
expert class.

Although our online induction framework is already quite general, still extensions
and generalizations are thinkable. For example, the input zt could be chosen by the
agent instead of the environment. This would enhance the possible applications to active
learning, where the aim is not only a small cumulative loss, but also some guaranteed
quality of the learner’s hypothesis after a certain (small) amount of time steps. Another
modification is considering loss functions which depend on the actual observation xt

instead of (or additionally to) the state st. Later (Theorem 9), we will see how a bound
on such a cumulative loss

∑
`(xt, dt) follows from a bound on a suitable cumulative loss∑

`(st, dt) in a Bayesian setting. In the experts setting, since the observation function
is deterministic, a bound on

∑
`(xt, dt) is always weaker than a bound on

∑
`(st, dt).

In both variants, induction based on a model class and on an expert class, it is
possible to work with universal classes which are defined by some fixed universal Turing
machine. We will show below how to obtain such constructions (Definitions 2 and 10).
This introduction is concluded by discussing some further standard problem setups in
our framework.
Pattern classification. This is one of the most commonly studied problems in machine
learning. In case of binary classification, the state is simply the probability that the
observation will be one, depending on the input pattern (note that we allow stochastic
concepts). In the multi-class case we have a probability vector instead. Although
classification has been also studied in the experts framework [CB97], it is usually treated
by considering a model class (e.g. linear separators, then classification can be done by
support vector machines). In this case, with stochastic concepts, the agent’s decision dt

is an estimate of the true probability st, and the loss `t often measures their difference.
Universal Induction. Solomonoff [Sol78] has studied sequence prediction (without
inputs, i.e., Z = {∅}) based on a universal model class. We will discuss his construction
below (Definition 2 and Theorem 6). Parallel constructions can be obtained for a
Minimum Description Length (MDL) predictor (Theorem 7) and a learner based on
stochastic model selection (Theorem 8), the latter however has no (direct) finite bound
for universal model class.
Bandit Problems. In this setup, the agent decides to pull one “arm” of a K-armed
bandit and learns only the loss of the selected arm, but not the losses of the alter-
native arms. This is a basic instance of the exploration-exploitation tradeoff problem
and has been studied both in the model-based framework [GJ74] and the expert frame-

2

work [ACBFS02].
Geometric online decision problems are characterized by the fact that the loss is
linear in the current state and decision, `t = 〈st, dt〉. Based on [Han57], Kalai and
Vempala [KV03] show a very elegant way to treat these problems, on which our methods
in Section 3 build.
“Active” decision making agents can be based on either model or expert classes.
They are characterized by the fact that they are guaranteed (or at least expected)
to perform well also in certain cases where the future behavior of the environment
depends on the agent’s decision (reactive problems). We will present a construction
with a universal expert class in Section 3, for a construction with a model class we
point to [Hut04].

2 Model Classes and Bayes Learning

Let the observation space X = {1 . . . |X |} be a finite alphabet (X = {0, 1} in case of
binary alphabet). Then, in case that there are inputs, a probability distribution ν :
Z 3 z 7→

(
ν(x|z)

)
x∈X ∈ [0, 1]|X | is a function which assigns each input to a probability

vector over X , such that
∑

x∈X ν(x|z) = 1 holds for all z ∈ Z. That is, for fixed
input, the distributions are independently and identically distributed (i.i.d.). In the
case of sequence prediction, i.e., if there are no inputs, we conditionalize on the history
instead of the inputs and consider arbitrary non-i.i.d. measures and semimeasures : For
any history of observations x<t = x1:t−1 = x1 . . . xt−1, the predictive (semi-)probability

vector of ν is
(
ν(x|x<t)

)
x∈X =

(ν(x<tx)
ν(x<t)

)
x∈X , where ν(ε) ≤ 1 and ν(x<t) ≥

∑
x∈X ν(x<tx)

for the empty string ε and any history x<t ∈ X ∗ (X ∗ denotes the set of strings over X).
With equality in these inequalities, we call ν a measure, otherwise a semimeasure.

The reason to study semimeasures at all is that the universal model class (Defi-
nition 2 below) contains semimeasures. We could also consider semidistributions and
conditionalize w.r.t. the history in the classification setup (with inputs), however this
makes the presentation more complicated.

Now, we consider a countable model class C = {ν1, ν2, . . .} of probability distribu-
tions or semimeasures, respectively. Each ν ∈ C is assigned a prior weight wν ∈ (0, 1)
such that

∑
ν∈C wν ≤ 1.

Example 1 Consider a binary classification problem with Z = R2 and C ∼= Q2, such
that each model corresponds to a separating line with rational coefficients on the plane.
For some (q1, q2) ∼= ν ∈ C, we can set wν = 2−l(q1)−l(q2), where l(q) is the number of bits
needed to specify a rational number q in a prefix-code.

In the rest of this section, we shall drop the inputs zt from the notation and restrict
to the sequence prediction case. Please keep in mind that all results equally apply to
the classification setup with inputs. Next, we define a universal model class.

Definition 2 (Universal Model Class) Consider a monotone function f : {0, 1}∗ → X ∗,
that is, if a string x ∈ {0, 1}∗ is a prefix of another string x′ ∈ {0, 1}∗, then also f(x)
is a prefix of f(x′) [LV97, Def. 4.5.2, Def. 4.5.3]. Fix a reference monotone Turing
machine, then each monotone function f corresponds to a program on this machine.
With l(f) denoting the length of this program, we may set w(f) = 2−l(f) (assume
that the program tape is binary). According to [LV97, Theorem 4.5.2], each such f
corresponds to a semimeasure ν ∈M, where M is the set of all lower semicomputable

3

(aka. enumerable) semimeasures. This defines wν for each ν ∈ M. It is possible to
effectively enumerate M using the reference machine.

Given a model class C together with the prior weights and a string of observations
x<t, we can use Bayes’ rule to define posterior weights. Then, a predictor can use
these posterior weights for predicting in three different ways: Bayes mixture, MDL, or
stochastic model selection.

Definition 3 (Bayes mixture) For a class C consisting of (semi-)measures, a string

x<t, and a character x ∈ X , let ξ(x<t) =
∑

ν∈C wνν(x<t) and ξ(x|x<t) = ξ(x<tx)
ξ(x<t)

.

One can show [LV97, Theorem 4.5.3] that the Bayes mixture ξ(x<t) is, within a
multiplicative constant, equal to the Solomonoff prior, which is the probability of ob-
taining x<t when running the reference monotone machine on an input of fair coin flips.
Moreover, ξ(x<t) is a semimeasure and lower semicomputable, thus a universal element
of M, and the ξ-predictions are approximable. However, ξ and its predictions are not
computable, i.e., they cannot be approximated by a program on the reference machine
while knowing the approximation quality.

Definition 4 (MDL, [PH05a]) Let C be a class containing (semi-)measures, x<t, x̃<t̃ ∈
X ∗, and x ∈ X . Define

%(x<t) = max
ν∈C

wνν(x<t) (MDL estimator),

%x̃<t̃(x<t) = wν̃ ν̃(x<t) where ν̃ = arg max
ν∈C

wνν(x̃<t̃) (Maximizing element),

%(x|x<t) =
%(x<tx)

%(x<t)
(dynamic MDL prediction),

%norm(x|x<t) =
%(x<tx)∑

a∈X %(x<ta)
(normalized dynamic MDL predictor),

%static(x|x<t) =
%x<t(x<tx)

%(x<t)
(static MDL prediction),

%static
norm (x|x<t) =

%x<t(x<tx)∑
a∈X %x<t(x<ta)

(normalized static MDL predictor).

Note that this definition is two-part MDL in the sense of the construction principle,
choosing a model that simultaneously minimizes the description length of the model
plus that of the data given the model. Thus, % coincides with a maximum a posteriori
(MAP) estimator. Sometimes, the term MDL is used for more specific constructions, in
particular with specific priors, or for a coding which avoids a redundancy arising in our
construction [Ris96]. Further observe that dynamic MDL predictions select a different
model for each possible continuation of the currently observed string x<t. Thus they
are in practice (for finite model class) computationally more expensive than static MDL
prediction, which use only the current string x<t for model selection. For the universal
model class, none of the variants is computable. The MDL estimator %(x<t) is lower
semicomputable, hence the dynamic MDL predictions are approximable. For the static
MDL predictions, approximability is not obvious (and maybe not satisfied). Finally
note that the normalized variants are constructed in order to define measures on X .

4

Definition 5 (Stochastic model selection) For a class C = {ν1, ν2, . . .} containing only
proper measures, a string x<t, and a character x ∈ X , the stochastic model selection
predictor Ξ samples a model according to the current (posterior) weights and uses this
model for prediction, i.e.,

Ξ(x|x<t) = νJ(x|x<t) where P(J = i) ∼ wνi
νi(x<t).

We do not define stochastic model selection for semimeasures, as the bounds in Theo-
rem 8 are infinite for the universal model class (Definition 2). This is because the entropy
H(M) = −

∑
ν∈M wν log wν of this model class is infinite, which can be seen as follows:

For each string b ∈ {0, 1}∗, let K(b) be its prefix Kolmogorov complexity [LV97]. To
each such b, we can find a monotone program of length K(b)+O(1) bits that generates
b and afterwards random coin flips. But then, H(M) = Ω

(∑
b∈{0,1}∗ K(b)2−K(b)

)
= ∞,

since K(b) is the shortest possible coding of b save for an additive constant. On the other
hand, replacing the universal prior weights w(f) = 2−l(f) by the slightly smaller weights
w̃(f) = 2−l(f)/l(f)2, we can define a universal stochastic model selection algorithm with
finite bound.

All of the above defined prediction methods have bounds on the expected cumu-
lative difference of the predictive probabilities to the true probabilities, provided that
there is a true data generating distribution µ in the model class, µ ∈ C. The state st

from the general framework in the introduction then becomes the current probability
vector, st = µ(·|x<t). For a predictive distribution ϕ(·|x<t), depending on the history
(and possibly some additional randomness), we define the instantaneous quadratic and
Hellinger distance, respectively:

qt(ϕ, x<t) =
∑
x∈X

(
ϕ(x|x<t)− µ(x|x<t)

)2
and

ht(ϕ, x<t) =
∑
x∈X

(√
ϕ(x|x<t)−

√
µ(x|x<t)

)2
.

Then the expected cumulative quadratic and Hellinger distance are given by Q1:T (ϕ) =∑
t≤T Eqt(ϕ, x<t) and H1:T (ϕ) =

∑
t≤T Eht(ϕ, x<t), where the expectation is w.r.t. the

true distribution µ over the possible outcomes of x<t and the possible randomness of
the predictor. Then we have the following performance guarantees for our previously
defined predictors.

Theorem 6 (Bayes mixture performance guarantee, [Sol78]) Let C be a class of (semi-
)measures and assume that there is a proper measure µ ∈ C which generates the data.
Then, Q1:T (ξ) ≤ log w−1

µ and H(ξ)1:T ≤ log w−1
µ for all T ≥ 1.

Like the following result for MDL, the theorem applies to the universal model class
from Definition 2. Moreover recall that the theorem and all following also apply to the
classification setup, i.e., in the presence of inputs.

Theorem 7 (MDL performance guarantees, [PH05a]) Let C contain (semi-)measures
and assume that there is a true measure µ ∈ C. Then, Q1:T (%) = O(w−1

µ) and H(%)1:T =
O(w−1

µ) hold for any T ≥ 1. The same is valid for all other MDL predictors %norm, %static,
and %static

norm .

5

The bound for MDL is exponentially larger than that for the mixture. One can
show that this is sharp in general, even for classes containing only Bernoulli distribu-
tions [PH04]. This makes the bound practically irrelevant for all but very small model
classes. Thus it motivates to select the prior more carefully when using MDL, resulting
in better bounds [Ris96, PH04]. We will encounter a similarly exponential bound in
Theorem 13, however for a different reason.

Theorem 8 (Stochastic model selection performance guarantee, [Pol06]) Let C contain
proper measures and assume that there is a true measure µ ∈ C. Then, Q1:T (Ξ) and
H1:T (Ξ) are both O

(
Π · (logH + log w−1

µ)
)

for any T ≥ 1. Here, H = H
(
(wν)ν∈C

)
=

−
∑

ν∈C wν log wν is the entropy of the model class, while Π is the µ-entropy potential
defined as Π

(
(wν)ν∈C

)
= sup

{
H

(
(wνpνP

ν′ wν′pν′
)ν

)
: pµ = 1 ∧ pν ∈ [0, 1] ∀ν ∈ C \ {µ}

}
.

One can show that a finite bound on Q1:T (ϕ) (or H1:T (ϕ)) implies that the ϕ-
predictive probabilities converge to the true µ-probabilities almost surely. This nice
property therefore holds for all of the above prediction methods. Moreover, consider
the situation that the learner’s aim is to minimize its expected loss which is a known
function `(xt, x̂t) depending on the outcomes xt ∈ X (rather than the state st, compare
the introduction) and its estimate x̂t = dt ∈ X . Then the learner, which has access to a
current belief probability ϕ(·|x<t) may choose its prediction x̂t in a Bayes optimal way,
i.e., x̂t = arg minx̂

∑
x ϕ(x|x<t)`(x, x̂). In this case, finite bounds on the cumulative

Hellinger distance imply O(
√

t) bounds on the loss, for arbitrary bounded loss function
` : (xt, x̂t) 7→ [0, 1] (the proof can be found in [PH05a, Lemma 24–26]).

Theorem 9 (Loss bounds) Assume D = X and the losses `(xt, x̂t) ∈ [0, 1] depend on
the outcome. Then a predictor ϕ, knowing this loss function and making Bayes optimal
predictions w.r.t. it’s belief probability, has the loss bound ELϕ

1:T ≤ ELµ
1:T + 2H1:T (ϕ) +

2
√

2H1:T (ϕ)ELµ
1:T , where Lµ

1:T is the cumulative loss of the Bayes optimal predictor
using the true probabilities.

3 Expert Classes

Theorem 9 is a bridge to the other type of learning algorithm considered in this paper,
an agent based on a class of experts. If there is a known loss function, each model ν ∈ C
recommends a decision dν

t ∈ X in each round t, namely the Bayes optimal one. Hence
we may randomly select a model using the regret minimization algorithm FPL (Defi-
nition 11 below) based on the past losses. Then we may apply a suitable performance
guarantee in the spirit of Theorem 13, such as [HP05, Theorem 9] for countable model
class. This gives essentially the assertion of Theorem 9 without expectation over µ (but
with expectation over the agent’s randomization) for arbitrary observations x1, x2, . . .,
with no assumptions (!) on the data generating process necessary. By an applica-
tion of Jensen’s inequality, the assertion also follows in µ-expectation (as observed by
M. Hutter).

Regret minimization algorithms like FPL are always applicable with a class of base
experts E = {e1, e2, . . .}, each e ∈ E suggesting a decision de

t in each round t: we only
need to observe the experts’ losses `(st, d

e
t) (at least some losses from time to time).

Parallel to the model class setup, each expert e is assigned a prior weight we > 0
such that

∑
e∈E we = 1. We may restrict to the case that state st is the vector of all

experts’ current losses, st = (`e
t)e∈E [KV03]. Recall that the observation function G is

6

assumed to be deterministic. Performance guarantees (loss bounds) then usually hold
in the worst case, without any assumption on the data generating process. However,
the experts algorithms do not estimate probabilities, and they are likely to yield inferior
predictions to a Bayesian method in cases where accurate estimates of the probabilities
are possible and beneficial.

This section sketches construction and performance guarantees of an expert algo-
rithm which works with the universal expert class P from Definition 10 below. The
results are mainly from (and extensions of) [PH05b, Pol05]. There is a huge literature
of experts algorithms with different purpose which cannot be dealt with here.

Definition 10 (Universal expert class) Let D be a finite or countable decision space.
Fix a reference monotone universal Turing machine with binary output alphabet and let
P = {p1, p2, . . .} be an enumeration of all programs. Then P defines an expert class,
and each program p ∈ P is an expert with prior weight wp = 2−l(p): If the agent selects
to follow p’s recommendation, it runs p on the complete observation history, until the
output tape contains the prefix code of a decision dp

t ∈ D. If this never happens, we
define that the expert chooses a fixed decision d1 ∈ D. In this case, the computation does
not halt, and (like the above learners for universal model class) the overall agent is not
computable. It is however easy to impose an additional constraint on the computation
time, e.g. aborting the computation after at maximum exp(t) steps (hence we have more
time in later rounds).

In order to simplify notation, we abbreviate the instantaneous and cumulative loss
of each expert e ∈ E as `e

t and Le
1:T , respectively.

Definition 11 (FPL: Follow the Perturbed Leader algorithm with full observation)
At time t, sample a perturbation re

t independently from the exponential distribution for
each expert e ∈ E. With ηt > 0 being the learning rate, follow the recommendation of
the expert with the best perturbed score, ẽ = arg min{ηtL

e
<t − log we − re

t : e ∈ E}, that
is, dt = dFPL

t = dẽ
t .

Observe that, in case that experts are identified with models, FPL is a stochastic
model selection algorithm with a non-Bayesian posterior, i.e., different from Defi-
nition 5. In contrast to Bayesian stochastic model selection, FPL usually does not
provide predictive probabilities, but is designed for minimizing the cumulative regret.

The performance guarantee for this FPL algorithm states that the regret, which is the
difference ELFPL

1:T −ELe
1:T (expectations are w.r.t. FPL’s randomization) is bounded by

O(
√

T) for any reference expert e and any sequence of loss vectors s1, s2, . . . This means,
that the average per-round regret (divided by T) goes to zero in expectation and, by the
Borel-Cantelli-Lemma, even with probability one. Of course, regret is measured against
the actual performance of an expert. In certain reactive cases, where the future actions
of the environment depend on the current decision, some strong experts could display
an unnecessarily weak performance. An example is the repeated game of Prisoner’s
dilemma where the opponent plays the “tit-for-tat” strategy: Although defecting is the
dominant action, cooperating is the better long term strategy [dFM04]. A simple work-
around giving better results in this and similar cases is to play a selected expert not for
just one, but for Bt time steps, with Bt increasing in t. Hence, the expert selection or
master algorithm will be invoked only after B1, B1 + B2, . . . time steps, resulting in a
time scale change. We will denote the new master time scale by t̃ and the elementary

7

time scale by t. All analysis is then on the new master time scale t̃. We set Bt̃ = bt̃1/8c,
then the original time scale t is of order t̃9/8.

The basic FPL algorithm assumes that all losses are observed, which is not nec-
essarily so for all problems. In fact, for reactive problems, this assumption would be
too strong, even if we observe the (hypothetical) performance of all experts: Those ex-
perts other than the selected one would have computed different decisions and therefore
would have had different performance. In the following, we construct an agent for the
bandit setup, i.e., in each round t̃ it learns only its own loss, but not that of the alter-
natives. A common technique in bandit and more general partial observation setups is
to introduce the quantity of the estimated loss L̂e

1:T̃
, which is updated in each round by

setting ˆ̀̃e
t̃

= `ẽ
t̃
/P(ẽ-observation) for the currently observed expert ẽ, and ˆ̀e

t̃
= 0 for all

experts not observed. By letting P(ẽ-observation) be the probability of observing the
expert ẽ’s loss, it is achieved that ˆ̀̃

t and consequently L̂ are unbiased estimates for the
true performances.

Dividing by these probabilities, we have to be careful that they cannot become
too small, since the analysis of the algorithm crucially relies on the fact of bounded
(estimated) losses. In fact, there are two issues to address: First, the probabilities
get arbitrarily small for experts with small prior weights. Thus, we do not use all
experts from the beginning, but for each expert e ∈ E , we define an introduction time
τ e ≥ 1. At time t̃, we only work with the set of active experts {τ ≥ t̃} := {e : τ e ≥
t̃}. Second, an expert could be assigned with small probability because of past bad
performance. For the case that it is selected anyway, we replace the denominator by
max{P(ẽ-observation), γt̃}, where γt̃ > 0 decreases in t̃.

Finally, unlike weighted averaging algorithms (on which there is a rich literature,
but we know of no variant with dynamic learning rate and countably many experts so
far), the FPL algorithm does not have access to the explicity sampling probabilities
P(ẽ-observation). We can get around this problem by estimating this quantity for the

selected expert by sampling the leader for other d2t̃2 log(2
√

t̃)e = O(t2) times and taking
the relative frequency estimate.

Definition 12 (Universal FPL algorithm) The uFPL algorithm is defined as the FPL
algorithm based on the universal expert class P and with the modifications stated in
the last paragraphs (new master time scale, loss estimates by dividing by the probability
estimates, always working with a finite expert class increasing over time).

Theorem 13 (Performance of uFPL, adapted from [PH05b, Pol05]) The uFPL algo-
rithm with learning rate ηt̃ = 1

2
t̃−1/2, time step parameter Bt̃ = bt̃1/8c, denominator

threshold γt̃ = 1
2
t̃−3/4, and introduction times τ p = dw−8

p e, has a regret bound of at most

ELuFPL
1:T − ELp

1:T = O(w−12
p + t2/3 log w−1

p). This holds against any expert p ∈ P, i.e.,
against any program on the fixed universal Turing machine, in expectation over FPL’s
randomization, on any sequence of loss vectors. Consequently, measured in terms of
average per-round loss, uFPL performs (asymptotically) as well as any program.

We would like to point the reader to an interesting detail: Most bandit variants
for FPL have been defined such that the observations are used only in designated
exploration phases. Thus, the resulting algorithm is label efficient and has a lower
regret bound of t2/3 [CBLS04], while our algorithm has a basic bound of

√
t. In fact a

bound of t
1
2
+ε can be obtained at the cost of increasing power of w−1

e for decreasing ε.
Working without explicit exploration is particularly facilitated by the fact that we

8

work with losses instead of rewards: Then, experts which are not sampled can only
gain weight, which results in implicit exploration [Pol05].

Of course, each of the modifications of the paragraphs preceeding Definition 12 may
cause its own additional regret which has to be taken into account in the analysis. This
is carried out in [PH05b, Pol05]. The conclusion of Theorem 13, “uFPL performs as well
as any program, on any task”, seems very strong. Moreover, uFPL is even computable,
since it works with a finite expert class in each time step. With the trick stated in
Definition 10, each expert can also be made computable, the reference is then the class
for resource bounded programs. Still, uFPL is far from being practically relevant, since
w−1

e is huge for all but very small expert classes (in particular, w−1
p is huge for any

moderate program). On the other hand, one can show that this bound is sharp for
bandit problems [ACBFS02], for which our setup is an instance.

This exponential blow-up, where bounds contain a huge w−1
e instead of a reasonable

log w−1
e , occurs in different cases for different reasons. In MDL (Theorem 7), it can

be viewed as the possible unbalancedness of the prior [PH05a]. Even in stochastic
model selection (Theorem 8), there are (bad) instances where Π becomes exponentially
large [Pol06]. But most seriously, in (re-)active problem setups this phenomenon seems
unavoidable in general. It is one of the major open problems to resolve it, i.e., define
conditions and algorithms for which bounds of reasonable size hold also for reactive
problems.

References

[ACBFS02] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochas-
tic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77,
2002.

[CB97] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth. How to use expert advice. Journal of the ACM,
44(3):427–485, 1997.

[CBLS04] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Regret minimization under
partial monitoring. Technical report, April 4, 2005.

[dFM04] D. Pucci de Farias and N. Megiddo. How to combine expert (and novice)
advice when actions impact the environment? In Sebastian Thrun,
Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural In-
formation Processing Systems 16. MIT Press, Cambridge, MA, 2004.

[GJ74] J. C. Gittins and D. M. Jones. A dynamic allocation index for the sequential
design of experiments. Progress in Statistics, pages 241–266, 1974.

[Han57] J. Hannan. Approximation to Bayes risk in repeated plays. In M. Dresher,
A. W. Tucker, and P. Wolfe, editors, Contributions to the Theory of Games
3, pages 97–139. Princeton University Press, 1957.

[HP05] M. Hutter and J. Poland. Adaptive online prediction by following the
perturbed leader. Journal of Machine Learning Research, 6:639–660, 2005.

[Hut04] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on
Algorithmic Probability. Springer, Berlin, 2004.

9

[KV03] A. Kalai and S. Vempala. Efficient algorithms for online decision prob-
lems. In Learning Theory and Kernel Machines, 16th Annual Conference
on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Wash-
ington, DC, USA, August 24-27, 2003, Proceedings, Lecture Notes in Ar-
tificial Intelligence 2777, pages 506–521, Springer, Berlin, 2003.

[LV97] M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity
and its applications. 2nd edition, Springer, Berlin, 1997.

[PH04] J. Poland and M. Hutter. On the convergence speed of MDL predictions for
Bernoulli sequences. In Algorithmic Learning Theory, 15th International
Conference, ALT 2004, Padova, Italy, October 2004, Proceedings, Lecture
Notes in Artificial Intelligence 3244, pages 294–308, Springer, Berlin, 2004.

[PH05a] J. Poland and M. Hutter. Asymptotics of discrete MDL for online predic-
tion. IEEE Transactions on Information Theory, 51(11):3780–3795, 2005.

[PH05b] J. Poland and M. Hutter. Defensive universal learning with experts. In
Algorithmic Learning Theory, 16th International Conference, ALT 2005,
Singapore, October 2005, Proceedings, Lecture Notes in Artificial Intelli-
gence 3734, pages 356–370, Springer, Berlin, 2005.

[Pol05] J. Poland. FPL analysis for adaptive bandits. In Stochastic Algorithms:
Foundations and Applications, Third International Symposium, SAGA
2005, Moscow, Russia, October 2005, Proceedings, Lecture Notes in Com-
puter Science 3777, pages 58–69, Springer, Berlin, 2005.

[Pol06] J. Poland. Potential functions for stochastic model selection. TCS Tech-
nical Report, Series A, TCS-TR-A-06-11, Division of Computer Science,
Hokkaido University, 2006.

[Ris96] J. J. Rissanen. Fisher Information and Stochastic Complexity. IEEE Trans.
Inform. Theory, 42(1):40–47, January 1996.

[Sol78] R. J. Solomonoff. Complexity-based induction systems: comparisons and
convergence theorems. IEEE Trans. Inform. Theory, 24:422–432, 1978.

10

