
Spectral Clustering of the Google Distance

Jan POLAND and Thomas ZEUGMANN
Graduate School of Information Science and Technology

Hokkaido University

Abstract

The World Wide Web provides a huge amount of documents reflecting (parts
of) the humans’ view of the world and its history. Recently, Cilibrasi and Vitányi
have suggested a way to make this data usable for supervised and unsupervised
learning, by employing the popular Google search engine in order to define a
distance function on pairs of terms. In this work, we propose to apply spectral
clustering to the resulting distance function, which gives a much faster and fully
automatic algorithm for decomposing a list of terms into semantically related
groups.

1 Introduction

The Google distance has been suggested by Cilibrasi and Vitányi [1] as a semantical
distance function on pairs of words or terms. For instance, for most of today’s people,
the terms “Claude Debussy” and “Béla Bartók” are much tighter related than “Béla
Bartók” and “Michael Schumacher”. The World Wide Web represents parts of the
world we live in as a huge collection of documents, mostly written in natural language.
By just counting the relative frequency of a term or a tuple of terms, we may obtain a
probability of this term or tuple. From there, one may define conditional probabilities
and, by taking logarithms, complexities. Li et al. [4] have proposed a distance function
based on Kolmogorov complexity, which can be used for other complexities, such as
those derived from the WWW frequencies.

Spectral clustering is an increasingly popular method for analyzing and clustering
data by using only the matrix of pairwise distances. It was invented more than 30
years ago for partitioning graphs, based on the fact that by considering the second
eigenvector of the Laplacian of the adjacency matrix, one can infer an approximation
to the min-max cut of the graph (see e.g. [7] for a brief history).

The main aim of this work is to suggest replacement of the computationally expen-
sive phylogenetic trees used by [1] by a much faster spectral clustering. We will show
how state-of-the-art techniques can be combined in order to achieve quite accurate clus-
tering of natural language terms with surprisingly little effort. We will also observe that
there is a vast variety of related but slightly different techniques available, which makes
it hard to actually choose the method for the particular application. This supports the
demand for more theoretical research in this area.

There is a huge amount of related work, in computer science, in linguistics, as well
as in other fields. Text mining with spectral methods has been for instance studied
in [2]. A variety of statistical similarity measures for natural language terms has been

1

listed in [8]. For literature on spectral clustering, see the References section and the
references in the cited papers.

This paper is structured as follows. In the next section, we will introduce the
similarity metric, the Google distance, and spectral clustering, and we will state our
algorithm. Section 3 describes the experiments and their results, and Section 4 gives
discussion and conclusions.

2 Theory

2.1 Similarity Metric and Google Distance

We start with a brief introduction to Kolmogorov complexity (see [5] for a much deeper
introduction). Let us fix a universal Turing machine (which one we fix is not relevant,
since each universal machine can interpret each other by using a “compiler” program of
constant length). For concreteness, we assume that its program tape is binary, such that
all subsequent logarithms referring to program lengths are w.r.t. base 2 (which is also
not relevant for our algorithms). The output alphabet is ASCII or UTF-8, according
to which character set we are actually using. (For simplicity, we will always use the
term ASCII in the following, which is to be replaced by UTF-8 if necessary.) Then, the
(prefix) Kolmogorov complexity of a character string x is defined as

K(x) = length of the shortest self-delimiting program generating x,

where by the requirement “self-delimiting” we make sure that the programs
form a prefix-free set and therefore the Kraft inequality holds:

∑{2−K(x) :
x ranges over all ASCII strings} ≤ 1. The Kolmogorov complexity is a well-defined
quantity regardless of the choice of the universal Turing machine, up to an additive
constant.

If x and y are ASCII strings and x∗ and y∗ are their shortest (binary) programs,
respectively, we can define K(y|x∗), which is the length of the shortest self-delimiting
program generating y where x∗, the program for x, is given. K(x|y∗) is computed
analogously. Thus, we may follow [4] and define the universal similarity metric as

d(x, y) =
max

{
K(y|x∗), K(x|y∗)}

max
{
K(x), K(y)

} (1)

This can be interpreted as (approximately) the ratio by which the complexity of the
more complex string decreases, if we already know how to generate the less complex
string. The similarity metric is almost a metric according to the usual definition, as it
satisfies the metric (in)equalities up to order 1/max

{
K(x), K(y)

}
.

Given a collection of documents like the World Wide Web, we can define the prob-
ability of a term or a tuple of terms just by counting relative frequencies. That is, for
a tuple of terms X = (x1, x2, . . . , xn), where each term xi is an ASCII string, we set

pwww(X) = pwww(x1, x2, . . . , xn) =
web pages containing all x1, x2, . . . , xn

relevant web pages
. (2)

Conditional probabilities can be defined likewise as pwww(Y |X) = pwww(Y ∪X)/pwww(X),
where X and Y are tuples of terms and ∪ denotes the concatenation. Although the

2

probabilities defined in this way do not satisfy the Kraft inequality, we may still define
complexities

Kwww(X) = − log
(
pwww(X)

)
and Kwww(Y |X) = Kwww(Y ∪X)−Kwww(X). (3)

Then we use (1) in order to define the web distance of two ASCII strings x and y,
following [1], as

dwww(x, y) =
Kwww(x ∪ y)−min

{
Kwww(x), Kwww(y)

}

max
{
Kwww(x), Kwww(y)

} (4)

Since we use Google to query the page counts of the pages, we also call dwww the Google
distance. Since the Kraft inequality does not hold, the Google distance is quite far from
being a metric, unlike the universal similarity metric above.

A remark concerning the “number of relevant web pages” in (2): This could be
basically the number of all pages indexed by Google. This quantity is not appropriate
for two reasons: First, since some months ago there seems to be no way to directly
query this number. Hence, the implementation by [1] used a heuristic to estimate this
value, which however yields inaccurate results. Second, not all web pages are really
relevant for our search. For example, billions of Chinese web pages are irrelevant if we
are interested in the similarity of “cosine” and “triangle” (they would be relevant if we
were searching for the corresponding Chinese terms). Therefore, we use a different way
to fix the relevant database size: We add the search term “the” to each query, if we are
dealing with English language. This is one of the most frequent words used in English
and therefore gives a reasonable restriction of the database. The database size is then
the number of occurrences of “the” in the Google index. Similarly, for our experiments
with Japanese, we add the term n (“no” in hiragana) to all queries.

2.2 Spectral Clustering

Consider the block diagonal matrix

1 1 0
1 1 0
0 0 1

. Its top two eigenvectors (i.e. the

eigenvectors associated with the largest two eigenvalues) are [1 1 0]T and [0 0 1]T , i.e.
they separate the two perfect clusters represented by this similarity matrix. In general,
there are conditions under which the top k eigenvectors of the similarity matrix or
its Laplacian result in a good clustering, even if the similarity matrix is not perfectly
block diagonal [6, 10]. In particular, it was observed in [3] that the transformed data
points given by the k top eigenvectors tend to be aligned to lines in the k-dimensional
Euclidean space, therefore the kLines algorithm is appropriate for clustering. In order
to get a complete clustering algorithm, we therefore only need to fix a suitable kernel
function in order to proceed from a distance matrix to a similarity matrix.

For the kernel, we use the Gaussian k(x, y) = exp
(− 1

2
d(x, y)2/σ2

)
. We may use

a globally fixed kernel width σ, since the Google distance (4) is scale invariant. In the
experiments, we compute the mean value of the entries o of the distance matrix D and
then set σ = mean(D)/

√
2. In this way, the kernel is most sensitive around mean(D).

The final clustering algorithm for a known number of clusters k is stated below. We
will discuss in the next section how to estimate k if the number of clusters is not known
in advance.

3

Figure 1: Complexities Figure 2: Laplacian

 0

first eigenvector of the Laplacian

-0.2
 0

 0.2
 0.4

second eigenvector of the Laplacian

 0
 0.2
 0.4

third eigenvector of the Laplacian

Figure 3: Eigenvector plot

Algorithm Spectral clustering of a word list
Input : word list X = (x1, x2, . . . , xn), number of clusters k
Output : clustering c ∈ {1 . . . k}n

1. for x, y ∈ X, compute Google relative frequencies pwww(x), pwww(x, y)
2. for x, y ∈ X, compute complexities Kwww(x), Kwww(x, y)
3. compute distance matrix D =

(
dwww(x, y)

)
x,y∈X

4. compute σ = mean(D)/
√

2
5. compute similarity matrix A =

(
exp(−1

2
d(x, y)2/σ2)

)

6. compute Laplacian L = S−
1
2 AS−

1
2 , where Sii =

∑
j Aij and Sij = 0 for i 6= j

7. compute top k eigenvectors V ∈ Rn×k

8. cluster V using kLines [3]

3 Experiments

In this section, we present the experiments of our clustering algorithm applied to four
lists of terms. First we show step by step how the algorithm acts on the first data set,
which is the following list of 60 English words:

axiom,average,coefficient,probability,continuous,coordinate,cube,denominator,

disjoint, domain, exponent, function, histogram, infinity, inverse, logarithm,

permutation, polyhedra, quadratic, random, cancer, abnormal, abscess, bacillus,

delirium, betablocker, vasomotor, hypothalamic, cardiovascular, chemotherapy,

chromosomal, dermatitis, diagnosis, endocrine, epilepsy, oestrogen, ophthalmic,

vaccination, traumatic, transplantation, nasdaq, investor, obligation, benefit,

bond, account, clearing, currency, deposit, stock, market, option, bankruptcy,

creditor, assets, liability, transactions, insolvent, accrual, unemployment

The first 20 words are commonly used in mathematics, the next 20 words have
been taken from a medical glossary, and the final 20 words are financial terms. The
matrix containing the complexities is depicted in Figure 1 (large complexities are white,
small complexities black). Clearly, the single complexities on the diagonal are smaller
than the pairwise complexities off-diagonal. After transformation to the Laplacian
(Figure 2), the block structure of the matrix is clearly visible. Figure 3 shows the
top three eigenvectors of the Laplacian. The first eigenvector having only negative
entries seems not useful at all for the clustering (but in fact it is useful for the kLines
algorithm). The second eigenvector separates the medical terms (positive entries) from

4

 0
 0.2
 0.4
 0.6
 0.8

 1

eigenvalues of the Laplacian: math-med-finance

 0
 0.2
 0.4
 0.6
 0.8

 1

eigenvalues of the Laplacian: colors-nums

 0
 0.2
 0.4
 0.6
 0.8

 1

eigenvalues of the Laplacian: people

 0
 0.2
 0.4
 0.6
 0.8

 1

eigenvalues of the Laplacian: Japanese

Figure 4: Plots of the eigenvalues of the Laplacian (bars) and the s.s.e. score for deter-
mining the number of clusters (lines) for the four data sets

the union of mathematical and financial terms (negative entries). This indicates that
the mathematical and financial clusters are closer related than each is related to the
medical terms, in a hierarchical clustering we would first split off the medical terms and
then divide mathematical and financial terms. The final clustering correctly groups
all terms except for “average”, which is assigned to the financial terms instead of the
mathematical terms (this is also visible from Figure 3). As average also occurs often
in finance, we cannot even count this as misclustering. We stress that the clustering
algorithm is of course invariant to permutations of the data, i.e. yields the same results
if the terms are given in a different order. It is just convenient for the presentation to
work with an order corresponding to the correct grouping.

In case that we do not know the number of clusters k in advance, there is a way to
estimate this quite reliably from the eigenvalues of the Laplacian, if the data is not too
noisy. Consider again the case of a perfect block diagonal matrix, i.e. all intra-cluster
similarities are 1 and all other entries 0. Then the number of non-zero eigenvalues of
this matrix is equal to the number of blocks/clusters. If the matrix is not perfectly
block diagonal, we may still expect some dominant eigenvalues which are clearly larger
than the others. Figure 4 top left shows this for our first example data set. The top
three eigenvalues of the Laplacian are dominant, the fourth and all subsequent ones are
clearly smaller. (Observe that the smallest eigenvalues are even negative: This indicates
that the distances we used do not stem from a metric. Otherwise all eigenvalues should
be nonnegative, since the Gaussian kernel is positive definite.)

We propose a simple method for detecting the gap between the dominant eigenvalues
and the rest: Tentatively split after the second eigenvalue, compute the means of the
eigenvalues in the two groups “dominant” and “non-dominant” (ignore the top eigen-
value, which is always much larger), and calculate the sum square error (s.s.e.) of all
eigenvalues w.r.t. their means. Compute this s.s.e. score also for the split after the third
eigenvalue, the fourth eigenvalue and so forth. Choose the split with the lowest score.
We have depicted the s.s.e. scores in Figure 4 by solid lines. For the math-med-finance
data set, the minimum score is at the correct number of k = 3 clusters.

5

The next data set is the “colors-nums” data set from [1]:

purple, three, blue, red, eight, transparent, black, white, small, six, yellow,

seven, fortytwo, five, chartreuse, two, green, one, zero, orange, four

Although the intended clustering has two groups, colors and numbers (where “small”
is supposed to be a number and “transparent” a color), the eigenvalues of the
Laplacian in Figure 4 bottom left indicate that there are three clusters. Indeed, in the
final clustering, “fortytwo” forms a singleton group, and “white” and “transparent”
are misclustered as numbers.

The next data set,

Takemitsu, Stockhausen, Kagel, Xenakis, Ligeti, Kurtag, Martinu, Berg, Britten, Crumb,

Penderecki, Bartok, Beethoven, Mozart, Debussy, Hindemith, Ravel, Schoenberg, Sibelius,

Villa-Lobos, Cage, Boulez, Kodaly, Prokofiev, Schubert, Rembrandt, Rubens, Beckmann,

Botero, Braque, Chagall, Duchamp, Escher, Frankenthaler, Giacometti, Hotere, Kirchner,

Kandinsky, Kollwitz, Klimt, Malevich, Modigliani, Munch, Picasso, Rodin, Schlemmer,

Tinguely, Villafuerte, Vasarely, Warhol, Rowling, Brown, Frey, Hosseini, McCullough,

Friedman, Warren, Paolini, Oz, Grisham, Osteen, Gladwell, Trudeau, Levitt, Kidd, Haddon,

Brashares, Guiliano, Maguire, Sparks, Roberts, Snicket, Lewis, Patterson, Kostova,

Pythagoras, Archimedes, Euclid, Thales, Descartes, Pascal, Newton, Lagrange, Laplace,

Leibniz, Euler, Gauss, Hilbert, Galois, Cauchy, Dedekind, Kantor, Poincare, Godel,

Ramanujan, Wiles, Riemann, Erdos, Thomas Zeugmann, Jan Poland, Rolling, Stones, Madonna,

Elvis, Depeche, Mode, Pink, Floyd, Elton, John, Beatles, Phil, Collins, Toten, Hosen,

McLachan, Prinzen, Aguilera, Queen, Britney, Spears, Scorpions, Metallica, Blackmore,

Mercy

consists of five groups of each 25 (more or less) famous people: composers, artists, last
year’s bestseller authors, mathematicians (including the authors of the present paper),
and pop music performers. We deliberately did not specify the terms very well (except
for our own much less popular names), in this way the algorithm could “decide” itself
if “Oz” meant one of the authors Amos and Mehmet Oz or one of the pop music
songs with Oz in the title. The eigenvalue plot in Figure 4 top right shows clearly five
clusters. From the 125 names, 9 were not clustered into the intended groups. The
highest number of incorrectly clustered names (4 misclusterings) occurred in the least
popular group of the mathematicians (but our two names were correctly assigned).
We also observed that the clustering gets disproportionately harder when the number
of clusters increases: Clustering only the first 50, 75, and 100 names gives 0, 2, and
5 clustering errors, respectively. We also tried clustering the same data set w.r.t. the
Japanese web sites in the Google index, this gave 0, 1, 4, and 16 clustering errors for
the first 50, 75, 100, and 125 names, respectively.

The last data set consists of 20 Japanese terms from finance and 10 Japanese terms
from computer science (taken from glossaries):

�<, ºÿ, ¶m, �Ø, *¡, °�, Ñ), o�, Ç(, üe, ¡?, *¡, =-, 8ú, �Ñ, ò
Ø, 4
», AÕ', 	¡<8, ©ï, Þï, ;Ïæ�, ;Ï'., ¢p, Ñ<, Âp, b�, Ö�, ��, �S.

The eigenvalue plot in Figure 4 does not clearly indicate the correct number of k = 2
clusters. However, when using k = 2, only the term “°�” (which means “environ-
ment”) is non-intendedly grouped with the computer science words.

The computational resources required by our clustering algorithm are much lower
than those needed by Cilibrasi and Vitányi’s algorithm [1]. Their clustering tries to

6

optimize a quality function, a task which is NP hard. The approximation costs hours
even for small lists of n = 20 words. On the other hand, our spectral clustering’s
naive time complexity is cubic O(n3) in the number of words. This can be improved
to O(n2k) by using Lanczos method for computing the top k eigenvectors. On our
largest “people” data set with n = 125, our clustering needs about 0.11sec on a 3GHz
Pentium4 processor with the ATLAS library.

4 Discussion and Conclusions

We have shown that it needs surprisingly little effort, just a few queries to a popular
search engine together with some state-of-the-art methods in machine learning, to au-
tomatically separate lists of terms into clusters which make sense. We have focused on
unsupervised learning in this paper, but for other tasks such as supervised learning,
appropriate tools are available as well (e.g. SVM). Our methods are theoretically quite
well founded, basing on the theories of Kolmogorov complexity on the one hand and
spectral clustering on the other hand. Yet, there are many possible modifications and
variants of our algorithm. For instance, we could use the Ng et al. spectral clustering
algorithm [6], which gives almost the same results as those reported. Or we could try
a context dependent similarity measure as suggested in [3], this gives slightly better
results except for the Japanese data set. More generally, trying just all combinations of
clustering algorithms from [9] with distance measures from [8] gives too many variants
in order to evaluate them all empirically and find significant differences. It is therefore
desirable to develop an accurate mathematical theory for this and related tasks, such
that the choice of distance measure, learning algorithm, and other relevant components
can be even more thoroughly theoretically founded in the future.

References

[1] R. Cilibrasi and P. M. B. Vitányi. Automatic meaning discovery using Google.
Technical report, CWI, Amsterdam, 2006.

[2] I.S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. In Proceedings of the 7th ACM SIGKDD Int. Conference on Knowl-
edge Discovery and Data Mining(KDD), pages 269–274, ACM Press, 2001.

[3] I. Fischer and J. Poland. New methods for spectral clustering. Technical Report
IDSIA-12-04, IDSIA, 2004, Manno, Switzerland.

[4] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi. The similarity metric. IEEE
Transactions on Information Theory, 50(12):3250–3264, 2004.

[5] M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity and its
applications. 2nd edition, Springer, Berlin, 1997.

[6] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems 14, pages 849-856, The MIT
Press, 2001.

7

[7] D. A. Spielman and S. Teng. Spectral partitioning works: Planar graphs and finite
element meshes. In 37th Annual Symposium on Foundations of Computer Science,
pages 96–105, IEEE Computer Society, 1996.

[8] E. L. Terra and C. L. A. Clarke. Frequency estimates for statistical word similarity
measures. In HLT-NAACL 2003: Main Proceedings, pages 244–251, Edmonton,
Alberta, Canada, 2003.

[9] D. Verma and M. Meila. A comparison of spectral clustering algorithms. Technical
Report CSE-03-05-01, University of Washington, 2003.

[10] U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. In
Advances in Neural Information Processing Systems (NIPS) 17. MIT Press, 2005.

8

