Clustering the Google Distance with
Eigenvectors and Semidefinite
Programming

Jan Poland and Thomas Zeugmann

Division of Computer Science
Hokkaido University
N-14, W-9, Sapporo 060-0814, Japan
{jan,thomas}@ist.hokudai.ac.jp

Abstract
Web mining techniques are becoming increasingly popular and more accurate, as the information

body of the World Wide Web grows and reflects a more and more comprehensive picture of the

humans’ view of the world. One simple web mining tool is called the Google distance and has
been recently suggested by Cilibrasi and Vitdnyi. It is an information distance between two

terms in natural language, and can be derived from the “similarity metric”, which is defined

in the context of Kolmogorov complexity. The Google distance can be calculated from just

counting how often the terms occur in the web (page counts), e.g. using the Google search

engine. In this work, we compare two clustering methods for quickly and fully automatically

decomposing a list of terms into semantically related groups: Spectral clustering and clustering

by semidefinite programming.

1. Introduction

The Google distance has been suggested
by Cilibrasi and Vitanyi [2] as a semanti-
cal distance function on pairs of words or
terms. For instance, for most of today’s
people, the terms “Claude Debussy” and
“Béla Bartok” are much tighter related
than “Béla Bartok” and “Michael Schu-
macher”.

The World Wide Web represents parts
of the world we live in as a huge collec-
tion of documents, mostly written in nat-
ural language. By just counting the rel-
ative frequency of a term or a tuple of
terms, we may obtain a probability of this
term or tuple. From there, one may de-
fine conditional probabilities and, by tak-
ing logarithms, complexities. Li et al. [7]
have proposed a distance function based
on Kolmogorov complexity, which can be

used for other complexities, such as those
derived from the WWW frequencies.

Spectral clustering is an increasingly pop-
ular method for analyzing and clustering
data by using only the matrix of pairwise
similarities. It was invented more than 30
years ago for partitioning graphs (see e.g.
[11] for a brief history). Formally, spectral
clustering can be related to approximat-
ing the normalized min-cut of the graph
defined by the adjacency matrix of pair-
wise similarities [15]. Finding the exactly
minimizing cut is an NP-hard problem.

The Google distances can be transformed
to similarities by means of a suitable ker-
nel. However, as such a transformation
potentially introduces errors, since in par-
ticular the kernel has to be chosen appro-
priately and the clustering is quite sen-
sitive to this choice, it seems natural to

work directly on the distances. Then,
the emerging graph-theoretical criterion
is that of a maximum cut. Optimizing
this cut is again NP-hard, but can be
approximated with semidefinite program-
ming (SDP).

The main aim of this work is to com-
pare spectral clustering and clustering by
SDP, both of which are much faster than
the computationally expensive phyloge-
netic trees used by [2]. We will show how
state-of-the-art techniques can be com-
bined in order to achieve quite accurate
clustering of natural language terms with
surprisingly little effort.

There is a huge amount of related work,
in computer science, in linguistics, as well
as in other fields. Text mining with spec-
tral methods has been for instance studied
in [3]. A variety of statistical similarity
measures for natural language terms has
been listed in [13]. For literature on spec-
tral clustering, see the References section
and the references in the cited papers.

The paper is structured as follows. In the
next section, we introduce the similarity
metric, the Google distance, and spectral
clustering as well as clustering by SDP,
and we shall state our algorithms. Sec-
tion 3 describes the experiments and their
results. Finally, in Section 4 we discuss
the results obtained and give conclusions.

2. Theory

2.1. Similarity Metric and Google
Distance

We start with a brief introduction to Kol-
mogorov complexity (see [8] for a much
deeper introduction). Let us fix a uni-
versal Turing machine (which one we fix
is not relevant, since each universal ma-
chine can interpret each other by using a
“compiler” program of constant length).
For concreteness, we assume that its pro-
gram tape is binary, such that all sub-
sequent logarithms referring to program
lengths are w.r.t. the base 2. The output

62

alphabet is ASCII or UTF-8, according to
which character set we are actually using.
(For simplicity, we shall always use the
term ASCII in the following, which is to
be replaced by UTF-8 if necessary.) Then,
the (prefix) Kolmogorov complexity of a
character string x is defined as

K(x) = length of the shortest self-de-

limiting program generating x.

By the requirement “self-delimiting” we
ensure that the programs form a prefix-
free set and therefore the Kraft inequality

holds, i.e.,
Yo g,

where x ranges over all ASCII strings.

The Kolmogorov complexity is a well-
defined quantity regardless of the choice
of the universal Turing machine, up to an
additive constant.

If x and y are ASCII strings and z* and y*
are their shortest (binary) programs, re-
spectively, we can define K (y|z*), which
is the length of the shortest self-delimiting
program generating y where x*, the pro-
gram for x, is given. K (z|y*) is computed
analogously. Thus, we may follow [7] and
define the universal similarity metric as

maX{K(y|x*),K($|y*>}
max {K(SC), K(Zl)}

We can interprete d(x,y) as an approx-
imation of the ratio by which the com-
plexity of the more complex string de-
creases, if we already know how to gen-
erate the less complex string. The uni-
versal similarity metric is almost a metric
according to the usual definition, as it sat-
isfies the metric (in)equalities up to order
1/max {K(z), K(y)}.

Given a collection of documents like the
World Wide Web, we define the probabil-
ity of a term or a tuple of terms by count-
ing relative frequencies. That is, for a tu-
ple of terms X = (z1,29,...,2,), where

d(z,y) = (1)

each term z; is an ASCII string, we set

p(X) = p™(z1, 9, ..., xy) = (2)

web pages containing all xq, xs,..., 2,
relevant web pages ‘

Conditional probabilities can be defined
likewise as

p(YIX) = p (Y UX)/p™(X)

where X and Y are tuples of terms and U
denotes the concatenation. Although the
probabilities defined in this way do not
satisfy the Kraft inequality, we may still
define complexities

K™ (X) = —log (p™(X)) and

E™(Y|X) = K™(YUX)—K™(X).

Then we use (1) in order to define the web
distance of two ASCII strings x and v,
following [2], as

" (,y) =

K™ (z Uy) — min { K™ (z), K"(y)}
max {KWWW($)7 waw(y)}

(3)

Since we use Google to query the page
counts of the pages, we also call d"* the
Google distance. Since the Kraft inequal-
ity does not hold, the Google distance is
quite far from being a metric, unlike the
universal similarity metric above.

A remark concerning the “number of rele-
vant web pages” in (2) is mandatory here.
This could be basically the number of all
pages indexed by Google. But this quan-
tity is not appropriate for two reasons:
First, since some months ago there seems
to be no way to directly query this num-
ber. Hence, the implementation by [2]
used a heuristic to estimate this value,
which however yields inaccurate results.
Second, not all web pages are really rele-
vant for our search. For example, billions
of Chinese web pages are irrelevant if we

63

are interested in the similarity of “cosine”
and “triangle.” They would be relevant if
we were searching for the corresponding
Chinese terms. So we use a different way
to fix the relevant database size. We add
the search term “the” to each query, if we
are dealing with English language. This
is one of the most frequent words used in
English and therefore gives a reasonable
restriction of the database. The database
size is then the number of occurrences of
“the” in the Google index. Similarly, for
our experiments with Japanese, we add
the term @ (“no” in hiragana) to all
queries.

2.2. Spectral Clustering

Consider the block diagonal matrix

1 10
110
001

Its top two eigenvectors, i.e., the eigenvec-
tors associated with the largest two eigen-
values, are [1 1 0] and [0 0 1]7. That is,
they separate the two perfect clusters rep-
resented by this similarity matrix. In gen-
eral, there are conditions under which the
top k eigenvectors of the similarity matrix
or its Laplacian result in a good cluster-
ing, even if the similarity matrix is not
perfectly block diagonal [9, 14]. In partic-
ular, it was observed in [4] that the trans-
formed data points given by the &k top
eigenvectors tend to be aligned to lines in
the k-dimensional Euclidean space, there-
fore the kLines algorithm is appropriate
for clustering. In order to get a com-
plete clustering algorithm, we therefore
only need to fix a suitable kernel function
in order to proceed from a distance matrix
to a similarity matrix.

For the kernel, we use the Gaussian
k(z,y) = exp (— 3d(z,y)*/c?). We may
use a globally fixed kernel width o, since
the Google distance (3) is scale invariant.
In the experiments, we compute the mean
value of the entries of the distance matrix
D and then set o = mean(D)/v/2.

In this way, the kernel is most sensitive
around mean(D).

The final spectral clustering algorithm for
a known number of clusters k is stated be-
low. We shall discuss in the experimental
section how to estimate k if the number
of clusters is not known in advance.

Algorithm Spectral clustering of a word

list

Input: word list X = (z1,x9,...,2,),
number of clusters k

Output: clustering ¢ € {1...k}"

1. for z,y € X, compute Google relative
frequencies p**(z), p**(z,y)

2. for z,y € X, compute complexities
K (), K (z,y)

3. compute distance matrix
D= (dWWw(x,y))zﬁyGX

4. compute o = mean(D)/v/2

5. compute similarity matrix
1
A= (exp(—§dwww(x, y)*/c?))

6. compute Laplacian L = S’%AS*%,
where S” = Zj Aij and Sij =0
L7

7. compute top k eigenvectors V &€ R™*¥

8. cluster V using kLines [4]

2.3. Semidefinite programming

Given a weighted graph G = (V,D)
with vertices V = {z1,...,z,} and edge
weights D = {d;; > 0 | 1 < 4,5 < n}
which express pairwise distances, a k-way-
cut is a partition of V' into k disjoint sub-
sets Sq,...,S,. Here k is assumed to be
given. We define the predicate A(i, j) = 0
if ¥[1 <0<k 1<i,j<nandi,j€
Sel and A(i, j) = 1, otherwise. The weight
of the cut (51, ..., Sk) is defined as

> diAlig) -

1,j=1

The max-k-cut problem is the task of
finding the partition that maximizes the
weight of the cut. It can be stated as fol-
lows: Let ai, ..., a; € S¥=2 be the vertices
of a regular simplex, where

S'={z eR™ | |lz]> =1}

is the d-dimensional unit sphere. Then
the inner product a;-a; = —ﬁ whenever
1 # j. Hence, finding the max-k-cut is
equivalent to solving the following integer

program:

IP: maximizef- Z di;j(1 —yi - y))
i<j
subject toy; € {as,...,a;}
forall 1 <j<n.

Frieze and Jerrum [5] propose the follow-
ing semidefinite program (SDP) in order
to relax the integer program:

SDP: maximize®* Z dij(1 —v; - v;)
i<j
subject to v; € 8"
forall 1 <7 <mn and
v -V 2—% for all © # j
(necessary if k > 3).

The constraints v; - v; > —ﬁ are neces-

sary for k > 3 because otherwise the SDP
would prefer solutions where v; - v; = —1,
resulting in a larger value of the objective.
We shall see in the experimental part that
this indeed would result in invalid approx-
imations. The SDP finally can be refor-
mulated as a convex program:

CP : minimize Z d;;Yi; (4a)
i<j
subject toYj; =1 (4b)

for all 1 < 7 <n and (4c)
Vi; > —5 forall i # j (4d)
(necessary if k > 3) (4e)
and Y > 0. (4f)

Here, Y € R™ " is a matrix, and the last
condition Y > 0 means that Y is positive

semidefinite. Hence, Y will be a kernel
matrix. Efficient solvers are available for
this kind of optimization problems, such
as CSDP [1] or SeDuMi [12]. In order
to implement the constraints Y;; > —ﬁ
with these solvers, actually positive slack
variables Z;; have to be introduced to-

gether with the equality constraints

Finally, in order obtain the partitioning
from the vectors v; or the matrix Y, [5]
propose to sample k points z1, ..., 2z ran-
domly on §"~! and assign each v; to the
group by the closest z;. They show ap-
proximation guarantees generalizing those
of Goemans and Williamson [6]. In prac-
tice however, the approximation guaran-
tee does not necessarily yield a good clus-
tering, and applying the k-means algo-
rithm for clustering the v; gives better
results here. We use the kernel k-means
(probably introduced for the first time by
[10]) which directly works on the scalar
products Y;; = v; - v;, without need of re-
covering the v;. We thus arrive at the
following algorithm:

Algorithm SDP clustering of a word list

Input: word list X = (z1,x2,...,2,),
number of clusters k

Output: clustering c € {1...k}"

1. for z,y € X, compute Google relative
frequencies p*(x), p"*(z,y)

2. for x,y € X, compute complexities
waw(x)’ waw(a:’y>

3. compute distance matrix
D = (dWWw(x,y))xnyX

4. solve the SDP by using CP (cf. (4a)
through (4f))

5. cluster the resulting matrix Y using
kernel k-means [10]

65

3. Experiments

In this section, we present the experi-
ments of our clustering algorithm applied
to four lists of terms. First we show step
by step how the algorithm acts on the first
data set, which is the following list of 60
English words:

axiom,average,coefficient,probability,
continuous,coordinate, cube,
denominator,disjoint, domain, exponent,
function,histogram, infinity, inverse,
logarithm,permutation, polyhedra,
quadratic, random, cancer, abnormal,
abscess, bacillus,delirium,
betablocker, vasomotor, hypothalamic,
cardiovascular, chemotherapy,
chromosomal, dermatitis, diagnosis,
endocrine, epilepsy, oestrogen,
ophthalmic,vaccination, traumatic,
transplantation, nasdaq, investor,
obligation, benefit,bond, account,
clearing, currency, deposit, stock,
market, option, bankruptcy,creditor,
assets, liability, transactions,
insolvent, accrual, unemployment

The first 20 words are commonly used in
mathematics, the next 20 words have been
taken from a medical glossary, and the
final 20 words are financial terms. The

matrix containing the complexities is de-
picted in Figure 1 (large complexities are
white, small complexities black). Clearly,
the single complexities on the diagonal are
smaller than the pairwise complexities off-
diagonal.

Fig. 1: Complexities Fig. 2: Distances

In the distance matrix (Figure 2), the

Fig. 4. Laplacian

Fig. 3: Similarity

first eigenvector of the Laplacian
* IO
second eigenvector of the Laplacian

WWWMMLHJ

third eigenvector of the Laplacian

0.4
0.2
0 [WeanaantNaBIN

0.
0.
0.

'
PONA

Fig. 5: Eigenvector plot

block structure is visible. After transfor-
mation to the Similarity matrix (Figure 3)
and Laplacian (Figure 4), the block struc-
ture of the matrix becomes very clear.
Figure 5 shows the top three eigenvec-
tors of the Laplacian. The first eigen-
vector having only negative entries seems
not useful at all for the clustering (but
in fact it is useful for the kLines algo-
rithm). The second eigenvector separates
the medical terms (positive entries) from
the union of mathematical and financial
terms (negative entries). This indicates
that the mathematical and financial clus-
ters are closer related than each is related

Fig. 6: Kernel matrix after SDP

66

to the medical terms, in a hierarchical
clustering we would first split off the med-
ical terms and then divide mathematical
and financial terms. The spectral clus-
tering correctly groups all terms except
for “average”, which is assigned to the
financial terms instead of the mathemat-
ical terms (this is also visible from Fig-
ure 5). As average also occurs often in
finance, we cannot even count this as mis-
clustering. We stress that the clustering
algorithm is of course invariant to permu-
tations of the data, i.e. yields the same
results if the terms are given in a differ-
ent order. It is just convenient for the
presentation to work with an order corre-
sponding to the correct grouping.

The same clustering result is obtained
from the SDP clustering. The kernel ma-
trix resulting from solving the SDP clearly
displays the block structure, again with
the exception of the term “average”.

In case that we do not know the num-
ber of clusters k in advance, there is a
way to estimate this quite reliably from
the eigenvalues of the Laplacian, if the
data is not too noisy. Consider again
the case of a perfect block diagonal ma-
trix, i.e. all intra-cluster similarities are 1
and all other entries 0. Then the num-
ber of non-zero eigenvalues of this matrix
is equal to the number of blocks/clusters.
If the matrix is not perfectly block di-
agonal, we may still expect some domi-
nant eigenvalues which are clearly larger
than the others. Figure 7 top left shows
this for our first example data set. The
top three eigenvalues of the Laplacian are
dominant, the fourth and all subsequent
ones are clearly smaller. (Observe that
the smallest eigenvalues are even negative:
This indicates that the distances we used
do not stem from a metric. Otherwise all
eigenvalues should be nonnegative, since
the Gaussian kernel is positive definite.)

We propose a simple method for detect-
ing the gap between the dominant eigen-
values and the rest: Tentatively split

eigenvalues of the Laplacian: math-med-finance

0.8 |
0.6
0.4

02 h%m/
0

eigenvalues of the Laplacian: colors-nums

08 |
0.6
04

021 %—ﬁ:/
0

eigenvalues of the Laplacian: people

0.8
0.6
0.4
0.2

eigenvalues of the Laplacian: Japanese

0.8
0.6

02

Fig. 7: Plots of the eigenvalues of the
Laplacian (bars) and the s.s.e. score for
determining the number of clusters (lines)
for the four data sets

after the second eigenvalue, compute the
means of the eigenvalues in the two groups
“dominant” and “non-dominant” (ignore
the top eigenvalue, which is always much
larger), and calculate the sum square er-
ror (s.s.e.) of all eigenvalues w.r.t. their
means. Compute this s.s.e. score also for
the split after the third eigenvalue, the
fourth eigenvalue and so forth. Choose
the split with the lowest score. We have
depicted the s.s.e. scores in Figure 7 by
solid lines. For the math-med-finance
data set, the minimum score is at the cor-
rect number of £ = 3 clusters.

Note that this method works only for the
spectral clustering, there is no obvious
corresponding algorithm for the SDP clus-
tering.

67

The next data set is the “colors-nums”
data set from [2]:

purple, three, blue, red, eight,
transparent, black, white, small, six,
yellow,seven, fortytwo, five,
chartreuse, two, green, one, zero,
orange, four

Although the intended -clustering has
two groups, colors and numbers (where
“small” is supposed to be a number and
“transparent” a color), the eigenvalues
of the Laplacian in Figure 7 bottom left
indicate that there are three clusters.
Indeed, in the final spectral clustering,
“fortytwo” forms a singleton group,
and “white” and “transparent” are
misclustered as numbers. Clustering
with SDP gives a slightly different result:
Here, best results are obtained with k£ = 2
clusters, in which case only “fortytwo”
is wrongly assigned to the colors.

The next data set,

Takemitsu, Stockhausen, Kagel, Xenakis,
Ligeti, Kurtag, Martinu, Berg, Britten,
Crumb,Penderecki, Bartok, Beethoven,
Mozart, Debussy, Hindemith, Ravel,
Schoenberg, Sibelius,Villa-Lobos, Cage,
Boulez, Kodaly, Prokofiev, Schubert,
Rembrandt, Rubens, Beckmann, Botero, Braque,
Chagall, Duchamp, Escher, Frankenthaler,
Giacometti, Hotere, Kirchner, Kandinsky,
Kollwitz, Klimt, Malevich, Modigliani,
Munch, Picasso, Rodin, Schlemmer, Tinguely,
Villafuerte, Vasarely, Warhol, Rowling,
Brown, Frey, Hosseini, McCullough, Friedman,
Warren, Paolini, Oz, Grisham, Osteen,
Gladwell, Trudeau, Levitt, Kidd, Haddon,
Brashares, Guiliano, Maguire, Sparks,
Roberts, Snicket, Lewis, Patterson, Kostova,
Pythagoras, Archimedes, Euclid, Thales,
Descartes, Pascal, Newton, Lagrange, Laplace,
Leibniz, Euler, Gauss, Hilbert, Galois,
Cauchy, Dedekind, Kantor, Poincare, Godel,
Ramanujan, Wiles, Riemann, Erdos, Thomas
Zeugmann, Jan Poland, Rolling, Stones,
Madonna,Elvis, Depeche, Mode, Pink, Floyd,
Elton, John, Beatles, Phil, Collins,

Toten, Hosen, McLachan, Prinzen, Aguilera,
Queen, Britney, Spears, Scorpions,

Metallica, Blackmore, Mercy

consists of five groups of each 25 (more
or less) famous people: composers,
artists, last year’s bestseller authors,
mathematicians (including the authors of
the present paper), and pop music per-
formers. We deliberately did not specify
the terms very well (except for our own
much less popular names), in this way
the algorithm could “decide” itself if
“0z” meant one of the authors Amos and
Mehmet Oz or one of the pop music songs
with Oz in the title. The eigenvalue plot
in Figure 7 top right shows clearly five
clusters. From the 125 names, 9 were not
clustered into the intended groups using
the spectral method. The highest number
of incorrectly clustered names (4 mis-
clusterings) occurred in the least popular
group of the mathematicians (but our
two names were correctly assigned). We
also observed that the spectral clustering
gets disproportionately harder when the
number of clusters increases: Clustering
only the first 50, 75, and 100 names gives
0, 2, and 5 clustering errors, respectively.
We also tried clustering the same data
set w.r.t. the Japanese web sites in the
Google index, this gave 0, 1, 4, and 16
clustering errors for the first 50, 75, 100,
and 125 names, respectively.

Clustering with SDP gives better results
here: 0, 0, 1, and 4 clustering errors for
the first 50, 75, 100, and 125 names, re-
spectively.

The last data set consists of 20 Japanese
terms from finance and 10 Japanese terms
from computer science (taken from glos-
saries):

R, 2o, B3, M, WA, BB, &8, =K,
R, WA, JEBG BRAT, $AL, Emi, B, 58 b
e, B, DREDVE, AMREZR, WK, 1R, B
B, miBEAE, BRI, BRI B, GmEE,

The eigenvalue plot in Figure 7 does not

68

clearly indicate the correct number of
k = 2 clusters. However, when using
k= 2, only the term “BREi” (which
means “environment”) is non-intendedly
grouped with the computer science words
by the spectral clustering. SDP clustering
gives the same result here.

The computational resources required
by our clustering algorithms are much
lower than those needed by Cilibrasi and
Vitdnyi’'s algorithm [2]. Their clustering
tries to optimize a quality function, a task
which is NP hard. The approximation
costs hours even for small lists of n = 20
words. On the other hand, our spectral
clustering’s naive time complexity is cubic
O(n?) in the number of words. This can
be improved to O(n?k) by using Lanczos
method for computing the top k eigenvec-
tors.

On our largest “people” data set with
n = 125, our spectral clustering needs
about 0.11sec on a 3GHz Pentium4 pro-
cessor with the ATLAS library.

Solving the SDP in order to approximate
max-cut is more expensive. The respec-
tive complexity is O(n® + m3) (cf. [1]),
where m is the number of constraints. If
k = 2, then m = n and the overall com-
plexity is cubic. However, for £ > 3,
we need m = O(n?) constraints, resulting
in an overall computational complexity of
O(n%). On our largest “people” data set
with n = 125, our SDP clustering needs
about 2544sec.

4. Discussion and Conclusions

We have shown that it needs surprisingly
little effort, just a few queries to a popular
search engine together with some state-of-
the-art methods in machine learning, to
automatically separate lists of terms into
clusters which make sense. We have fo-
cused on unsupervised learning in this pa-
per, but for other tasks such as supervised
learning, appropriate tools are available
as well (e.g. SVM). Our methods are theo-
retically quite well founded, basing on the

theories of Kolmogorov complexity on the
one hand and graph cut criteria and spec-
tral clustering or semidefinite program-
ming on the other hand. The SDP clus-
tering is the more direct approach, as it
needs less steps. Also, it yields slightly

better results.

However, it is compu-

tationally more expensive than spectral
clustering.

References

1]

B. Borchers and J. G. Young. Imple-
mentation of a primal-dual method
for sdp on a shared memory parallel
architecture. March 27, 2006.

R. Cilibrasi and P. M. B. Vitanyi.
Automatic meaning discovery using
Google. Manuscript, CWI, Amster-
dam, 2006.

I. Dhillon. Co-clustering documents
and words using bipartite spectral
graph partitioning. In Proceedings
of the Tth ACM SIGKDD Int. Con-
ference on Knowledge Discovery and
Data Mining(KDD), pages 269274,
2001.

I. Fischer and J. Poland. New meth-
ods for spectral clustering. Technical
Report IDSIA-12-04, IDSIA / USI-
SUPSI, Manno, Switzerland, 2004.

A. Frieze and M. Jerrum. Im-
proved algorithms for MAX k-CUT
and MAX BISECTION. Algorith-
mica, 18(1):67-81, 1997.

M. X. Goemans and D. P.
Williamson. .879-approximation
algorithms for MAX CUT and MAX
2SAT. In STOC ’94: Proceedings of
the Twenty-Sixth Annual ACM Sym-
posium on Theory of Computing,
pages 422-431. ACM Press, 1994.

M. Li, X. Chen, X. Li, B. Ma, and
P. M. B. Vitanyi. The similarity met-
ric. IEEFE Transactions on Informa-
tion Theory, 50(12):3250-3264, 2004.

69

8]

[10]

[11]

[12]

[13]

[14]

[15]

M. Li and P. M. B. Vitanyi. An in-
troduction to Kolmogorov complexity
and its applications. Springer, 2nd
edition, 1997.

A. Ng, M. Jordan, and Y. Weiss. On
spectral clustering: Analysis and an
algorithm. In Advances in Neural

Information Processing Systems 14,
2001.

B. Scholkopf, A. Smola, and K.-R.
Miiller. Nonlinear component anal-
ysis as a kernel eigenvalue problem.
Neural Computation, 10(5):1299-
1319, 1998.

D. A. Spielman and S. Teng. Spectral
partitioning works: Planar graphs
and finite element meshes. In IFEFE
Symposium on Foundations of Com-
puter Science, pages 96-105, 1996.

J. Sturm. Using SeDuMi 1.02, a
MATLAB toolbox for optimization
over symmetric cones. Optimization
Methods and Software, 11(12):625—
653, 1999.

E. L. Terra and C. L. A. Clarke. Fre-
quency estimates for statistical word
similarity measures. In HLT-NAACL
2003: Main Proceedings, pages 244—
251, Edmonton, Alberta, Canada,
2003.

U. von Luxburg, O. Bousquet, and
M. Belkin. Limits of spectral cluster-
ing. In Advances in Neural Informa-
tion Processing Systems (NIPS) 17.
MIT Press, 2005.

S. X. Yu and J. Shi. Multiclass spec-
tral clustering. In ICCV ’03: Pro-
ceedings of the Ninth IEEE Interna-
tional Conference on Computer Vi-
sion, pages 313-319. IEEE Computer
Society, 2003.

