
Classi�cation of Predicates and Languages

Rolf Wiehagen

FB Informatik, Uni. Kaiserslautern, P.O. Box 3049, 67653

Kaiserslautern, wiehagen@informatik.uni-kl.de

Carl H. Smith

Department of Computer Science, University of Maryland, College

Park,MD 20912, smith@cs.umd.edu

Thomas Zeugmann

Inst. f. Theoretische Informatik, TH Darmstadt, 64283 Darmstadt,

zeugmann@iti.informatik.th-darmstadt.de

Abstract

We study the classi�cation of recursive predicates and languages.

In particular, we compare the classi�cation of predicates and lan-

guages with the classi�cation of arbitrary recursive functions and

with learning. Moreover, we re�ne our investigations by introducing

classi�cation with a bounded number of mind changes and estab-

lish a new hierarchy. Furthermore, we introduce multi{classi�cation

and characterize it. Finally, we study the classi�cation of families of

languages that have attracted a lot of attention in learning theory.

1 Introduction

Learning and classi�cation have attracted considerable attention by com-

puter scientists, both in theory and practice. Inductive inference is an

important aspect of learning that has been widely studied (cf. Angluin

and Smith (1983, 1987)). The inductive inference problem is to take �nite

samples of some target concept and to generalize an algorithm that can

produce all other samples of the same concept. Hence, inductive inference

may be regarded as the most general framework to study the generaliza-

tion problem (cf. Michalski et al. (1983)). The classi�cation problem may

be described as follows: Given a number of, usually �nite, choices, one

takes �nite samples of a target concept and has to �nd out algorithmically

to which of the possible choices the concept belongs to (cf. Duda and Hart

(1973)).

Recently, the problem of classi�cation has been compared with the in-

ductive inference problem in a recursion theoretic setting (cf. Wiehagen

1

2 Classi�cation

and Smith (1992)). In that paper a new formalization of classi�cation was

introduced. As it turned out, despite some obvious similarities, the two

notions are distinct and warrant further study.

The aim of the present paper is fourfold. First, we apply the previ-

ously developed formalism to investigate the classi�cation of f0; 1g valued

recursive functions. These functions are often called predicates as they rep-

resent binary decisions on the input. By utilizing the isomorphism between

strings of symbols and the natural numbers, the predicates over the natural

numbers also represent formal languages. Hence, we simultaneously study

the classi�cation of predicates and languages. On the one hand, we are

interested in learning the di�erences and similarities between the classi�-

cation of predicates and arbitrary recursive functions. On the other hand,

we enrich this study by considering the following two cases. In the �rst

case we are satis�ed if the classi�cation algorithm produces any one of the

possibly many correct answers. In the second case we require the classi�-

cation algorithm to produce all of the correct classi�cations (cf. De�nition

3). Second, we compare the power of classi�cation algorithms that are al-

lowed to produce only a single guess (�nite classi�cation, cf. De�nition 2,

the c = 0 case) with those that may change their mind a predetermined

�xed number of times (cf. De�nition 2, the c 2 IN case). Third, we intro-

duce the notion of consistent classi�cation (cf. De�nition 4) and compare

it with general classi�cation. Finally, we study classi�cation of families of

languages that have received considerable attention in learning theory.

2 Technical Preliminaries

By IN = f0; 1; 2; :::g we denote the set of all natural numbers. Members of

IN will serve as names for programs. The function computed by program

i will be denoted by '

i

. Most reasonable ways of assigning names to pro-

grams results in a list '

0

, '

1

, : : : called an acceptable programming system

(cf. Machtey and Young (1978)). By R we denote the class of all recur-

sive functions. The class of f0; 1g valued recursive functions, our model

of both predicates and languages, is denoted by R

0;1

. A set is recursively

enumerable (r.e.) i� it is the domain of some '

i

. Subset is denoted by

� and � denotes proper subset. For a function f 2 R and n 2 IN, let

f

n

= cod(f (0); f(1); :::; f (n)), where cod denotes a computable and bijec-

tive mapping from the set IN

�

of all �nite sequences of natural numbers

onto IN. Sometimes, for the sake of simplicity of notation, we identify

� 2 IN

�

with cod(�), for � a �nite function.

Next, we formalize the modes of identi�cation and classi�cation men-

tioned in the introduction. As in Gold (1967) we de�ne an inductive in-

ference machine (abbr. IIM) to be an algorithmic device which works as

follows: The IIM takes as its input larger and larger initial segments of the

Rolf Wiehagen 3

graph of a function and it either requests the next function value, or it �rst

outputs a hypothesis, i.e., a name of a program, and then it requests the

next function value.

A classi�cation machine (abbr. CM) takes as input the graph of a func-

tion (as IIMs do) and it either requests the next function value, or it �rst

outputs an integer chosen >from a �nite set, and then it requests the next

function value.

Let M be an IIM or a CM. Furthermore, let i and j be two consec-

utive hypotheses produced by M . We say that M changes its mind, or

synonymously, M performs a mind change, i� i 6= j. When dealing with

mind changes, it is technically much more convenient to require the IIMs

to behave as follows. Let f be a recursive function. If M on f (0); :::; f (n)

outputs its �rst guess, then it has to output a hypothesis at any subsequent

step. It is easy to see that any IIM M may be straightforwardly converted

into an IIM

^

M behaving as required such that both machines produce the

same sequence of mind changes.

We start with the formalization of learning. The following de�nition is

due to Gold (1967) and Blum and Blum (1975).

De�nition 1. Let U � R and let c 2 IN [f�g. The class U is said to be

learnable with at most c mind changes i� there is an IIM M such that for

all f 2 U

(1) there is a j such that '

j

= f and M (f

n

) = j for almost all n 2 IN,

(2) M , when successively fed with f (0); f (1); ::: performs at most c (c =

� means at most �nitely many) mind changes, i.e., card(fn M(f

n

) 6=

M(f

n+1

)g) � c.

If U can be learned by an IIM M with at most c mind changes, then

we write U 2 EX

c

(M). The class of all sets of recursive functions that are

learnable with at most c mind changes is denoted by EX

c

, an abbreviation

for explains as a program for f can be regarded as an explanation of the

set of examples constituting the graph of f (cf. Case and Smith (1983)). If

U can be learned with 0 mind changes, then we also say that U is �nitely

learnable. Moreover, we set FIN =

df

EX

0

. If c = �, then we usually omit

the lower index and simply say U can be learned.

Next, we formalize classi�cation of �nitely many sets.

De�nition 2. Let S

0

; :::; S

k�1

� R and let S = S

0

[::: [S

k�1

. Further-

more, let c 2 IN[f�g. Then (S

0

; :::; S

k�1

) is said to be classi�able with at

most c mind changes i� there is a CM M such that for all f 2 S

(1) for all n 2 IN, whenever M, on input f

n

, outputs a hypothesis j, then

j 2 f0; :::; k � 1g,

(2) there is a j such that f 2 S

j

and M(f

n

) = j for almost all n 2 IN,

4 Classi�cation

(3) M , when successively fed f(0); f (1); ::: performs at most c (c = �

means at most �nitely many) mind changes, i.e., card(fn M(f

n

) 6=

M(f

n+1

)g) � c.

If (S

0

; :::; S

k�1

) is classi�ed by a CM with at most c mind changes, then

we write (S

0

; :::; S

k�1

) 2 CL

c

k

(M). By CL

c

k

we denote the collection of all

k{tuples of sets that are classi�able with at most c mind changes, i.e.,

CL

c

k

= f(S

0

; :::; S

k�1

) 9CMM [(S

0

; :::; S

k�1

) 2 CL

c

k

(M)]g:

Moreover, we set CL

c

=

df

S

k�2

CL

c

k

. If c = �, then we usually omit the

upper index, and say simply that (S

0

; :::; S

k�1

) is classi�able. Furthermore,

if c = 0, then we also say that (S

0

; :::; S

k�1

) is �nitely classi�able, and set

FCL

k

=

df

CL

0

k

. Finally, we set FCL =

df

S

k�2

FCL

k

.

In the next de�nition we consider the situation that the sets S

0

; :::; S

k�1

are not necessarily disjoint. Looking at potential applications, it might be

highly desirable not to obtain only one index of a set the target function

f belongs to, but the indices of all those sets that contain f . For example,

consider the case of automated medical diagnosis. In this case, we would

certainly desire to be aware of all the diseases that manifest the observed

symptoms. In our formalism, each disease is set S

i

and the functions to be

classi�ed map symptoms to present or not present.

De�nition 3. Let S

0

; :::; S

k�1

� R, and let S = S

0

[::: [S

k�1

. Fur-

thermore, let ALL = f0; :::; k� 1g. Then (S

0

; :::; S

k�1

) is said to be multi{

classi�able i� there is a CM M such that for all f 2 S

(1) for all n 2 IN, whenever M, on input f

n

, outputs a hypothesis HYP,

then HYP � ALL,

(2) there is a non-empty set SUB � ALL such that

(a) M(f

n

) = SUB for almost all n,

(b) f 2 S

j

for all j 2 SUB,

(c) f =2 S

m

for all m 2 ALLnSUB.

We write (S

0

; :::; S

k�1

) 2 Multi{CL

k

(M) if (S

0

; :::; S

k�1

) is multi{clas-

si�ed by a CM M . By Multi{CL

k

we denote the collection of all k{tuples

of sets that are multi{classi�able. We set Multi{CL =

df

S

k�2

Multi{CL

k

.

Finally, we introduce consistent classi�cation. The main intention is

as follows. Since potential users of a CM M never know whether M has

successfully �nished its classi�cation task, they might want to be sure that

the hypotheses they receive do correctly reect the information the CM

has been fed with.

De�nition 4. Let S

0

; :::; S

k�1

� R and let S = S

0

[::: [S

k�1

. Then

(S

0

; :::; S

k�1

) is said to be consistently classi�able i� there is a CM M such

that

Rolf Wiehagen 5

(1) (S

0

; :::; S

k�1

) 2 CL

k

(M),

(2) for all f 2 S, if M(f

n

) = i, then there must be a function g 2 S

i

such that f and g coincide up to n.

We write (S

0

; :::; S

k�1

) 2 Cons{CL

k

(M) if (S

0

; :::; S

k�1

) is consistently

classi�able by a CM M . By Cons{CL

k

we denote the collection of all

k{tuples of sets that are consistently classi�able. Finally, we set Cons{

CL =

df

S

k�2

Cons{CL

k

.

3 Classi�cation of Predicates versus Classi�cation of

Arbitrary Functions

In this section we compare the classi�cation of f0; 1g valued functions with

the classi�cation of functions in general. Looking at learning there are

several results establishing major di�erences between the learnability of

classes of predicates and the inferability of arbitrary classes of recursive

functions (cf. Blum and Blum (1975), Zeugmann (1983, 1988), Osherson,

Stob and Weinstein (1986)). Moreover, Freivalds, Kinber and Wiehagen

(1992) discovered that consistent learning of predicates considerably di�ers

from consistent identi�cation of arbitrary recursive functions. Hence, it is

only natural to ask whether there are di�erences between the classi�cation

of predicates and arbitrary recursive functions.

Clearly, if a collection of sets of f0; 1g valued functions is classi�able,

then it is classi�able as a collection of sets of arbitrary recursive functions.

To consider the converse direction, we need the following notation. Let

S � R; then we use �(S) to denote the restriction of S to predicates, i.e.,

�(S) = S \R

0;1

.

Theorem 5. There is a collection of pairwise disjoint sets S

0

; S

1

; S

2

such

that

(1) R = S

0

[S

1

[S

2

,

(2) (S

0

; S

1

; S

2

) =2 CL,

(3) (�(S

0

); �(S

1

); �(S

2

)) 2 CL

2

3

.

The theorem has the following corollary.

Corollary 6. For any n � 3 there is a collection of pairwise disjoint sets

exhausting R that is not in CL

n

, but the collection of their restrictions to

predicates is in CL

n

.

The latter results show that there might be interesting di�erences be-

tween the classi�cation of predicates and arbitrary functions. Later on, we

shall point out some more di�erences. In the next section we study the

power of classi�cation algorithms with respect to the allowed number of

mind changes.

6 Classi�cation

4 Finite Classi�cation versus Classi�cation and Learn-

ability

Our next theorem in particular states that even the classi�cation of two

sets might be too complex to be done by a �nitely working CM.

Theorem 7. For any k > 1 there are pairwise disjoint sets S

0

; � � � ; S

k�1

such that

(1) S

0

[S

1

[� � � [S

k�1

= R

0;1

,

(2) (S

0

; S

1

; � � � ; S

k�1

) 2 CL n FCL.

In contrast to Theorem 7, it is possible to splitR

0;1

into disjoint, �nitely

classi�able sets.

Theorem 8. For any k > 1 there are pairwise disjoint sets S

0

; � � � ; S

k�1

such that

(1) S

0

[S

1

[� � � [S

k�1

= R

0;1

,

(2) (S

0

; S

1

; � � � ; S

k�1

) 2 FCL.

Next we compare �nite classi�cation and learnability. If a classi�cation

machine outputs a hypothesis i, then we know almost all about the corre-

sponding set S

i

, since there are only �nitely many sets S

0

; :::; S

k�1

. On the

other hand, if an IIM outputs a hypothesis i, then we know almost nothing

about the corresponding function '

i

. Hence, at �rst glance it seems much

easier to disprove a CM than to fool an IIM. However, the situation is much

more subtle, as the following theorems show.

Theorem 9. For any S

0

� R

0;1

with S

0

2 FIN , there is a S

1

such that

(1) S

1

� R

0;1

,

(2) S

1

2 FIN ,

(3) S

0

\ S

1

= ;,

(4) (S

0

; S

1

) 2 FCL.

The latter theorem allows the following interpretation. Any \easily"

learnable class can be completed to an \easily" classi�able pair. Thus,

sometimes learning and classi�cation are not very distinct. On the other

hand, we have the following:

Theorem 10. For any S

0

� R

0;1

with S

0

2 FIN , there is a S

1

such that

(1) S

1

� R

0;1

,

(2) S

1

=2 EX ,

(3) S

0

\ S

1

= ;,

(4) (S

0

; S

1

) 2 FCL.

Rolf Wiehagen 7

5 Bounding the Number of Mind Changes

For �nite classi�cation (FCL) a CM is not allowed to change its conjecture

at all. For standard classi�cation (CL) a CM is allowed to change its

conjecture an arbitrary �nite number of times. The precise number of mind

changes has not to be determined in advance. In the study of inductive

inference, a mind change hierarchy was discovered by �xing in advance

a particular number of mind changes that an IIM was allowed to make

(cf. Case and Smith (1983)). In the sequel we present a hierarchy for

classi�cation based on a �xed number of allowed mind changes.

Theorem 11. For any k there are sets S

0

, S

1

, � � �, S

k+1

such that

(1) S

0

[S

1

[� � � [S

k+1

= R

0;1

,

(2) (S

0

; � � � ; S

k+1

) 2 CL

k+1

n CL

k

.

Moreover, it is also possible to prove a hierarchy in the number of mind

changes that is not related to the number of sets to be classi�ed.

Theorem 12. For any c 2 IN there exist pairwise disjoint sets S

0

; S

1

�

R

0;1

such that (S

0

; S

1

) 2 CL

c+1

2

n CL

c

2

.

6 Classi�cation versus Multi{Classi�cation and Con-

sistent Classi�cation

In this section we compare the power of classi�cation, multi{classi�cation

and consistent classi�cation. In particular, we are interested in learning

whether or not multi{classi�cation or consistent classi�cation is harder to

achieve than ordinary one. Since neither multi{classi�cation nor consistent

classi�cation has been studied in the framework present here, our goal is

twofold. First we are interested in general results concerning the classi�-

cation power of these classi�cation modes. Second, we ask whether or not

the results obtained do extend to the classi�cation of predicates.

Our next theorem compares multi{classi�cation and ordinary classi�-

cation in the �nite case.

Theorem 13. Multi{FCL

2

� FCL

2

Next we aim to characterize multi{classi�cation in terms of standard

classi�cation. For that purpose, we introduce the notion of a mosaic.

Let S

0

; :::; S

k�1

� R and S = S

0

[::: [S

k�1

. Let ALL = f0; :::; k� 1g

and SUB � ALL. Then let S

SUB

=

T

j2SUB

S

j

n

S

i2 ALLnSUB

S

i

. Clearly,

S

SUB

is the set of all f 2 S that belong to any of the classes S

j

, j 2 SUB,

8 Classi�cation

and to none of the classes S

i

, i 2 ALLnSUB. Let mosaic(S

0

; :::; S

k�1

) be

the tuple of all sets S

SUB

, where SUB � ALL.

Obviously, mosaic(S

0

; :::; S

k�1

) is a 2

k

{tuple of pairwise disjoint sets

the union of which is S. Note that some components of mosaic(S

0

; :::S

k�1

)

may be empty.

Finally, let mosaic(S

0

; :::; S

k�1

) = (T

0

; :::; T

2

k

�1

). Moreover, without

loss of generality we assume that the T

j

's, 0 � j � 2

k

� 1, are ordered

in such a way that from the index j the corresponding set SUB can be

computed such that S

SUB

= T

j

and vice versa. Formally, this can be

realized by a one-to-one mapping m from the set of all subsets SUB of ALL

onto the set f0; :::2

k

�1g such that for any SUB � ALL, S

SUB

= T

m(SUB)

.

We have obtained the following characterization.

Theorem 14. For all k � 2 and all sets S

0

; :::; S

k�1

� R we have:

(S

0

; :::; S

k�1

) 2 Multi{CL if and only if mosaic(S

0

; :::; S

k�1

) 2 CL.

Finally in this section we relate consistent classi�cation to ordinary one.

Theorem 15. Cons{CL � CL

Note that all theorems in this section remain valid if one considers

exclusively the classi�cation of predicates.

7 Classi�cation of Languages

In this section �rst we examine the classi�cation of the regular languages

(cf. Lewis and Papadimitriou (1981)). The regular languages can be mod-

eled as predicates as well. This is done by �xing an isomorphism between

strings over the alphabet of the regular language and the natural num-

bers. Then a (regular) language represented by a f0; 1g valued function

f is the set of strings that correspond to the natural numbers in the set

fx f(x) = 1g. The details of this encoding will be suppressed as much

as possible without sacri�cing clarity. By a positive example we mean a

string that corresponds to a value x such that f (x) = 1. Similarly, by a

negative example we mean a string that corresponds to a value x such that

f(x) = 0.

Theorem 16. It is impossible to classify an arbitrary language as being

either regular or not regular.

By way of contrast with Theorem 16, it is possible to separate arbitrarily

large subsets of the regular languages >from the rest.

Rolf Wiehagen 9

Theorem 17. Let n be an arbitrary natural number. Let S

0

be the set of

all regular languages that are recognized by some n-state �nite automaton.

Let S

1

be all the languages not in S

0

. Then (S

0

; S

1

) 2 CL.

The last theorem relates the learnability of indexed families of languages

to their classi�ability. In particular, the next theorem establishes a con-

dition under what circumstances a classi�cation algorithm can be derived

from a given learning algorithm. In general, it is impossible to convert a

learning algorithm into a classi�cation machine, as previously obtained re-

sults show (cf. Wiehagen and Smith (1992)). Due to lack of space, we can

only sketch the next result. L = (L

j

)

j2IN

is said to be an indexed family, if

all languages L

j

are non{empty, and there is an algorithm that uniformly

decides membership in L

j

for all strings over the underlying alphabet and

all j 2 IN. The inferability of indexed families has attracted a lot of atten-

tion in learning theory (cf. Lange and Zeugmann (1993) and the references

therein). Of particular interest is the learnability of indexed families from

positive data. We have obtained the following theorem.

Theorem 18. Let m � 1 and let L be any indexed family over some

�xed alphabet that can be learned from positive data with at most m mind

changes. Then there exists a partition of L into m + 1 pairwise disjoint

classes L

0

; :::;L

m

such that

(1) L

0

[::: [L

m

= L,

(2) (L

0

; :::;L

m

) 2 CL

m+1

.

Finally, all proofs of the theorems stated above can be found in Wieha-

gen, Smith and Zeugmann (1993).

Acknowledgment

The �rst author was supported by the German Ministry for Research

and Technology (BMFT) under grant no. 01 IW 101. The second author

was supported in part by NSF Grant 9020079.

8 References

1. Angluin, D., and Smith, C.H. (1983). Inductive inference: theory and

methods, Computing Surveys 15, 237 - 269.

2. Angluin, D., and Smith, C.H. (1987). Formal inductive inference, in

\Encyclopedia of Arti�cial Intelligence" (St.C. Shapiro, Ed.), Vol. 1,

pp. 409 - 418, Wiley-Interscience Publication, New York.

3. Blum, L., and Blum, M. (1975). Toward a mathematical theory of

inductive inference, Information and Control 28, 122 - 155.

10 Classi�cation

4. Case, J., and Smith, C.H. (1983). Comparison of identi�cation criteria

for machine inductive inference, Theoretical Computer Science 25,

193 - 220.

5. Duda, R., and Hart, P. (1973). Pattern Classi�cation and Scene Anal-

ysis, Wiley Interscience.

6. Freivalds, R., Kinber, E.B., and Wiehagen, R. (1992). Convergently ver-

sus divergently incorrect hypotheses in inductive inference, GOSLER

Report 05/92, January 1992, Fachbereich Mathematik und Infor-

matik, TH Leipzig.

7. Freivalds, R.V., and Wiehagen, R. (1979). Inductive inference with ad-

ditional information, Journal of Information Processing and Cyber-

netics (EIK) 15, 179 - 184.

8. Gold, M.E. (1967). Language identi�cation in the limit, Information

and Control 10, 447 - 474.

9. Jantke, K.P., and Beick, H.R. (1981). Combining postulates of natu-

ralness in inductive inference, Journal of Information Processing and

Cybernetics (EIK) 17, 465 - 484.

10. Lange, S., and Zeugmann, T. (1993). Learning recursive languages

with bounded mind changes, International Journal of Foundations

of Computer Science, 4, Vol. 2, 157 - 178.

11. Lewis, H., and Papadimitriou, C. (1981). Elements of the Theory of

Computation, Prentice-Hall, Inc., Englewood Cli�s, New Jersey.

12. Machtey, M., und Young, P. (1978). An Introduction to the General

Theory of Algorithms, North-Holland, New York.

13. Michalski, R.S., Carbonell, J.G., and Mitchell, T.M. (1983). Machine

Learning, Tioga Publishing Co., Palo Alto, CA.

14. Osherson, D., Stob, M., and Weinstein, S. (1986). Systems that Learn,

An Introduction to Learning Theory for Cognitive and Computer Sci-

entists, MIT-Press, Cambridge, Massachusetts.

15. Wiehagen, R., and Smith, C. (1992). Classi�cation versus generaliza-

tion, in \Proceedings 5th Annual ACMWorkshop on Computational

Learning Theory," Pittsburgh, July 1992, pp. 224 - 230, ACM Press,

New York.

16. Wiehagen, R., Smith, C, and Zeugmann, T. (1993). Classifying re-

cursive predicates and languages, GOSLER Report 21/93, Dezember

1993, Fachbereich Mathematik und Informatik, TH Leipzig.

17. Zeugmann, T. (1983). A-posteriori characterizations in inductive in-

ference of recursive functions, Journal of Information Processing and

Cybernetics (EIK) 19, 559 - 594.

18. Zeugmann, T. (1988). On the power of recursive optimizers, Theoreti-

cal Computer Science 62, 289 - 310.

