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Abstract

The present paper deals with monotonic and dual monotonic language learning

from positive and negative examples. The three notions of monotonicity reect

di�erent formalizations of the requirement that the learner has to produce always

better and better generalizations when fed more and more data on the concept to

be learnt.

The three versions of dual monotonicity describe the concept that the inference

device has to produce exclusively specializations that �t better and better to the

target language. We characterize strong{monotonic, monotonic, weak{monotonic,

dual strong{monotonic, dual monotonic and dual weak{monotonic as well as �nite

language learning from positive and negative data in terms of recursively generable

�nite sets. Thereby, we elaborate a unifying approach to monotonic language learn-

ing by showing that there is exactly one learning algorithm which can perform any

monotonic inference task.



1. Introduction

The process of hypothesizing a general rule from eventually incomplete data is called

inductive inference. Many philosophers of science have focused their attention on problems

in inductive inference. Since the seminal papers of Solomono� (1964) and Gold (1967),

problems in inductive inference have additionally found a lot of attention from computer

scientists. The theory they have developed within the last decades is usually referred to

as computational or algorithmic learning theory. The state of the art of this theory is

excellently surveyed in Angluin and Smith (1983, 1987).

Within the present paper we deal with identi�cation of formal languages. Formal

language learning may be considered as inductive inference of partial recursive functions.

Nevertheless, some of the results are surprisingly in that they remarkably di�er from

solutions for analogous problems in the setting of inductive inference of recursive functions

(cf. e.g. Osherson, Stob and Weinstein (1986), Case (1988), Fulk (1990)).

The general situation investigated in language learning can be described as follows:

Given more and more eventually incomplete information concerning the language to be

learnt, the inference device has to produce, from time to time, a hypothesis about the

phenomenon to be inferred. The information given may contain only positive examples,

i.e., exactly all the strings contained in the language to be recognized, as well as both

positive and negative examples, i.e., arbitrary strings over the underlying alphabet which

are classi�ed with respect to their containment to the unknown language. The sequence

of hypotheses has to converge to a hypothesis which correctly describes the language to

be learnt. In the present paper, we mainly study language learning from positive and

negative examples.

Monotonicity requirements have been introduced by Jantke (1991A, 1991B) and Wie-

hagen (1991) in the setting of inductive inference of recursive functions. We have adopted

their de�nitions to the inference of formal languages (cf. Lange and Zeugmann (1992A,

1992B, 1993)). Subsequently Kapur (1992) introduced the dual versions of monotonic

language learning. The main underlying question can be posed as follows: Would it

be possible to infer the unknown language in a way such that the inference device only
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outputs better and better generalizations and specializations, respectively?

The strongest interpretation of this requirement means that we are forced to produce

an augmenting (descending) chain of languages, i.e., L

i

� L

j

(L

i

� L

j

) i� L

j

is guessed

later than L

i

(cf. De�nition 3 and 5, part (A)).

Wiehagen (1991) proposed to interpret \better" with respect to the language L having

to be identi�ed, i.e., now we require L

i

\L � L

j

\L i� L

j

appears later in the sequence of

guesses than L

i

does (cf. De�nition 3 (B)). That means, a new hypothesis is never allowed

to destroy something what a previously generated guess already correctly includes.

On the other hand, it is only natural to consider the dual version of the latter require-

ment as well. Intuitively speaking, dual monotonicity describes the following requirement.

If the learner outputs at any stage a hypothesis correctly excluding a string s from the

language to be learnt, then any subsequent guess has to behave thus (cf. De�nition

5 (B)). The third version of monotonicity, which we call weak{monotonicity and dual

weak{monotonicity, respectively, is derived from non{monotonic logics and adopts the

concept of cumulativity and of its dual analogue, respectively. Hence, we only require

L

i

� L

j

(L

i

� L

j

) as long as there are no data fed to the inference device after having

produced L

i

that contradict L

i

(cf. De�nition 3 and 5, part (C)).

In all what follows, we restrict ourselves to deal exclusively with the learnability of

indexed families of non{empty uniformly recursive languages (cf. Angluin(1980)). This

case is of special interest with respect to potential applications. The �rst problem arising

naturally is to relate all types of monotonic and of dual monotonic language learning one

to the other as well as to previously studied modes of inference. Concerning monoto-

nic language learning this question has been almost completely answered by Lange and

Zeugmann (1992A, 1993). Dual monotonic inference of languages from positive data has

been introduced in Kapur (1992) and intensively studied in Lange, Zeugmann and Kapur

(1992). In the sequel we deal with the di�erent modes of monotonic and of dual monotonic

language learning from positive and negative data. As it turns out, weak{monotonically

and dual weak{monotonically working learning devices from positive and negative data

are exactly as powerful as conservatively working ones, as we shall show. A learning

algorithm is said to be conservative i� it only performs justi�ed mind changes. That
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means, the learner may change its guess only in case if the former hypothesis \provably

misclassi�es" some word with respect to the data seen so far. Considering learning from

positive and negative examples in the setting of indexed families it is not hard to prove

that conservativeness does not restrict the inference capabilities. Surprisingly enough, in

the setting of learning recursive functions the situation is totally di�erent (cf. Freivalds,

Kinber and Wiehagen (1992)). Another interesting problem consists in characterizing

monotonic language learning. In general, characterizations play an important role in

inductive inference (cf. e.g. Wiehagen (1977, 1991), Angluin (1980), Freivalds, Kinber

and Wiehagen (1992)). On the one hand, they allow to state precisely what kind of re-

quirements a class of target objects has to ful�l in order to be learnable from eventually

incomplete data. On the other hand, they lead to deeper insights into the problem how

algorithms performing the desired learning task may be designed. Angluin (1980) proved

a characterization theorem for language learning from positive data that turned out to be

very useful in applications. In Lange and Zeugmann (1992B), we adopt the underlying

idea for characterizing all types of monotonic language learning from positive data in

terms of recursively generable �nite sets.

Because of the strong relation between inductive inference of recursive functions and

language learning from informant, one may conjecture that the characterizations for mo-

notonic learning of recursive functions (cf. Wiehagen (1991), Freivalds, Kinber and Wie-

hagen (1992)) do easily apply to monotonic language learning. However, monotonic-

ity requirements in inductive inference of recursive functions are de�ned with respect

to the graph of the hypothesized functions. This makes really a di�erence as the fol-

lowing example demonstrates. Let L � �

�

be any arbitrarily �xed in�nite context-

sensitive language. By L

fin

we denote the set of all �nite languages over �. Then we

set L

finvar

= fL [ L

fin

j L

fin

2 L

fin

g. In our setting, L

finvar

is strong{monotonically

learnable, even on text (cf. Lange and Zeugmann (1992A)). If one uses the same concept

of strong{monotonicity as in Freivalds, Kinber and Wiehagen (1992), one immediately

obtains from Jantke (1991A) that, even from informant, L

finvar

cannot be learnt strong{

monotonically. This is caused by the following facts. First, any IIM M that eventually

identi�es L

finvar

strong{monotonically with respect to the graphs of their characteristic
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functions has to output sometime a program of a recursive function. Next, the �rst pro-

gram of a recursive function has to be a correct one. Finally, it is not hard to prove that

no IIM M can satisfy the latter requirement.

In order to develop a unifying approach to all types of monotonic and of dual monotonic

language learning, we present characterizations of monotonic as well as of dual monotonic

language learning from informant in terms of recursively generable �nite sets. In doing

so, we will show that there is exactly one learning algorithm that may perform each of the

desired inference tasks from informant. Moreover, it turns out that a conceptually very

close algorithm may be also used for monotonic language learning from positive data (cf.

Lange and Zeugmann (1992B)).

2. Preliminaries

By IN = f1; 2; 3; :::g we denote the set of all natural numbers. In the sequel we

assume familiarity with formal language theory (cf. e.g. Bucher and Maurer (1984)).

By � we denote any �xed �nite alphabet of symbols. Let �

�

be the free monoid over

�. The length of a string s 2 �

�

is denoted by jsj. Any subset L � �

�

is called a

language. By co � L we denote the complement of L, i.e., co � L = �

�

n L: Let L be a

language. Let i = (s

1

; b

1

); (s

2

; b

2

); ::: be an in�nite sequence of elements of �

�

� f+;�g

such that range(i) = fs

k

j k 2 INg = �

�

, i

+

= fs

k

j (s

k

; b

k

) = (s

k

;+); k 2 INg = L and

i

�

= fs

k

j (s

k

; b

k

) = (s

k

;�); k 2 INg = co�L. Then we refer to i as an informant. If L is

classi�ed via an informant then we also say that L is represented by positive and negative

data. Moreover, let i be an informant and let x be a number. Then i

x

denotes the initial

segment of i of length x, e.g., i

3

= (s

1

; b

1

); (s

2

; b

2

); (s

3

; b

3

): Let i be an informant and let

x 2 IN. By i

+

x

and i

�

x

we denote the sets range

+

(i

x

) := fs

k

j (s

k

;+) 2 i; k � xg and

range

�

(i

x

) := fs

k

j (s

k

;�) 2 i; k � xg, respectively. Finally, we write i

x

v i

y

, if i

x

is a

pre�x of i

y

.

Following Angluin (1980) we restrict ourselves to deal exclusively with indexed families

of recursive languages de�ned as follows:

A sequence L

1

; L

2

; L

3

; ::: is said to be an indexed family L of recursive languages provided
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all L

j

are non{empty and there is a recursive function f such that for all numbers j and

all strings s 2 �

�

we have

f(j; s) =

8

>

>

<

>

>

:

1; if s 2 L

j

0; otherwise:

As an example we consider the set L of all context{sensitive languages over �. Then

L may be regarded as an indexed family of recursive languages (cf. Bucher and Maurer

(1984)). In the sequel we often denote an indexed family and its range by the same symbol

L. What is meant will be clear from the context.

As in Gold (1967) we de�ne an inductive inference machine (abbr. IIM) to be an

algorithmic device which works as follows: The IIM takes as its input larger and larger

initial segments of an informant i and it either requires the next input piece of information,

or it �rst outputs a hypothesis, i.e., a number encoding a certain computer program, and

then it requires the next information (cf. e.g. Angluin (1980)).

At this point we have to clarify what space of hypotheses we should choose, thereby

also specifying the goal of the learning process. Gold (1967) and Wiehagen (1977) pointed

out that there is a di�erence in what can be inferred in dependence on whether we want

to synthesize in the limit grammars (i.e., procedures generating languages) or decision

procedures, i.e., programs of characteristic functions. Case and Lynes (1982) investigated

this phenomenon in detail. As it turns out, IIMs synthesizing grammars can be more

powerful than those ones which are requested to output decision procedures. However, in

the context of identi�cation of indexed families both concepts are of equal power. Nev-

ertheless, we decided to require the IIMs to output grammars. This decision has been

caused by the fact that there is a big di�erence between the possible monotonicity re-

quirements. A straightforward adaptation of the approaches made in inductive inference

of recursive functions directly yields analogous requirements with respect to the corre-

sponding characteristic functions of the languages to be inferred. On the other hand, it is

only natural to interpret monotonicity and dual monotonicity with respect to the language

to be learnt, i.e., to require containment of languages as described in the introduction.

The latter approach increases considerably the power of monotonic and of dual monotonic
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language learning (cf. e.g. the example presented in the introduction). Furthermore, since

we exclusively deal with indexed families L = (L

j

)

j2IN

of recursive languages we almost

always take as space of hypotheses an enumerable family of grammars G

1

; G

2

; G

3

; ::: over

the terminal alphabet � satisfying L = fL(G

j

) j j 2 INg. Moreover, we require that

membership in L(G

j

) is uniformly decidable for all j 2 IN and all strings s 2 �

�

. As it

turns out, it is sometimes very important to choose the space of hypotheses appropriately

in order to achieve the desired learning goal. Then the IIM outputs numbers j which we

interpret as G

j

.

A sequence (j

x

)

x2IN

of numbers is said to be convergent in the limit if and only if there

is a number j such that j

x

= j for almost all numbers x:

De�nition 1. (Gold, 1967) Let L be an indexed family of languages, L 2 L; and let

(G

j

)

j2IN

be a space of hypotheses. An IIM M LIM � INF{identi�es L on an informant

i i� it almost always outputs a hypothesis and the sequence (M (i

x

))

x2IN

converges in the

limit to a number j such that L = L(G

j

).

Moreover, M LIM � INF{identi�es L, i� M LIM � INF{identi�es L on every infor-

mant for L. We set:

LIM � INF (M) = fL 2 L jM LIM � INF � identifies Lg.

Finally, let LIM � INF denote the collection of all indexed families L of recursive lan-

guages for which there is an IIM M such that L � LIM � INF (M).

De�nition 1 could be easily generalized to arbitrary families of recursively enumerable

languages (cf. Osherson et al. (1986)). Nevertheless, we exclusively consider the restricted

case de�ned above, since our motivating examples are all indexed families of recursive

languages. Note that, in general, it is not decidable whether or not M has already

inferred L. Within the next de�nition, we consider the special case that it has to be

decidable whether or not an IIM has successfully �nished the learning task.

De�nition 2. (Trakhtenbrot and Barzdin, 1970) Let L be an indexed family of

languages, L 2 L; and let (G

j

)

j2IN

be a space of hypotheses. An IIM M FIN � INF{

identi�es L on an informant i i� it outputs only a single and correct hypothesis j, i.e.,

L = L(G

j

), and stops.

Moreover, M FIN�INF{identi�es L, i� M FIN�INF{identi�es L on every informant
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for L. We set: FIN � INF (M ) = fL 2 L jM FIN � INF � identi�es Lg.

The resulting identi�cation type is denoted by FIN � INF . Next, we formally de�ne

strong{monotonic, monotonic and weak{monotonic inference.

De�nition 3. (Jantke, 1991A, Wiehagen 1991) An IIM M is said to identify a

language L from informant

(A) strong{monotonically

(B) monotonically

(C) weak{monotonically

i�

M LIM � INF{identi�es L and for any informant i of L as well as for any two

consecutive hypotheses j

x

, j

x+k

which M has produced when fed i

x

and i

x+k

, for some

k � 1; k 2 IN, the following conditions are satis�ed:

(A) L(G

j

x

) � L(G

j

x+k

)

(B) L(G

j

x

) \ L � L(G

j

x+k

) \ L

(C) if i

+

x+k

� L(G

j

x

) and i

�

x+k

� co� L(G

j

x

), then L(G

j

x

) � L(G

j

x+k

):

We denote by SMON�INF; MON�INF , andWMON�INF the collection of all

thoses sets L of indexed families of languages for which there is an IIM inferring it strong{

monotonically, monotonically, and weak{monotonically from informant, respectively.

We continue in de�ning conservatively working IIMs. Intuitively speaking, a conserva-

tively working IIM performs exclusively justi�ed mind changes. Note thatWMON�INF

= CONSERVATIVE{INF (cf.Lange and Zeugmann (1992A, 1993)).

De�nition 4. (Angluin, 1980A)

An IIM M CONSERVATIVE{INF{identi�es L from informant i, i� for every informant

i the following conditions are satis�ed:
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(1) L 2 LIM � INF (M)

(2) If M on input i

x

makes the guess j

x

and then makes the guess j

x+k

6= j

x

at some

subsequent step, then L(G

j

x

) must fail either to contain some string s 2 i

+

x+k

or it

generates some string s 2 i

�

x+k

:

CONSERVATIVE{INF(M) as well as the collection of sets CONSERVATIVE{INF

are de�ned in an analogous manner as above.

Finally in this section, we de�ne the corresponding modes of dual monotonic language

learning.

De�nition 5. (Kapur, 1992) An IIM M is said to identify a language L from

informant

(A) dual strong{monotonically

(B) dual monotonically

(C) dual weak{monotonically

i�

M LIM � INF{identi�es L and for any informant i of L as well as for any two

consecutive hypotheses j

x

, j

x+k

which M has produced when fed i

x

and i

x+k

, for some

k � 1; k 2 IN, the following conditions are satis�ed:

(A) co� L(G

j

x

) � co� L(G

j

x+k

)

(B) co� L(G

j

x

) \ co� L � co � L(G

j

x+k

) \ co� L

(C) if i

+

x+k

� L(G

j

x

) and i

�

x+k

� co� L(G

j

x

), then co� L(G

j

x

) � co� L(G

j

x+k

):

We denote by SMON

d

�INF; MON

d

�INF , and WMON

d

�INF the family of all

thoses sets L of indexed families of languages for which there is an IIM inferring it dual

strong{monotonically, dual monotonically, and dual weak{monotonically from informant,

respectively.

8



3. Monotonic and Dual Monotonic Inference

The aim of the present chapter is to relate the di�erent types of monotonic and of dual

monotonic language learning one to the other. Some of the results originate from Lange

and Zeugmann (1993).

The following proposition is obvious.

Proposition 1.

(1) FIN�INF � SMON�INF �MON�INF � WMON�INF � LIM�INF

(2) FIN � INF � SMON

d

� INF �MON

d

� INF � WMON

d

� INF � LIM �

INF

Our �rst theorem actually shows what monotonic and dual monotonic language learn-

ing from informant have in common and where the di�erences are.

Theorem 1.

(1) WMON � INF = WMON

d

� INF = LIM � INF

(2) MON � INF # MON

d

� INF

(3) SMON � INF # SMON

d

� INF

Proof. For assertion (1) one has simply to recognize that any indexed family L can

be identi�ed from informant by an IIM that works by the identi�cation by enumeration

principle (cf. Gold (1967)). This IIM performs only justi�ed mind changes. Hence, it

works weak{monotonically as well as dual weak{monotonically. The remaining part is

shown via the following claims.

Claim A. MON � INF nMON

d

� INF 6= ;

We set L

1

= fag

�

, L

k

= fa

n

j 1 � n � kg [ fb

n

j k < ng for k � 2, and L

k;m

= fa

n

j 1 �

n � kg [ fb

n

j k < n � mg [ fc

m

g for m > k � 2. Assume L to be any appropriate

enumeration of all these languages. First, we show that L 2MON � INF . The wanted

IIM M which monotonically identi�es L works as follows: As long as some (a

n

;�) does
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not appear in the informant, the machine outputs a grammar for L

1

. In case it does,

M performs a mind change, when both (a

k

;+) and (b

k+1

;+) have been seen. Then, M

outputs a grammar for L

k

as long as no pair (c

m

;+) is presented. If such a pair does

appear, M changes its mind and outputs a grammar for L

k;m

. In any subsequent step,

M repeats this hypothesis . Obviously, M monotonically identi�es L.

It remains to show that L 62MON

d

�INF . Suppose the converse, i.e., there is an IIM

M which dual monotonically infers L. Let i be any informant for fag

�

. Hence, there must

be an x such that j

x

=M (i

x

) and L(G

j

x

) = fag

�

. Let k = maxfjsj j s 2 i

+

x

[ i

�

x

g. Then,

we consider any informant

~

i for L

k

with i

x

v

~

i. Since L

k

2 L, there has to be a y such that

j

y

= M (

~

i

y

) and L(G

j

y

) = L

k

. Let m = maxfjsj j s 2

~

i

+

y

[

~

i

�

y

g. Obviously,

~

i

y

is an initial

segment of an informant i

fool

for L

k;m

. Thus, M either does not work dual monotonically

on i

fool

or it fails to infer L

k;m

. If M produces sometime the hypothesis j

x

and afterwards

j

y

when processing i

fool

, then b

m+1

2 co�L

1

\ co�L

k;m

, but b

m+1

62 co� L

k

\ co� L

k;m

which violates the dual monotonicity requirement.

Claim B. MON

d

� INF nMON � INF 6= ;

We de�ne an indexed family over fa; bg as follows: We set L

1

= fag

�

, L

k

= fa

n

j 1 �

n � kg [ fb

k+1

g with k � 2, and L

k;m

= L

k

[ fa

m

g with m > k � 2. Assume L to be

any appropriate enumeration of all these languages. An IIM M which dual monotonically

identi�es L may work as follows: Let L 2 L and let i be any informant for L. As long

as no (a

n

;�) does appear in the informant i, the machine outputs a grammar for L

1

. If

a pair (a

n

;�) is presented, M performs a mind change when both, (a

k

;+) and (b

k+1

;+),

have been seen. In this case, M outputs a grammar for L

k

as long as no pair (a

m

;+) with

m > k will be presented. If such a pair does appear, M changes its mind to and outputs

a grammar for L

k;m

. This hypothesis is then repeated in any subsequent step.

Obviously, M identi�es L. It remains to show that M works dual monotonically. By

construction, M performs at most two mind changes, i.e., it eventually outputs j

x

for L

1

,

j

x+z

for L

k

and �nally j

x+z+y

for L

k;m

. Then, we have co�L

1

\co�L

k;m

� co�L

k

\ co�

L

k;m

� co�L

k;m

, since co�L

k;m

= co�L

k

nfa

m

g. Hence, co�L

k

\co�L

k;m

= co�L

k;m

.

We continue in showingL 62MON�INF . Suppose there is an IIMM which monoton-

ically infers L. Let i be any informant for fag

�

. Hence, there must be an x such that

10



j

x

= M(i

x

) and L(G

j

x

) = L

1

. Let k = maxfjsj j s 2 i

+

x

[ i

�

x

g. Then, i

x

will be extended

to an informant

~

i for L

k

. Since L

k

2 L, there has to exist a y such that j

y

= M (

~

i

y

) and

L(G

j

y

) = L

k

. Let m = maxfjsj j s 2

~

i

+

y

[

~

i

�

y

g. Obviously,

~

i

y

is an initial segment of

an informant i

fool

for L

k;m

. It is easy to see that M either does not work monotonically

or it fails to infer L

k;m

from i

fool

. If M performs the described mind changes when in-

ferring L

k;m

from i

fool

, we have a

m

2 L

1

\ L

k;m

, but a

m

62 L

k

\ L

k;m

. This violates the

monotonicity requirement.

Claim C. SMON � INF n SMON

d

� INF 6= ;

By L

fin

we denote the set of all �nite languages over the alphabet � = fag. Obviously,

L 2 SMON � INF . It is easy to see that L 62 SMON

d

� INF .

Claim D. SMON

d

� INF n SMON � INF 6= ;

We de�ne L = L

1

; L

2

; ::: as follows: L

1

= fag

�

and L

k

= fa

j

j 1 � j � kg for k � 2. It

is easy to recognize that L 2 SMON

d

� INF . On the other hand, L 62 LIM � TXT ,

but SMON � INF � LIM � TXT (cf. Lange and Zeugmann (1992A, 1993)). Hence

L 62 SMON � INF .

q.e.d.

Corollary 1.

(1) FIN � INF � SMON

d

� INF

(2) FIN � INF � SMON � INF

Proof. By Proposition 1 we know that FIN � INF � SMON � INF \ SMON

d

�

INF . Since SMON � INF#SMON

d

� INF , we immediately conclude FIN � INF 6=

SMON � INF as well as FIN � INF 6= SMON

d

� INF .

q.e.d.

Next to, we combine the monotonicity constraints characterized in De�nition 3 and

De�nition 5. This may help to obtain a better understanding of the relationship between

monotonic language learning and other well{known types of language learning.

De�nition 6. (Kapur, 1992) Let SMON

&

� INF denote the class of indexed

families identi�able by an IIM which works strong{monotonically as well as dual strong{

11



monotonically. The classes MON

&

�INF and WMON

&

�INF are analogously de�ned.

Theorem 2.

(1) WMON

&

� INF = LIM � INF

(2) SMON � INF �MON

&

� INF

(3) SMON

d

� INF �MON

&

� INF

(4) FIN � INF = SMON

&

� INF

Proof. By applying the same arguments as in the proof of Theorem 1 one may show

assertion (1). It is easy to see that SMON�INF �MON

&

�INF as well as SMON

d

�

INF �MON

&

� INF . Together with assertion (3) of Theorem 1, we conclude (2) and

(3). Finally, a closer look at De�nition 3(A) and 5(A) directly yields assertion (4).

q.e.d.

The following picture summarizes the results presented above.

WMON � INF

&

=WMON

d

� INF =WMON � INF = LIM � INF

�

�

�

�

Z

Z

Z

Z

MON

d

� INF

MON � INF

Z

Z

Z

Z

�

�

�

�

MON

&

� INF

�

�

�

�

Z

Z

Z

Z

SMON

d

� INF

SMON � INF

Z

Z

Z

Z

�

�

�

�

SMON

&

� INF = FIN � INF

Figure 1
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All lines between identi�cation types indicate inclusions in the sense that the upper

type always properly contains the lower one. If two identi�cation types are not connected

by ascending lines then they are incomparable.

4. Characterization Theorems

In this section we give characterizations of all types of monotonic language learning

from positive and negative data. Characterizations play an important role in that they

lead to a deeper insight into the problem how algorithms performing the inference process

may work (cf. e.g. Blum and Blum (1975), Wiehagen (1977, 1991), Angluin (1980),

Zeugmann (1983), Jain and Sharma (1989)). Starting with the pioneering paper of Blum

and Blum (1975), several theoretical frameworks have been used for characterizing identi-

�cation types. For example, characterizations in inductive inference of recursive functions

have been formulated in terms of complexity theory (cf. Blum and Blum (1975), Wieha-

gen and Liepe (1976), Zeugmann (1983)) and in terms of computable numberings (cf. e.g.

Wiehagen (1977), (1991) and the references therein). Surprisingly, some of the presented

characterizations have been successfully applied for solving highly nontrivial problems in

complexity theory. Moreover, up to now it remained open how to solve the same problems

without using these characterizations. It seems that characterizations may help to get

a deeper understanding of the theoretical framework where the concepts for characteriz-

ing identi�cation types are borrowed from. The characterization for SMON � TXT (cf.

Lange and Zeugmann (1992B)) can be considered as further example along this line. This

characterization has the following consequence. If L 2 SMON�TXT , then set inclusion

in L is decidable (if one chooses an appropriate description of L). On the other hand,

Jantke (1991B) proved that, if set inclusion of pattern languages is decidable, then the

family of all pattern languages may be inferred strong{monotonically from positive data.

However, it remained open whether the converse is also true. Using our result, we see

it is, i.e., if one can design an algorithm that learns the family of all pattern languages

strong{monotonically from positive data, then set inclusion of pattern languages is decid-

able. This may show at least a promising way how to solve the open problem whether or

not set inclusion of pattern languages is decidable.

13



Our �rst theorem characterizes SMON � INF in terms of recursively generable �nite

positive and negative tell{tales. A family of �nite sets (P

j

)

j2IN

is said to be recursively

generable, i� there is a total e�ective procedure g which, on every input j, generates all

elements of P

j

and stops. If the computation of g(j) stops and there is no output, then

P

j

is considered to be empty. Finally, for notational convenience we use L(G) to denote

fL(G

j

) j j 2 INg for any space G = (G

j

)

j2IN

of hypotheses.

Theorem 3. Let L be an indexed family of recursive languages. Then: L 2 SMON�

INF if and only if there are a space of hypotheses

^

G = (

^

G

j

)

j2IN

and recursively generable

families (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

of �nite sets such that

(1) range(L) = L(

^

G)

(2) For all j 2 IN, ; 6=

^

P

j

� L(

^

G

j

) and

^

N

j

� co� L(

^

G

j

).

(3) For all k; j 2 IN, if

^

P

k

� L(

^

G

j

) as well as

^

N

k

� co� L(

^

G

j

), then L(

^

G

k

) � L(

^

G

j

).

Proof. Necessity: Let L 2 SMON � INF . Then there are an IIM M and a space of

hypotheses (G

j

)

j2IN

such that M infers any L 2 L strong{monotonically with respect to

(G

j

)

j2IN

. We proceed in showing how to construct (

^

G

j

)

j2IN

. This will be done in two

steps. In the �rst step, we de�ne a space of hypotheses (

~

G

j

)

j2IN

as well as corresponding

recursively generable families (

~

P

j

)

j2IN

and (

~

N

j

)

j2IN

of �nite sets where

~

P

j

may be empty

for some j 2 IN. Afterwards, we de�ne a procedure which enumerates a certain subset of

~

G.

First step: Let c : IN � IN ! IN be Cantor's pairing function. For all k; x 2 IN we

set

~

G

c(k;x)

= G

k

. Obviously, it holds range(L) = L(

~

G). Let i

k

be the lexicographically

ordered informant for L(G

k

), and let x 2 IN.

We de�ne:

~

P

c(k;x)

=

8

>

>

<

>

>

:

range

+

(i

k

y

); if y = minfz j z � x; M(i

k

z

) = k; range

+

(i

k

z

) 6= ;g

;; otherwise

If

~

P

c(k;x)

= range

+

(i

k

y

) 6= ;, then we set

~

N

c(k;x)

= range

�

(i

k

y

). Otherwise, we de�ne

~

N

c(k;x)

= ;:

14



Second step: The space of hypotheses (

^

G

j

)

j2IN

will be de�ned by simply striking o� all

grammars

~

G

c(k;x)

with

~

P

c(k;x)

= ;. In order to save readability, we omit the corresponding

bijective mapping yielding the enumeration (

^

G

j

)

j2IN

from (

~

G

j

)

j2IN

. If

^

G

j

is referring to

~

G

c(k;x)

, we set

^

P

j

=

~

P

c(k;x)

as well as

^

N

j

=

~

N

c(k;x)

.

We have to show that (

^

G

j

)

j2IN

, (

^

N

j

)

j2IN

, and (

^

P

j

)

j2IN

do ful�l the announced prop-

erties. Obviously, (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

are recursively generable families of �nite sets.

Furthermore, it is easy to see that L(

^

G) � range(L). In order to prove (1), it su�ces to

show that for every L 2 L there is at least one j 2 IN with L = L(

~

G

j

) and

~

P

j

6= ;. Let

i

L

be L's lexicographically ordered informant. Since M has to infer L from i

L

, too, and

L 6= ;, there are k; x 2 IN such that M(i

L

x

) = k; L = L(G

k

); range

+

(i

L

x

) 6= ; as well

as M (i

L

y

) 6= k for all y < x. From that we immediately conclude that L = L(

~

G

j

) and

that

~

P

j

6= ; for j = c(k; x). Due to our construction, property (2) is obviously ful�lled.

It remains to show (3). Suppose k; j 2 IN such that

^

P

k

� L(

^

G

j

) and

^

N

k

� co� L(

^

G

j

).

We have to show L(

^

G

k

) � L(

^

G

j

). In accordance with our construction one can easily

observe: There is a uniquely de�ned initial segment, say i

k

x

, of the lexicographically or-

dered informant for L(

^

G

k

) such that range(i

k

x

) =

^

P

k

[

^

N

k

. Furthermore, M(i

k

x

) = m

with L(

^

G

k

) = L(G

m

). Additionally, since

^

P

j

� L(

^

G

j

) as well as

^

N

k

� co � L(

^

G

j

), i

k

x

is

an initial segment of the lexicographically ordered informant i

j

of L(

^

G

j

).

Since M infers L(

^

G

j

) from informant i

j

, there exist r; n 2 IN such that M(i

j

x+r

) = n

and L(

^

G

j

) = L(G

n

). Moreover, M works strong{monotonically. Thus, by the transitivity

of \�" we obtain L(

^

G

k

) � L(

^

G

j

).

Su�ciency: It su�ces to prove that there is an IIM M inferring any L 2 L from any

informant with respect to

^

G. So let L 2 L, let i be any informant for L, and let x 2 IN.

M(i

x

) = \Generate

^

P

j

and

^

N

j

for j = 1; :::; x and test whether

(A)

^

P

j

� i

+

x

� L(

^

G

j

), and

(B)

^

N

j

� i

�

x

� co� L(

^

G

j

).

In case there is at least a j ful�lling the test, output the minimal one, and request

the next input.
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Otherwise output nothing and request the next input."

Since all of the

^

P

k

and

^

N

k

are uniformly recursively generable and �nite, we see that

M is an IIM. We have to show that it infers L. Let z = �k[L = L(

^

G

k

)]. We claim that

M converges to z. Consider

^

P

1

; :::;

^

P

z

as well as

^

N

1

; :::;

^

N

z

. Then there must be an x

such that

^

P

z

� i

+

x

� L(

^

G

z

) and

^

N

z

� i

�

x

� co�L(

^

G

z

). That means, at least after having

fed i

x

to M , the machine M outputs a hypothesis. Moreover, since

^

P

z

� i

+

x+r

� L(

^

G

z

)

and

^

N

z

� i

�

x+r

� co� L(

^

G

z

) for all r 2 IN, the IIM M never produces a guess j > z on

i

x+r

. Suppose, M converges to j < z. Then we have

^

P

j

� i

+

x+r

� L(

^

G

j

) 6= L(

^

G

z

) and

^

N

j

� i

�

x+r

� co� L(

^

G

j

) for all r 2 IN.

Case 1. L(

^

G

z

) n L(

^

G

j

) 6= ;

Consequently, there is at least one string s 2 L(

^

G

z

)nL(

^

G

j

) such that (s;+) has to appear

sometimes in i, say in i

x+r

for some r. Thus, i

+

x+r

6� L(

^

G

j

), a contradiction.

Case 2. L(

^

G

j

) n L(

^

G

z

) 6= ;

Then we may restrict ourselves to the case L(

^

G

z

) � L(

^

G

j

), since otherwise we are again

in Case 1. Consequently, there is at least one string s 2 L(

^

G

j

)nL(

^

G

z

) such that (s;�) has

to appear sometime in i, say in i

x+r

for some r. Thus, i

�

x+r

6� co�L(

^

G

j

), a contradiction.

Therefore, M converges to z from informant i. In order to complete the proof we

show that M works strong{monotonically. Suppose that M sometimes outputs k and

changes its mind to j in some subsequent step. Hence, M (i

x

) = k and M(i

x+r

) = j ,

for some x; r 2 IN. Due to the construction of M , we obtain

^

P

k

� i

+

x

� i

+

x+r

� L(

^

G

j

)

and

^

N

k

� i

�

x

� i

�

x+r

� co � L(

^

G

j

). This yields

^

P

k

� L(

^

G

j

) as well as

^

N

k

� co� L(

^

G

j

).

Finally, (3) implies L(

^

G

k

) � L(

^

G

j

). Hence, M works indeed strong{monotonically.

q.e.d.

In turns out that we obtain a quite similar characterization for SMON

d

� INF . The

same proof technique presented above applies mutatis mutandis to prove Theorem 4.

Theorem 4. Let L be an indexed family of recursive languages. Then: L 2 SMON

d

�

INF if and only if there are a space of hypotheses

^

G = (

^

G

j

)

j2IN

and recursively generable

families (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

of �nite sets such that
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(1) range(L) = L(

^

G)

(2) For all j 2 IN, ; 6=

^

P

j

� L(

^

G

j

) and

^

N

j

� co� L(

^

G

j

).

(3) For all k; j 2 IN, if

^

P

k

� L(

^

G

j

) as well as

^

N

k

� co � L(

^

G

j

), then co � L(

^

G

k

) �

co� L(

^

G

j

).

Next to, we characterize SMON

&

�INF . Because SMON

&

�INF = FIN�INF , it

su�ces to present a characterization for FIN�INF . Note that a bit weaker theorem has

been obtained independently by Mukouchi (1991). The di�erence is caused by Mukouchi's

(1991) de�nition of �nite identi�cation from informant, since he demanded any indexed

family L to be �nitely learnt with respect to L itself. Therefore the problem arises whether

or not this requirement might lead to a decrease in the inferring power. It does not, as

we shall see.

However, even the next theorem has some special features distinguishing it from the

characterizations already given. As pointed out above, dealing with characterizations

has been motivated by the aim to elaborate a unifying approach to monotonic inference.

Concerning SMON � INF as well as SMON

d

� INF this goal has been completely met

by showing that there is exactly one algorithm, i.e., that one described in Theorem 3 and

Theorem 4, which can perform the desired inference task, if the space of hypotheses is

appropriately chosen. The next theorem yields even a stronger implication. Namely, it

shows, if there is a space of hypotheses at all such that L 2 FIN � INF with respect to

this space, then one can always use L itself as space of hypotheses, thereby again applying

essentially one and the same inference procedure.

Theorem 5. Let L be an indexed family of recursive languages. Then: L 2 FIN �

INF if and only if there are recursively generable families (P

j

)

j2IN

and (N

j

)

j2IN

of �nite

sets such that

(1) For all j 2 IN, ; 6= P

j

� L

j

and N

j

� co� L

j

.

(2) For all k; j 2 IN, if P

k

�  L

j

and N

k

� co� L

j

, then L

k

= L

j

.

Proof. Necessity: Let L 2 FIN � INF . Then there are a space G = (G

j

)

j2IN

of

hypotheses and an IIM M such that M �nitely infers L with respect to G. We proceed in

17



showing how to construct (P

j

)

j2IN

and (N

j

)

j2IN

. This is done in three steps. First, it does

not seem likely, though conceivable that M produces its output before having received

any pair (s;+). Such a behavior might cause some technical trouble, since we aim to

construct a family of non{empty tell{tales (P

j

)

j2IN

. Therefore, we replace M by an IIM

^

M as follows: On any input i

x

,

^

M simulates M on input i

x

. If M produces a hypothesis

on i

x

, the IIM

^

M additionally checks whether or not i

+

x

6= ;. In case it is,

^

M outputs

M(i

x

) and stops. Otherwise,

^

M requests next input, until i

+

x+r

6= ; for some r 2 IN.

Then it outputs M(i

x

) and stops. In particular, L is a family of non{empty languages.

Thus, L 2 FIN � INF (

^

M), since L 2 FIN � INF (M). Second, we construct (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

with respect to the space G of hypotheses. Third, we describe a procedure

yielding the wanted families (P

j

)

j2IN

and (N

j

)

j2IN

with respect to L.

Let k 2 IN be arbitrarily �xed. Furthermore, let i

k

be the lexicographically ordered

informant of L(G

k

). Since

^

M �nitely infers L(G

k

) from i

k

, there exists an x 2 IN such

that

^

M(i

k

x

) = m with L(G

k

) = L(G

m

). We set

^

P

k

= range

+

(i

k

x

) and

^

N

k

= range

�

(i

k

x

).

The desired families (P

z

)

z2IN

and (N

z

)

z2IN

are obtained as follows. Let z 2 IN. In order

to get P

z

and N

z

search for the least j 2 IN such that

^

P

j

� L

z

and

^

N

j

� co � L

z

. Set

P

z

=

^

P

j

and N

z

=

^

N

j

. Note that, by construction, for every z at least one wanted j has

to exist.

We have to show that (P

j

)

j2IN

and (N

j

)

j2IN

ful�l the announced properties. Due to

our construction, property (1) holds obviously. It remains to show (2). Suppose z; y 2 IN

such that P

z

� L

y

and N

z

� co � L

y

. In accordance with our construction there is an

index k such that P

z

=

^

P

k

and N

z

=

^

N

k

. Moreover, due to construction there is an

initial segment of the lexicographically ordered informant i

k

of L(G

k

), say i

k

x

, such that

range(i

k

x

) =

^

P

k

[

^

N

k

. Furthermore,

^

M(i

k

x

) = m with L(G

k

) = L(G

m

). Since

^

P

k

� L

y

and

^

N

k

� co�L

y

, i

k

x

is an initial segment of some informant for L

y

, too. Taking into account

that

^

M �nitely infers L

y

from any informant and that

^

M(i

k

x

) = m, we immediately

obtain L

y

= L(G

m

). Finally, due to the de�nition of P

z

and N

z

we additionally know

that

^

P

k

� L

z

and

^

N

k

� co � L

z

, hence the same argument again applies and yields

L

z

= L(G

m

). Consequently, L

z

= L

y

. This proves (2).

Su�ciency: It su�ces to prove that there is an IIM M that �nitely infers any L 2 L
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from any informant with respect to L. So let L 2 L, let i be any informant for L, and

x 2 IN.

M(i

x

) = \Generate P

j

and N

j

for j = 1; :::; x and test whether

(A) P

j

� i

+

x

� L

j

and

(B) N

j

� i

�

x

� co� L

j

.

In case there is at least a j ful�lling the test, output the minimal one and stop.

Otherwise, output nothing and request the next input."

Since all of the P

j

and N

j

are uniformly recursively generable and �nite, we see that

M is an IIM. We have to show that it �nitely infers L. Let j = �n[L = L

n

]. Then

there must be an x 2 IN such that P

j

� i

+

x

as well as N

j

� i

�

x

. That means, at least

after having fed i

x

to M , the machine M outputs a hypothesis and stops. Suppose M

produces a hypotheses k with k 6= j and stops. Hence, there has to be a z with z < x

such that P

k

� i

+

z

and N

k

� i

�

z

. Since z < x, it follows P

k

� L

j

and N

k

� co � L

j

.

Hence, (2) implies L

k

= L

j

. Consequently, M outputs a correct hypothesis for L and

stops afterwards.

q.e.d.

We continue in characterizing MON � INF as well as MON

d

� INF .

Theorem 6. Let L be an indexed family of recursive languages. Then: L 2MON �

INF if and only if there are a space of hypotheses

^

G = (

^

G

j

)

j2IN

and recursively generable

families (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

of �nite sets such that

(1) range(L) = L(

^

G)

(2) For all j 2 IN, ; 6=

^

P

j

� L(

^

G

j

) and

^

N

j

� co� L(

^

G

j

)

(3) For all k; j 2 IN, and for all L 2 L, if

^

P

k

[

^

P

j

� L(

^

G

j

) \ L as well as

^

N

k

[

^

N

j

�

co� L(

^

G

j

) \ co� L, then L(

^

G

k

) \ L � L(

^

G

j

) \ L.
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Proof. Necessity: Let L 2 MON � INF . Then there are an IIM M and a space of

hypotheses (G

j

)

j2IN

such thatM infers any L 2 L monotonically from any informant with

respect to (G

j

)

j2IN

. Without loss of generality, we can assume that M works conserva-

tively, too, (cf. Lange and Zeugmann (1992A, 1993)). The space of hypotheses (

^

G

j

)

j2IN

as well as the corresponding recursively generable families (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

of �nite

sets are de�ned as in the proof of Theorem 1.

We proceed in showing that (

^

G

j

)

j2IN

, (

^

N

j

)

j2IN

, and (

^

P

j

)

j2IN

do ful�l the announced

properties. By applying the same arguments as in the proof of Theorem 3 one obtains

(1) and (2). It remains to show (3). Suppose L 2 L and k; j 2 IN such that

^

P

k

[

^

P

j

�

L(

^

G

j

)\L as well as

^

N

k

[

^

N

j

� co�L(

^

G

j

)\co�L. We have to show L(

^

G

k

)\L � L(

^

G

j

)\L.

Due to our construction, we can make the following observations. There is a uniquely

de�ned initial segment of the lexicographically ordered informant i

k

for L(

^

G

k

) , say i

k

x

,

such that range(i

k

x

) =

^

P

k

[

^

N

k

. Moreover, M (i

k

x

) = m with L(

^

G

k

) = L(G

m

). By i

j

y

we

denote the uniquely de�ned initial segment of the lexicographically ordered informant i

j

for L(

^

G

j

) with range(i

j

y

) =

^

P

j

[

^

N

j

. Furthermore, M(i

j

y

) = n and L(

^

G

j

) = L(G

n

). From

^

P

k

� L(

^

G

j

) and

^

N

k

� co � L(

^

G

j

), it follows i

k

x

v i

j

. Since

^

P

j

� L and

^

N

j

� co � L, we

conclude that i

j

y

is an initial segment of the lexicographically ordered informant i

L

for L.

We have to distinguish the following three cases.

Case 1. x = y

Hence, m = n and therefore L(

^

G

k

) = L(

^

G

j

). This implies L(

^

G

k

) \ L � L(

^

G

j

) \ L.

Case 2. x < y

Now, we have i

k

x

v i

j

y

v i

L

. Moreover, M monotonically infers L from informant i

L

. By

the transitivity of \�" we immediately obtain L(

^

G

k

) \ L � L(

^

G

j

) \ L.

Case 3. y < x

Hence, i

j

y

v i

k

x

v i

j

. Since M works conservatively, too, it follows m = n. Therefore,

L(

^

G

k

) = L(

^

G

j

). This implies L(

^

G

k

) \ L � L(

^

G

j

) \ L.

Hence, (

^

G

j

)

j2IN

, (

^

N

j

)

j2IN

as well as (

^

P

j

)

j2IN

have indeed the announced properties.

Su�ciency: It su�ces to prove that there is an IIM M inferring any L 2 L monoton-

ically from any informant with respect to

^

G. So let L 2 L, let i be any informant for L,
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and x 2 IN.

M(i

x

) = \Generate

^

P

j

and

^

N

j

for j = 1; :::; x and test whether

(A)

^

P

j

� i

+

x

� L(

^

G

j

) and

(B)

^

N

j

� i

�

x

� co� L(

^

G

j

).

In case there is at least a j ful�lling the test, output the minimal one and request

the next input.

Otherwise, output nothing and request the next input."

Since all of the

^

P

k

and

^

N

k

are uniformly recursively generable and �nite, we see that

M is an IIM. We have to show that it infers L. Let z = �k[L = L(

^

G

k

)]. We claim that

M converges to z. Consider

^

P

1

; :::;

^

P

z

as well as

^

N

1

; :::;

^

N

z

. Then there must be an x

such that

^

P

z

� i

+

x

� L(

^

G

z

) and

^

N

z

� i

�

x

� co�L(

^

G

z

). That means, at least after having

fed i

x

to M , the machine M outputs a hypothesis. Moreover, since

^

P

z

� i

+

x+r

� L(

^

G

z

) as

well as

^

N

z

� i

�

x+r

� co � L(

^

G

z

) for all r 2 IN, the IIM M never produces a guess j > z

on i

x+r

.

Suppose, M converges to j < z. Then we have:

^

P

j

� i

+

x+r

� L(

^

G

j

) 6= L(

^

G

z

) and

^

N

j

� i

�

x+r

� co� L(

^

G

j

) for all r 2 IN.

Case 1. L(

^

G

z

) n L(

^

G

j

) 6= ;

Consequently, there is at least one string s 2 L(

^

G

z

)nL(

^

G

j

) such that (s;+) has to appear

sometime in i, say in i

x+r

for some r. Thus, we have i

+

x+r

6� L(

^

G

j

), a contradiction.

Case 2. L(

^

G

j

) n L(

^

G

z

) 6= ;

Then we may restrict ourselves to the case L(

^

G

z

) � L(

^

G

j

), since otherwise we are again

in Case 1. Consequently, there is at least one string s 2 L(

^

G

j

)nL(

^

G

z

) such that (s;�) has

to appear sometime in i, say in i

x+r

for some r. Thus, i

�

x+r

6� co�L(

^

G

j

), a contradiction.

Consequently, M converges to z from informant i. To complete the proof we show

that M works monotonically. Suppose M outputs k and changes its mind to j in some

subsequent step. Consequently, M(i

x

) = k and M(i

x+r

) = j , for some x; r 2 IN.
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Case 1. L(

^

G

j

) = L

Hence, L(

^

G

k

) \ L � L(

^

G

j

) \ L = L is obviously ful�lled.

Case 2. L(

^

G

j

) 6= L

Due to the de�nition of M , it holds

^

P

k

� i

+

x

� i

+

x+r

� L(

^

G

j

). Hence,

^

P

k

� L \ L(

^

G

j

).

Furthermore, we have

^

N

k

� i

�

x

� i

�

x+r

� co�L(

^

G

j

). This implies

^

N

k

� co�L(

^

G

j

)\co�L.

SinceM (i

x+r

) = j, it holds that

^

P

j

� L and

^

N

j

� co�L. This yields

^

P

k

[

^

P

j

� L(

^

G

j

)\L

as well as

^

N

k

[

^

N

j

� co� L(

^

G

j

) \ co� L. From (3), we obtain L(

^

G

k

) \ L � L(

^

G

j

) \ L:

Hence, M MON � INF{identi�es L.

q.e.d.

Next we present the announced characterization of MON

d

� INF .

Theorem 7. Let L be an indexed family of recursive languages. Then: L 2MON

d

�

INF if and only if there are a space of hypotheses

^

G = (

^

G

j

)

j2IN

and recursively generable

families (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

of �nite sets such that

(1) range(L) = L(

^

G)

(2) For all j 2 IN, ; 6=

^

P

j

� L(

^

G

j

) and

^

N

j

� co� L(

^

G

j

)

(3) For all k; j 2 IN, and for all L 2 L, if

^

P

k

[

^

P

j

� L(

^

G

j

) \ L as well as

^

N

k

[

^

N

j

�

co� L(

^

G

j

) \ co� L, then co� L(

^

G

k

) \ co� L � co� L(

^

G

j

) \ co� L.

Proof. Necessity: Let L 2 MON

d

� INF . Then there are an IIM M and a space of

hypotheses (G

j

)

j2IN

such thatM infers any L 2 L dual monotonically from any informant

with respect to (G

j

)

j2IN

. First we claim that, without loss of generality, we can assume

M working conservatively, too. This can be analogously seen as in Lange and Zeugmann

(1992A, 1993). The space of hypotheses (

^

G

j

)

j2IN

as well as the corresponding recursively

generable families (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

of �nite sets are de�ned in the same way as in

the proof of Theorem 3.

We proceed in showing that (

^

G

j

)

j2IN

, (

^

N

j

)

j2IN

, and (

^

P

j

)

j2IN

do ful�l the announced

properties. By applying the same arguments as in the proof of Theorem 3 one obtains

(1) and (2). It remains to show (3). Suppose L 2 L and k; j 2 IN such that

^

P

k

[

^

P

j

�
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L(

^

G

j

)\L as well as

^

N

k

[

^

N

j

� co�L(

^

G

j

)\co�L. We have to show co�L(

^

G

k

)\co�L �

co� L(

^

G

j

) \ co � L. Due to our construction, we can make the following observations.

There is a uniquely de�ned initial segment of the lexicographically ordered informant i

k

for L(

^

G

k

); say i

k

x

, such that range(i

k

x

) =

^

P

k

[

^

N

k

. Moreover, M(i

k

x

) = m with L(

^

G

k

) =

L(G

m

). By i

j

y

we denote the uniquely de�ned initial segment of the lexicographically

ordered informant i

j

for L(

^

G

j

) with range(i

j

y

) =

^

P

j

[

^

N

j

. Furthermore, M(i

j

y

) = n and

L(

^

G

j

) = L(G

n

). From

^

P

k

� L(

^

G

j

) and

^

N

k

� co�L(

^

G

j

), it follows i

k

x

v i

j

. Since

^

P

j

� L

and

^

N

j

� co�L, we conclude that i

j

y

is an initial segment of the lexicographically ordered

informant i

L

for L.

We have to distinguish the following three cases.

Case 1. x = y

Hence, m = n and therefore L(

^

G

k

) = L(

^

G

j

). This implies co � L(

^

G

k

) \ co � L �

co� L(

^

G

j

) \ co� L.

Case 2. x < y

Now, we have i

k

x

v i

j

y

v i

L

. Moreover, M dual monotonically infers L from informant i

L

.

By the transitivity of \�" we immediately obtain that co�L(

^

G

k

)\co�L � co�L(

^

G

j

)\

co� L.

Case 3. y < x

Hence, i

j

y

v i

k

x

v i

j

. Since M works conservatively, too, it follows m = n. Therefore,

L(

^

G

k

) = L(

^

G

j

). This implies co� L(

^

G

k

) \ co� L � co� L(

^

G

j

) \ co� L.

Hence, (

^

G

j

)

j2IN

, (

^

N

j

)

j2IN

as well as (

^

P

j

)

j2IN

have indeed the announced properties.

Su�ciency: It su�ces to prove that there is an IIM M inferring any L 2 L dual

monotonically from any informant with respect to

^

G. So let L 2 L, let i be any informant

for L, and x 2 IN.

M(i

x

) = \Generate

^

P

j

and

^

N

j

for j = 1; :::; x and test whether

(A)

^

P

j

� i

+

x

� L(

^

G

j

) and

(B)

^

N

j

� i

�

x

� co� L(

^

G

j

).
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In case there is at least a j ful�lling the test, output the minimal one and request

the next input.

Otherwise, output nothing and request the next input."

By applying exactly the same arguments as in the proof of Theorem 6, we may conclude

that M converges to z = �k[L = L(

^

G

k

)] from informant i. It remains to show that M

works dual monotonically. Suppose M outputs k and changes its mind to j in some

subsequent step. Consequently, M(i

x

) = k and M(i

x+r

) = j , for some x; r 2 IN.

Case 1. L(

^

G

j

) = L

Hence, co� L(

^

G

k

) \ co� L � co� L(

^

G

j

) \ co� L = co� L is obviously ful�lled.

Case 2. L(

^

G

j

) 6= L

Due to the de�nition of M , it holds

^

P

k

� i

+

x

� i

+

x+r

� L(

^

G

j

). Hence,

^

P

k

� L \ L(

^

G

j

).

Furthermore, we have

^

N

k

� i

�

x

� i

�

x+r

� co�L(

^

G

j

). This implies

^

N

k

� co�L(

^

G

j

)\co�L.

SinceM (i

x+r

) = j, it holds that

^

P

j

� L and

^

N

j

� co�L. This yields

^

P

k

[

^

P

j

� L(

^

G

j

)\L

as well as

^

N

k

[

^

N

j

� co � L(

^

G

j

) \ co � L. From (3), we obtain co � L(

^

G

k

) \ co � L �

co� L(

^

G

j

) \ co� L:

Hence, M indeed MON

d

� INF{identi�es L.

q.e.d.

Finally in this section, we characterize MON

&

� INF . Obviously, one may easily

use property (3) of Theorem 6 and 7 to obtain a characterization of MON

&

� INF .

However, such a characterization would neither be very useful in potential applications

nor mathematically satisfactory. Instead, our new property (3) delivers easy to handle

conditions that shed some additional light on the combination of monotonicity constraints.

Note that a similar idea may be used to characterize the combination of monotonic and

dual monotonic language learning from positive data (cf. Zeugmann, Lange and Kapur

(1992)).

Theorem 8. Let L be an indexed family of recursive languages. Then: L 2MON

&

�

INF if and only if there are a space of hypotheses

^

G = (

^

G

j

)

j2IN

and recursively generable

families (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

of �nite sets such that
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(1) range(L) = L(

^

G)

(2) For all j 2 IN, ; 6=

^

P

j

� L(

^

G

j

) and

^

N

j

� co� L(

^

G

j

)

(3) For all k; j 2 IN, and for all L 2 L, if

^

P

k

[

^

P

j

� L(

^

G

j

) \ L as well as

^

N

k

[

^

N

j

�

co� L(

^

G

j

) \ co� L, then

(i) L(

^

G

j

) n L(

^

G

k

) � L

(ii) (L(

^

G

k

) n L(

^

G

j

)) \ L = ;

Proof. Necessity: Let L 2 MON

&

� INF . Then there are an IIM M and a space

G = (G

j

)

j2IN

of hypotheses such that L �MON

&

�INF (M) with respect to G. Moreover,

without loss of generality we may assume thatM works conservatively and consistently (cf.

Lange and Zeugmann (1992A)). The wanted space (

^

G

j

)

j2IN

as well as the corresponding

recursively generable families (

^

P

j

)

j2IN

and (

^

N

j

)

j2IN

of �nite sets are de�ned in the same

way as in the proof of Theorem 3. Property (1) and (2) may be analogously proved

as in the proof of Theorem 3. We omit the details. It remains to show that property

(3) is ful�lled. Using the same arguments as in the proof of Theorem 6 and 7, one

straightforwardly obtains:

(A) For all k; j 2 IN, and for all L 2 L, if

^

P

k

[

^

P

j

� L(

^

G

j

) \ L as well as

^

N

k

[

^

N

j

�

co� L(

^

G

j

) \ co� L, then L(

^

G

k

) \ L � L(

^

G

j

) \ L.

(B) For all k; j 2 IN, and for all L 2 L, if

^

P

k

[

^

P

j

� L(

^

G

j

) \ L as well as

^

N

k

[

^

N

j

�

co� L(

^

G

j

) \ co� L, then co� L(

^

G

k

) \ co� L � co� L(

^

G

j

) \ co� L.

Suppose, (i) is not ful�lled. Hence, there is a string s 2 L(

^

G

j

) n L(

^

G

k

) and s 62 L.

Thus, s 2 co�L(

^

G

k

)\co�L but s 62 co�L(

^

G

j

)\co�L. Therefore, co�L(

^

G

k

)\co�L 6�

co� L(

^

G

j

) \ co� L, a contradiction to (B). This proves (i) of property (3).

Next we show (ii). Suppose the converse, i.e., there is a string s 2 (L(

^

G

k

)nL(

^

G

j

))\L.

Then, s 2 L(

^

G

k

) \ L and s 62 L(

^

G

j

). Consequently, s 62 L(

^

G

j

) \ L. Summarizing, we

obtain that L(

^

G

k

) \ L 6� L(

^

G

j

) \ L, a contradiction to (A). This proves (ii), and hence

the necessity is shown.
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Su�ciency: It su�ces to prove that there is an IIM M simultaneously inferring any

L 2 L monotonically and dual monotonically on any informant with respect to

^

G. So let

i be any informant for L, and x 2 IN.

M(t

x

) = \Generate

^

P

j

and

^

N

j

for j = 1; :::; x and test whether

(A)

^

P

j

� i

+

x

� L(

^

G

j

) and

(B)

^

N

j

� i

�

x

� co� L(

^

G

j

).

In case there is at least a j ful�lling the test, output the minimal one and request

the next input.

Otherwise, output nothing and request the next input."

Using exactly the same arguments as in the proof of Theorem 6, one directly obtains

that M converges on i to the least index z satisfying L = L(

^

G

z

). It remains to prove

that M works monotonically as well as dual monotonically. Suppose M outputs k and

changes its mind to j in some subsequent step.

Case 1. L(

^

G

j

) = L

Hence, L(

^

G

k

)\L � L(

^

G

j

)\L = L as well as co�L(

^

G

k

)\ co�L � co�L(

^

G

j

)\ co�L =

co� L are trivially satis�ed.

Case 2. L(

^

G

j

) 6= L

By de�nition of M we have:

^

P

k

� i

+

x

� i

+

x+r

� L(

^

G

j

). Therefore,

^

P

k

� L(

^

G

j

) \ L.

Moreover, by construction we get

^

N

k

� i

�

x

� i

�

x+r

� co � L(

^

G

j

), and hence,

^

N

k

�

co � L(

^

G

j

) \ co � L. Since M(i

x+r

) = j, it holds that

^

P

j

� L and

^

N

j

� co � L.

Consequently, we obtain that

^

P

k

[

^

P

j

� L(

^

G

j

)\L as well as

^

N

k

[

^

N

j

� co�L(

^

G

j

)\co�L.

Applying property (3) we conclude that

(a) L(

^

G

j

) n L(

^

G

k

) � L

(b) (L(

^

G

k

) n L(

^

G

j

)) \ L = ;

Suppose, M does not work monotonically. Hence, L(

^

G

k

) \ L 6� L(

^

G

j

) \ L. Conse-

quently, there is a string s 2 L(

^

G

k

) \ L satisfying s 62 L(

^

G

j

) \ L. Since s 2 L, we
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immediately get s 62 L(

^

G

j

). Thus, there is a string s 2 (L(

^

G

k

) n L(

^

G

j

)) \ L, and hence,

(b) is contradicted. Therefore, M works indeed monotonically.

Suppose, M does not work dual monotonically. Consequently, co� L(

^

G

k

) \ co� L 6�

co � L(

^

G

j

) \ co � L. Hence, there is a string s 2 co � L(

^

G

k

) \ co � L ful�lling s 62

co�L(

^

G

j

)\co�L. Thus, s 62 L(

^

G

k

). Moreover, since s 2 co�L and s 62 co�L(

^

G

j

)\co�L,

we get that s 62 L as well as s 2 L(

^

G

j

). Hence, there is a string s 2 L(

^

G

j

)nL(

^

G

k

) satisfying

s 62 L, a contradiction to (a). Therefore, M also works dual monotonically.

q.e.d.

Since WMON � INF = WMON

d

� INF = WMON

&

� INF = LIM � INF

and because of the following trivial proposition, there is no need at all for characterizing

any type of weak{monotonic language learning from informant. It can be easily shown

that any appropriate IIM working in accordance with the identi�cation by enumeration

principle is able to infer every indexed family of recursive languages from informant.

Proposition 2. For any indexed family L of recursive languages we have L 2 LIM �

INF .

5. Conclusions

We have characterized strong{monotonic, monotonic, and weak{monotonic language

learning as well as the corresponding types of dual monotonic language learning from

positive and negative data. All these characterization theorems lead to a deeper insight

into the problem what actually may be inferred monotonically. It turns out that each of

these inference tasks can be performed by applying exactly the same learning algorithm.

Next we point out another interesting aspect of Angluin's (1980) as well as of our

characterizations. Freivalds, Kinber and Wiehagen (1989) introduced inference from good

examples, i.e., instead of successively inputting the whole graph of a function now an IIM

obtains only a �nite set argument/value-pairs containing at least the good examples. Then

it �nitely infers a function i� it outputs a single correct hypothesis. Surprisingly, �nite

inference of recursive functions from good examples is exactly as powerful as behaviorally

correct identi�cation. The same approach may be undertaken in language learning (cf.

27



Lange and Wiehagen (1991)). Now it is not hard to prove that any indexed family L can

be �nitely inferred from good examples, where for each L 2 L any superset of any of L's

tell{tales may serve as good example.

Furthermore, as our results show, all types of monotonic language learning have special

features distinguishing them from monotonic inference of recursive functions. Therefore,

it would be very interesting to study monotonic language learning in the general case,

i.e., not restricted to indexed families of recursive languages.
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