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Abstract

Property testing is essentially a kind of constant-time randomized approxima-

tion. Alon et al. [3] were the first to consider the idea of testing properties ex-

pressible in syntactic subclasses of first-order logic. They proved the testability

of all properties of undirected, loop-free graphs expressible with quantifier prefix

∃∗∀∗, and also that there exist untestable properties of undirected, loop-free graphs

expressible with quantifier prefix ∀∗∃∗.

In this dissertation, we continue the study of testing subclasses of first-order

logic. In particular, we focus on the classification of prefix-vocabulary classes, or

classes defined by quantifier prefix and vocabulary, according to their testability.

The main results are as follows. First, we develop a framework for relational

property testing including variations corresponding to the different models con-

sidered in the literature for non-uniform hypergraph testing. We then use this

framework to prove the following.

1. All (relational) properties expressible by formulae in Ackermann’s class with

equality ([∃∗∀∃∗, all ]=) are testable in all of our models.

2. All (relational) properties expressible in Ramsey’s class ([∃∗∀∗, all ]=) are

testable in all of our models. This extends the result by Alon et al. [3] to the

full class. i



Abstract

3. There exist graph properties expressible in the class [∀3∃, (0, 1)]= that are

untestable in all of our models. This considerably sharpens the untestable

class of Alon et al. [3].

4. There exist graph properties expressible in the class [∀∃∀, (0, 1)]= (the Kahr-

Moore-Wang prefix) that are untestable in all of our models.

5. There exist graph properties expressible in the class [∀∃∀, (0, 1)] (without

equality) that are untestable in (at least) one of our models.
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概要

近年は大規模なデータセットが増え、情報爆発の時代であると言われている。あ

る種のデータセットでは、その正確なサイズが不明であり、全てのデータを一瞥

することすら困難なほど巨大である。例えば、インターネットはそのサイズが刻々

と変化しており、また、様々なサーバに分散されている全ての情報にアクセスす

ることは現実的ではない。このような情報爆発に対応するため、新しいアルゴリ

ズムや手法が必要になってきている。

入力データ長に対してその線形時間がなければほとんど何も計算できないと考

えられがちだが、実際には定数時間だけでも計算できるものが多数ある。その一

つがプロパティー検査である。プロパティー検査とは、大規模なグラフやデータ

ベースからランダムサンプリングを行い、そのごく僅かなサンプルを元に、確率的

な近似アルゴリズムを用いて高速に結論を出力するタイプの検査手法である。プ

ロパティー検査によって、NP完全問題の一部も検査可能であると知られている。

Lovász [50]がいうように、プロパティー検査は帰納法の応用であると考えられる。

プロパティー検査は、形式的検証の分野において、計算量の高い検証を行う前の

高速なフィルターとして提案された。形式的検証では、ユーザーが何かしら形式

論理等の形式言語で目的のプロパティーを定義し、コンピュータはシステムがそ

れを満たしているかどうかを計算する。このように形式言語で定義されるプロパ
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概要

ティーの検査は自然な課題である。また、大規模な関係データベースへの応用も考

えられる。その場合は、ユーザーが SQL等でクエリーを書いてコンピュータが自

動的に効率的の良い確率的な近似を行えることが望ましい。SQLは一階述語論理

の拡張に近いこと (Libkin [49]等参考)や、形式的検証も形式論理でプロパティー

を定義することからも、論理式の検査が重要になる。

本研究では、一階述語論理のプロパティー検査について研究する。一階述語論理

で定義できるプロパティーには検査可能と検査不可能なものが存在する。したがっ

て、検査できるサブクラスとできないサブクラスにプロパティーを分類すること

が目的である。この課題は、Alonら [3]が初めて研究を行い、一階述語論理を二

つのクラスに分け、その一方は検査可能であり他方が検査不可能であると証明し

ている。しかしながら、その結果はループなしの無向グラフに限っている。Alon

らの結果は深くて影響力もあるが、一階述語論理をより細かく分類するとより良

い結果を導くことが可能である。

本研究の目的は、一階述語論理について、検査可能および検査不可能な文法的

サブクラス（Börgerら [15]のように定義するもの）の完全な分類を行うことであ

る。本研究の成果はゲーデルクラスを除けば完全な分類になっている。本研究の

主な成果は、以下の通りである。

1. グラフプロパティー検査やハイパーグラフプロパティー検査の拡張である関

係プロパティー検査を提案している。また、従来のモデルとの関係を明らか

にし、いくつかのバリエーションも提案している。さらに、それぞれのバリ

エーションの差を明らかにし、関係プロパティー検査を元にしたプロパティー

検査の分類問題の定義を行っている。

2. 関係プロパティー検査において、いくつかの基本的な成果を証明している。
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概要

本研究では、この成果を何回も応用しているため、まとめて証明している。

3. Alonら [3]が検査可能だと証明しているクラスを、ループなしの無向グラフ

から関係ストラクチャーへ拡張し、ラムゼイクラスという一階述語論理の古

典的に有名なサブクラスが全て検査可能であることを証明している。検査可

能とはバリエーションによらないで、どれを使っても検査可能である。この

成果はAustinと Tao [11]が証明しているハイパーグラフ理論の複雑な成果

を応用している。

4. 等号ありのアッカーマンクラスという一階述語論理の古典的に有名なサブク

ラスが全て検査可能であることを証明している。こちらの証明はモデル理論

の議論からできている。

5. Alonら [3]が検査不可能だと証明しているクラスのより強い成果を証明して

いる。Alonらの証明では、量化子が 17個あれば（パターンによって）検査不

可能なプロパティーを定義できることが示されている。本研究の成果では、

Alonらと同じパターンで 4個でも足りることを証明している。この証明は、

Alonらが証明しているグラフ理論の定理を応用している。

6. Kahr-Moore-Wangクラスという一階述語論理の古典的に有名なサブクラス

が検査不可能だと証明している。これは検査不可能性として最小クラスの一

つである。この成果から、量化子が 3個あるとこのパターンで検査不可能な

ものを表すことができると分かる。量化子が 2個以下だと上の成果から検査

可能だと分かるため、検査不可能なプロパティーを一階述語論理で定義する

には量化子の必要充分な数は 3であると分かる。この証明は、Alonら [2]が

示した、ブール関数の同型問題が検査不可能であることを証明するためのア

イディアを応用している。
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概要

7. エコールなしのKahr-Moore-Wangクラスは、検査不可能なプロパティーを

含むことを証明している。ただし、この成果においては、関係プロパティー

検査のバリエーションに限る。すなわち、普段のバリエーションでは検査不

可能だが、違うバリエーションでは検査可能かどうかは未だ証明していない。

形式的検証等への応用を考えると、ユーザーが定義するプロパティーを自動的

に検査するために、コンピュータが与えられた論理式から検査アルゴリズムを自

動的に作成ことが必要である。本研究で検査可能であると証明しているクラスに

ついては、検査アルゴリズムを論理式から作る方法も同時に提案している。した

がって、ユーザが与えた論理式から、自動的に定数時間の確率的近似を行うシス

テムを構築することが可能である。

本研究の成果を得るために、形式論理とモデル理論、グラフとハイパーグラフ

理論、ブール関数の理論等の道具を応用している。
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Chapter 1

Introduction

Property testing is an application of inductive reasoning. Given a large ob-

ject, for example a massive graph or database, we wish to state some conclusion

about the entire structure after examining only a small, randomly selected sam-

ple. Lovász [50] has described it as the “third reincarnation” of this kind of general

approach, after statistics and machine learning.

The astonishing growth in massive data-sets requires us to find new techniques

and approaches for much of the computation that we want to do. In fact, for many

large data-sets of interest (e.g., the Internet), we cannot even determine the precise

size of the data. Such objects are generally stored remotely, and there is a non-

trivial cost for examining particular bits. It may be impractical to move beyond

constant time if we cannot even determine the size of the data we are interested

in, and the sheer amount of data renders many common algorithms impractical.

Given the (time) cost of accessing remote data, we may also wish to minimize the

number of bits that we examine.

At first, it may seem that linear time is a minimum requirement for meaningful
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CHAPTER 1. INTRODUCTION

computation; after all, how can we compute a property of some data that we

don’t have time to look at? Surprisingly, there is an entire world of interesting

computation that can be done in sub-linear time, and even in constant time.

Informally1, we call a property testable if we can approximate it as closely

as we like in constant time. In this thesis, we focus on testing properties that

are expressible in first-order logic. The focus on queries expressed in a formal

languages is quite natural; in databases, for example, users generally make queries

against massive objects in a formal query language (e.g., SQL). Given the “unusual

effectiveness” of logic in computer science [35], it is natural to focus (in particular)

on first-order properties.

This thesis indicates the possibility of a system that takes queries in a restricted

formal language (e.g., the restricted syntactic fragments of first-order logic that

are testable), and automatically generates probabilistically approximate answers to

these queries in constant time. Such a system is also natural from the perspective

of formal verification (where this general approach originated, see Section 1.1).

There, users generally specify properties of systems they wish to verify by writing

(Boolean) queries in a logic. Given the computational demands of verification, a

very fast (constant-time) randomized approximate verification could be useful by

allowing us to quickly reject very bad systems.

The idea of testing syntactic subclasses of first-order logic was first-considered

in an influential paper by Alon et al. [3] (see Section 1.1 for a discussion of related

work), and this thesis builds upon the classification that began there. Here, we

1See Section 2.3 for formal definitions.
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1.1. RELATED WORK

prove a nearly-complete classification of prefix-vocabulary classes2 according to

their testability.

The thesis is structured as follows. We begin by introducing related work,

together with a brief history of property testing in Section 1.1. Then, we state the

main results of this thesis in Section 1.2.

Chapter 2 focuses on definitions and other preliminaries. In Chapter 3, we prove

basic, fundamental results about property testing that we will need for proofs in

later chapters. These basic results first appeared in [38, 43], and will also appear

in [42]. We consider testable classes in Chapter 4. The results in Section 4.1

first appeared in [38] in a preliminary form with two-sided error. The results in

Section 4.2 first appeared in [39].

We proceed to untestable classes in Chapter 5. The results in Section 5.1 first

appeared in [40]. These last three results will also appear as [42]. The results in

Section 5.2 first appeared in [41], while the results in Section 5.3 have not been

previously published.

1.1 Related Work

We begin with a brief history and overview of property testing. There is a recent

introduction to graph property testing by Goldreich [28], and two recent surveys

by Ron, one focusing on connections with learning theory [61] and one focusing on

the algorithmic techniques [62] used in testability. There are also earlier surveys,

including those by Ron [60] and the wonderfully-titled Fischer [19].

2A prefix-vocabulary class is defined by the pattern of quantifiers and vocabulary, see Defini-
tion 3 in Section 2.2.
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CHAPTER 1. INTRODUCTION

Property testing is a form of approximation where we trade accuracy for effi-

ciency. It seems that de Leeuw et al. [47] was the first to formalize probabilis-

tic machines. They showed that such machines cannot compute uncomputable

properties under reasonable assumptions. However, they mention the possibility

that probabilistic machines could be more efficient than deterministic machines,

a topic which was then investigated by Gill [26]. An early example of such a result

is Freivalds’ [25] matrix multiplication checker.

The study of property testing itself began in program verification (see, e.g.,

Blum et al. [14] as well as Rubinfeld and Sudan [63]). Goldreich et al. [29] first

considered the testability of graph properties in a seminal paper and showed the

existence of testable NP-complete properties. An approach using incidence lists

to represent bounded-degree graphs was introduced by Goldreich and Ron [27].

Parnas and Ron [55] generalized this approach and attempted to move away from

the functional representation of structures. There has been a great deal of recent

work on graph property testing, see the survey by Alon and Shapira [7].

For other types of structures, Alon et al. [5] showed that the regular languages

are testable and that there exist untestable context-free languages. Chockler and

Kupferman [17] extended the positive result to the ω-regular languages.

There is also recent work on testing properties of (usually uniform) hypergraphs.

Fischer et al. [22] defined a general model that is roughly equivalent to one of our

models, namely Tr based on Definition 5 below, and showed that hypergraph par-

tition problems are testable in this framework. Very recently, Austin and Tao [11]

have shown that all hereditary properties3 of colored, directed, non-uniform hyper-

3A hereditary property is one that is closed under taking induced substructures.
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1.1. RELATED WORK

graphs are testable in a model that is roughly equivalent to another of our models,

Tmr based on Definition 8 below.

Szemerédi’s regularity lemma (see, e.g., the survey by Rödl and Schacht [59])

has been extremely influential in (dense) graph property testing and there has

been a great deal of work on recent extensions (see, e.g., [30, 58, 68]) of this

lemma to hypergraphs. We are not aware of any extensions to non-uniform hyper-

graphs or finite (relational) structures, but are very interested in such topics. As

Alon et al. [3] noted, proofs of testability that avoid the regularity lemma often

result in better query complexity. We therefore prove testability directly when we

know how to.

Alon et al. [3] began a logical characterization of the testable (graph) properties,

see Subsection 1.1.1. Alon and Shapira [8] gave a characterization of a natural

subclass of the graph properties testable with one-sided error, which Rödl and

Schacht [57] generalized to hypergraphs. Alon et al. [4] showed a combinatorial

characterization of the graph properties testable with a constant number of queries.

It would be particularly interesting to consider extensions of this last result to

hypergraphs or relational structures.

1.1.1 Previous Work on the Classification

We briefly outline prior work on the classification for testability before stating

our main results. We begin with monadic first-order logic. Löwenheim [51] proved

that satisfiability is decidable4 for monadic first-order logic, and McNaughton and

4A class is said to be decidable (for satisfiability) if, given an arbitrary formula from the class,
one can decide if there exists a (possibly infinite) model satisfying the formula.
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Papert [52] showed that it (with ordering and some arithmetic) characterizes the

star-free regular languages. The testability of this class is then implied by a result

of Alon et al. [5]. Using instead Büchi’s [16] result that monadic second-order logic

characterizes the regular languages, we get a parallel with Skolem’s [66] extension

of Löwenheim’s result to second-order logic. Of course, we are focused on the

testability of classes of first-order formulae.

Below, we use the classification notation that will be introduced formally in

Definition 3. Informally, we represent classes with a triple [Π, p]e, where Π denotes

the pattern of quantifiers allowed, the infinite sequence p denotes the maximum

number of permitted predicate symbols for each arity (we omit trailing zeros and

all means that any number of predicate symbols with any arities are permitted),

and e denotes whether = is allowed.

Skolem [67] also showed that [∀∗∃∗, all ] is a reduction class5. Alon et al. [3] found

an untestable graph property (essentially an encoding of graph isomorphism). In

particular, this property is expressible in [∀∗∃∗, (0, 1)]=, and an examination of the

proof reveals that a prefix of ∀12∃5 suffices.

The class [∃∗∀∗, all ]= was first studied in a seminal paper by Ramsey [56], who

showed that it is decidable as part of a stronger result characterizing its spectrum.

Alon et al. [3] showed that the restriction of Ramsey’s class to undirected loop-free

graphs (a restriction of [∃∗∀∗, (0, 1)]=) is testable.

5A class is a reduction class if the satisfiability problem for first-order logic can be reduced to
the satisfiability problem for the class. These classes are therefore undecidable (for satisfiability).
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1.2 Results

As mentioned above, Alon et al. [3] found an untestable property expressible

with seventeen quantifiers (∀12∃5). Although this is an impressive result, we might

wish to know whether it is optimal. More concretely, we would like to know the

minimum number of universal quantifiers, as well as of existential quantifiers, re-

quired to express an untestable property. In addition, we would like to know the

minimum total number of quantifiers needed to express an untestable property, as

it is not prima facie necessary that one can achieve these two minima simultane-

ously. Previous work by Alon et al. [3] implies upper bounds of twelve universal,

five existential and seventeen total quantifiers, and it is natural to ask if these

bounds can be improved. The following is an informal summary of our results

addressing this question.

Remark 1. The minimum number of quantifiers sufficient to express an untestable

property in a first-order relational language is

1. Two universal quantifiers;

2. One existential quantifier;

3. Three quantifiers in total.

These minima can be achieved in the vocabulary of directed graphs (i.e., one binary

relation).

We now introduce the main results of this thesis. First, we develop a framework

for relational property testing including variations corresponding to the different

7
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models considered in the literature for non-uniform hypergraph6 testing. We use

this framework to prove the following.

1. All (relational) properties expressible by formulae in Ackermann’s class with

equality ([∃∗∀∃∗, all ]=) are testable in all of our models.

2. All (relational) properties expressible in Ramsey’s class ([∃∗∀∗, all ]=) are

testable in all of our models. This extends the result by Alon et al. [3] to the

full class.

3. There exist graph properties expressible in the class [∀3∃, (0, 1)]= that are

untestable in all of our models. This considerably sharpens the untestable

class of Alon et al. [3].

4. There exist graph properties expressible in the class [∀∃∀, (0, 1)]= (the Kahr-

Moore-Wang prefix) that are untestable in all of our models.

5. There exist graph properties expressible in the class [∀∃∀, (0, 1)] (without

equality) that are untestable in (at least) one of our models.

The last four results improve upon results of Alon et al. [3] in various ways, and

the second result relies on an application of a strong result by Austin and Tao [11].

In the notation introduced as Definition 3 below, the current classification for

testability is as follows.

• Testable classes

1. Monadic first-order logic: [all , (ω)]=.

6A hypergraph is uniform if all edges have the same arity, and non-uniform if edges may have
different arities.
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2. Ackermann’s class with equality: [∃∗∀∃∗, all ]=.

3. Ramsey’s class: [∃∗∀∗, all ]=.

• Untestable classes

1. [∀3∃, (0, 1)]=.

2. [∀∃∀, (0, 1)]=.

3. [∀∃∀, (0, 1)]7.

7Our proof for this class without equality is currently restricted to one of our models of
testability (Tmr based on Definition 8 below). We suspect that this class is also untestable in
the other models, however Tmr-style testing seems the most natural to us.
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Chapter 2

Preliminaries

In this chapter, we introduce our notation and definitions. We separate these

preliminaries into sections related to basic, fundamental notions (e.g., sets, etc.),

logic (e.g., prefix vocabulary classes) and property testing. Much of this material

is standard and readers familiar with a particular section can safely skip it. How-

ever, we introduce several variations of property testing for relational structures

in Section 2.3 and encourage readers unfamiliar with our variations to review, at

least, their relationship with other models from the literature.

2.1 Fundamentals

Before proceeding further, we recall fundamental definitions and introduce nota-

tion for familiar objects such as natural numbers, sets and strings. Our definitions

are standard and readers familiar with this material can safely skip to Section 2.2.

The natural numbers are denoted by N and are the set of non-negative integers.

We denote the set of real numbers by R, although these are generally used for

10
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probabilities and so we usually use only real numbers p ∈ [0, 1]. We use bold

characters to denote vectors, for example x ∈ R3. Vectors are row vectors unless

otherwise noted, we denote the transpose of a vector by xT . If x = (x1, . . . , xa) is

a vector, we call xi the i-th component of x.

The empty set is denoted by ∅. If A and B are sets, then the union of A

and B is A ∪ B := {x | x ∈ A or x ∈ B} and the intersection of A and B is

A ∩B := {x | x ∈ A and x ∈ B}. Furthermore, the set difference of A and B is

A\B := {x | x ∈ A and x ̸∈ B}. We generalize the union and intersection in the

usual way,
∪

i≥0Ai := A0 ∪ A1 ∪ . . . and
∩

i≥0Ai := A0 ∩ A1 ∩ . . . respectively.

Set A is a subset of set B, written A ⊆ B if A\B = ∅. Set A is a proper subset

of set B, written A ⊂ B if A ⊆ B and B\A ̸= ∅. The cardinality of a set A is the

number of elements in the set, written |A|.

The product of sets A and B is the set of ordered pairs, A× B := {(a, b) | a ∈

A and b ∈ B}. The set of n-tuples of set A, written An is defined inductively as

follows. First, A1 = A. Then, An+1 = An × A. We will always omit the extra

parentheses, and so (1, 2, 3) denotes ((1, 2), 3). The number of elements in the

tuple is the arity n. A predicate P with arity n of set A is any subset of An. If

x ∈ An, we will generally abbreviate the proposition x ∈ P with P (x).

An alphabet Σ is a set of symbols, and a string w over Σ is some sequence of

the symbols in Σ. The empty string is denoted by λ. For example, {0, 1} is the

alphabet of binary strings and 0100 is an example of such a string. We number

the positions in a string w from left to right with 0, 1, . . . , n − 1 where n is the

length of the string. Of course, the empty string λ has length 0. As usual, Σ∗ is

the free monoid of Σ and any subset L ⊆ Σ∗ of it is a language.

11
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Let w be a string over the alphabet Σ. The concatenation of strings u and v

is uv, while the product of two sets of strings L1 and L2 is L1L2 := {uv | u ∈

L1 and v ∈ L2}. The reversal of w is written ←
w. Position i of ←w corresponds to

position n− 1− i of w. Formally,
←
λ = λ and ←−

aw =
←
wa for a ∈ Σ.

We mention a number of well-known classes of languages, for example the classes

of regular and context-free languages. Hopcroft and Ullman [36] is a well-known

introduction to these classes.

It is natural to represent a binary string w ∈ {0, 1}∗ as a pair {U,S} where U is

the finite set of bit positions 0, . . . , n− 11 and S ⊆ A is a monadic predicate. We

will define S(i) to mean that “bit position i of w is 1.”

Graphs provide another natural example and allow for representation as a pair,

(V, E). Here V is the set of vertices and the edge set E ⊆ V 2, a set of ordered pairs

of V . The “names” of the vertices are not interesting to us, and we will identify

them as 0, . . . , n − 1 where n is the number of vertices. It is therefore natural to

represent a graph as a pair {V, E} where E is a binary predicate over V .

We will formalize these notions more exactly in the following section. In particu-

lar, one of our goals is a generalized notion of property testing instead of restricting

ourselves to fixed kinds of structures such as graphs and binary strings. The def-

initions in the following section are therefore necessarily abstractions of the ideas

above.

1The universe is the empty set if w is the empty string.
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2.2 Logic

We are particularly interested in the testability of classes of first-order logic, and

so we need various definitions related to logic. We begin with vocabularies and

structures.

Definition 1. A (relational) vocabulary τ is a tuple of distinct predicate symbols

Ri together with their arities ai,

τ := (Ra1
1 , . . . , R

as
s ) .

Two examples (unique up to renaming) of vocabularies are τG := (E2), the

vocabulary of directed graphs and τS := (S1), the vocabulary of binary strings.

Definition 2. A τ -structure A is an (s+ 1)-tuple

A := (U,RA
1 , . . . ,RA

s ) ,

where U is a finite universe and each RA
i ⊆ Uai is a predicate corresponding to

the predicate symbol Ri of τ .

We generally identify U with the non-negative integers {0, . . . , n − 1} and use

n = #(A) for the size of the universe of a structure A. The universe U of a binary

string is the set of bit positions, which we will identify as {0, . . . , n− 1} from left

to right. For i ∈ U , we interpret i ∈ S as “bit i of the string is 1.” We generally

omit the superscript A from the relations and include it only when we wish to

explicitly distinguish the same relation in different structures.

13
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The set of all τ -structures with universe size n is STRUC n(τ) and the set of

all (finite) τ -structures is STRUC (τ) :=
∪

n≥0 STRUC n(τ). A property P of τ -

structures is any subset of STRUC (τ). We also call such properties τ -properties.

We say that a τ -structure A has P if A ∈ P .

We use language to refer to string properties and P to denote properties. We

refer to members of STRUC (τG) as graphs, and note that our graphs are directed

and may contain loops.

A simple example of a graph property is the property of being a complete graph.

This property is the set of all (finite) graphs which have full edge relations, i.e.,

PK :=
∪

n≥0{(Un, EG) | Un = {0, . . . , n− 1}, EG = Un × Un}.

We use a predicate logic with equality that does not contain function symbols.

There are no ordering symbols such as ≤ or arithmetic relations such as PLUS.

The first-order logic of vocabulary τ is built from the atomic formulae xi = xj and

Ri(x1, . . . , xai) for variable symbols xj and predicate symbols Ri ∈ τ by using the

Boolean connectives and quantifiers ∃ and ∀ in the usual way.

Formula φ of vocabulary τ is evaluated in the usual way and defines property

P := {A | A ∈ STRUC (τ) and A |= φ}. Lower-case Greek letters φ, ψ and γ refer

to first-order formulae and x, y, and z to first-order variables.

Our classification definitions are from Börger et al. [15] except that we omit

function symbols. Essentially, we classify first-order sentences according to their

pattern of quantifiers and vocabulary.

Definition 3. A prefix vocabulary class is specified as [Π, p]e, where Π is a string

over the four-character alphabet {∃,∀, ∃∗,∀∗}, p is a sequence over N and the first

infinite ordinal ω, and e is ‘=’ or the empty string.
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We often use all as an abbreviation for the sequence (ω, ω, ω, . . .). Now that we

have defined the syntactic specification of a prefix vocabulary class, we define the

class specified by a triple [Π, p]e. Recall that a first-order sentence φ is in prenex

normal form if it is in the form φ := π1x1π2x2 . . . πrxr : ψ, with quantifiers πi,

1 ≤ i ≤ r, and quantifier-free ψ. Such a φ is a member of the prefix vocabulary

class given by [Π, (p1, p2, . . .)]e, where pi ∈ N ∪ {ω} if

1. The string π1π2 . . . πr is contained in the language specified by Π when Π is

interpreted as a regular expression2.

2. If p is not all, at most pi distinct predicate symbols of arity i appear in ψ.

3. Equality (=) appears in ψ only if e is ‘=’.

Here, Π is the pattern of quantifiers, p is the maximum number of predicate

symbols of each arity and e determines whether or not the equality symbol is

permitted.

2.3 Property Testing

In property testing, the basic goal is to distinguish between structures that have

a desired property and those that are far from having the property. Formaliz-

ing this requires a definition of “far”, and different definitions results in different

models of testing. We will give three different distance measures, each based on

progressively refining a generalization of the dense graph testing model introduced

by Goldreich et al. [29].
2Technically, we also let the empty string match expressions ∀ and ∃. See the discussion in

Börger et al. [15].
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2.3.1 Distance Measures

Our first definition is dist(A,B), the fraction of tuples with differing assignments

in A and B. We use ⊕ to denote exclusive-or.

Definition 4. Let A,B ∈ STRUC (τ) be any τ -structures such that #(A) =

#(B) = n. The distance between structures A and B is

dist(A,B) :=

∑s
i=1 |{x | x ∈ Uai and RA

i (x)⊕RB
i (x)}|∑s

i=1 n
ai

.

This is a natural definition; it is equivalent to mapping the structures to binary

strings in the usual way and using the normal string testing definitions (based

on normalized Hamming distance). We note that Definition 4 is common in the

literature on graph property testing, but that it is generally not used in non-

uniform hypergraph testing. However, it results in the weakest (cf. Theorem 1

below) notion of testability that we consider, and so we prefer to use it when

proving untestability results.

The simplicity of Definition 4 is attractive, however it has some shortcomings.

In particular, any difference in low-arity relations is asymptotically dominated by

the number of high-arity tuples. This has a number of undesirable effects, as

testing relational structures degenerates roughly to testing uniform hypergraphs.

For example, consider (not necessarily admissible3, vertex) 3-colored graphs with

the vocabulary τC := (E2, R1, G1, B1), where we use the binary predicate E to

represent edges and the monadic predicates to represent colors. We might wish to

test if the given coloring is admissible. However, if we use Definition 4, then (in

3An admissible vertex-coloring is one that assigns distinct colors to adjacent vertices.
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large graphs), the given coloring is insignificant and we actually test whether the

graph is 3-colorable. We need a different model for our task.

Our first attempt to resolve this is rdist.

Definition 5. Let A,B ∈ STRUC n(τ) be τ -structures. Then, the r-distance is

rdist(A,B) := max
1≤i≤s

|{x | x ∈ Uai and RA
i (x)⊕RB

i (x)}|
nai

.

While Definition 4 gave equal weight to each tuple regardless of its arity, the

above gives equal weight to each relation. The model of testability resulting from

Definition 5 is essentially equivalent to the model used by Fischer et al. [22].

However, loops (i.e., self-edges (x, x)) in graphs and other subrelations of rela-

tions are similar to low-arity relations. In Definition 5, these are still dominated

by the “non-degenerate” tuples. Definition 8 will resolve this issue and result in a

model of testability essentially equivalent to that implicit in Austin and Tao [11].

We begin by defining the syntactic notion of subtype before proceeding to subre-

lations.

Definition 6. A subtype S of a predicate symbol with arity a is any partition of

the set {1, . . . , a}.

For example, graphs have a single, binary predicate symbol E2 which has two

subtypes: {{1, 2}} and {{1}, {2}}, corresponding to loops and non-loops respec-

tively. Let SUB(Rai
i ) denote the set of subtypes of predicate symbol Rai

i .

Definition 7. Let A ∈ STRUC (τ) be a τ -structure with universe U , and let S be

a subtype of predicate symbol Rai
i ∈ τ . We define the following.
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• sU(S), the tuples that belong to S, is the set of (x1, . . . , xai) ∈ Uai satisfying

the following condition. For every 1 ≤ j, k ≤ ai, xj = xk iff j and k are

contained in the same element of S.

• The subrelation sA(S) of A corresponding to S is sA(S) := sU(S) ∩RA
i .

Returning to our example of graphs, the sets of loops and non-loops are the

subrelations of the edge relation E corresponding to the subtypes {{1, 2}} and

{{1}, {2}} of E2, respectively.

We denote the symmetric difference of sets U and V by U △ V , i.e.,

U △ V := (U\V ) ∪ (V \U) .

Definition 8. Let A,B ∈ STRUC n(τ) be τ -structures with universe size n. The

mr-distance between A and B is

mrdist(A,B) := max
R∈τ

max
S∈SUB(R)

|sA(S)△ sB(S)|
n!/(n− |S|)!

.

The mr-distance between structures is the fraction of assignments that differ in

the most different subtype. Although this definition is the most involved, it has

a number of advantages. First, it is essentially equivalent to the model used by

Austin and Tao [11] based on the fraction of induced structures (of a particular

size) differing between structures.

More importantly, it does not allow us to make untestable properties testable

by increasing the arity of relations (i.e., untestable graph properties encoded in

binary subrelations of higher-arity relations remain untestable). This means that
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the untestable properties (and prefix-vocabulary classes) are closed downwards in

the way required by Gurevich’s Classifiability Theorem4, and so we are guaranteed

a finite classification of the testable and untestable prefix vocabulary classes.

Figure 2.1. Comparison of distance measures dist, rdist and mrdist.

Figure 2.1 demonstrates the differences between the distance measures. The

colored graphs in the figure have a binary edge relation and a monadic color

relation. If we assume that the graphs are large enough for asymptotic behavior

to dominate, then we can make the following observations.

1. The dist between all graphs is small. This is because the non-loop edges do

not differ, and these tuples dominate dist.

2. The rdist is large between G1 and G2, large betweenG2 and G3, and small be-

tween G1 and G2. This is because the rdist reflects the difference in monadic

color assignments, but still allows non-loop edges to dominate loops in the

edge relation.

3. The mrdist is large between all graphs. This is because rdist reflects differ-

ences in each subrelation.

Given that testers make queries to a small portion of the structure, mrdist is
4Gurevich [34] gives a nice introduction to this theorem, which first appeared as [32] (in

English as [33]). See Section 2.3 of Börger et al. [15] for a nice proof and related material.
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particularly natural as a distance measure. This is because testers can notice dif-

ferences in subrelations and low-arity relations, which are best reflected in mrdist.

2.3.2 Testing Definitions

All three distance measures generalize to distances from properties in the usual

way. The distance from a structure to a property is the distance to the closest

structure that has the property. For example, dist(A,P ) is defined as follows.

Definition 9. Let P be a τ -property and let A be a τ -structure with universe

size n. Then,

dist(A,P ) := min
A′∈P∩STRUCn(τ)

dist(A,A′) .

The remaining two distance measures extend in the same way.

Definition 10. An ε-tester for property P is a randomized algorithm given an

oracle which answers queries for the universe size and truth values of relations on

desired tuples in a structure A. The tester must accept with probability at least 2/3

if A has P and must reject with probability at least 2/3 if dist(A,P ) ≥ ε.

Testers are called oblivious (see Alon and Shapira [8]) if they are not allowed to

make decisions based on the size of the universe. More concretely, a tester in their

setting is only allowed to give the oracle a natural Q, and the oracle then uniformly

randomly selects Q elements of the universe of A and returns the resulting induced

substructure. However, if A is of size smaller than Q, then the entire structure

is returned. This is more restricted than our model, but our positive results hold

even in the oblivious setting.
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Figure 2.2. A property tester.

Figure 2.2 is an example of a property tester. Note that the sample is of constant

size – one must choose a new tester to get a new sample size. Also, note that

although the graph in Figure 2.2 is not bipartite, it is not far from being bipartite.

Some of our results hold even when the testers are restricted to one-sided error,

where the following definition applies.

Definition 11. An ε-tester for P has one-sided error if it accepts with probability 1

if A has P and rejects with probability at least 2/3 if dist(A,P ) ≥ ε.

Definition 12. Property P is testable if for every ε > 0 there is an ε-tester

making a number of queries which is upper-bounded by a function depending only

on ε.

We say that a property P is testable with one-sided error if the ε-testers satisfy

the additional restriction of having one-sided error. Note that we allow the ε-

testers to be different for each ε > 0, which results in uniform and non-uniform

versions of testability. Although most positive results in the literature hold for

uniform testability, see Alon and Shapira [9] for a property that is testable only

with uncomputable c(ε), or [43] for an undecidable property that is testable non-
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uniformly but not uniformly. Our results hold in both cases5 and so we will not

distinguish between them.

We let T be the set of testable properties using the dist definition, Tr be the

set of testable properties using the rdist definition and Tmr be the set of testable

properties using the mrdist definition. For convenience, we often refer to, e.g.,

Tmr-style testers or Tr-style testing.

Definition 13. We use the following conventions to avoid unwieldy language.

1. A sentence is (un)testable if the property it defines is (un)testable.

2. A prefix class is testable if every sentence in it expresses a testable property

for every vocabulary in which it is evaluable.

3. A prefix class is untestable if it contains an untestable sentence.

5That is, our negative results hold for non-uniform testing and positive results for uniform
testing. In the uniform case, we must restrict Lemma 7 to decidable properties. All properties
considered in the present paper are clearly decidable.
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Basic Results

In this chapter, we prove various basic results that we will need for later results.

We include the proofs here for completeness, even though these results are not

particularly difficult.

3.1 Testing is Hardest in Minimal Vocabularies

We begin with the following simple lemma, which justifies the intuition that we

can focus on the minimal vocabulary needed in a formula and ignore vocabularies

that include extraneous predicate symbols. Here, an extension of a vocabulary τ

is any vocabulary formed by adding a new, distinct predicate symbol to τ .

Lemma 1. Let φ be a formula in the first-order logic of vocabulary τ and let τ ′

be any extension of τ . If φ defines a testable τ -property, then the τ ′-property it

defines is also testable.

Proof (Lemma 1). Let φ define τ -property P and τ ′-property P ′. Assume the

“new” predicate symbol in τ ′ is N of arity a. Let T τ
ε be an ε-tester for P . We will
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show that it is also an ε-tester for P ′. Assume A ∈ STRUC (τ ′) has property P ′.

Removing the N predicate, the corresponding A′ ∈ STRUC (τ) has property P

and so T τ
ε accepts with probability at least 2/3, as desired.

Assume that dist(A,P ′) ≥ ε and again let A′ be the structure of type τ formed

by removing the N predicate from A. By the definition of distance,

dist(A′, P ) = min
B∈P

∑s
i=1 |{x | x ∈ Uai and RA′

i (x)⊕RB
i (x)}|∑s

i=1 n
ai

≥

min
B∈P

∑s
i=1 |{x | x ∈ Uai and RA

i (x)⊕RB
i (x)}|

na +
∑s

i=1 n
ai

= dist(A,P ′) ≥ ε .

The tester rejects such an A with probability at least 2/3, as desired. Lemma 1

Testable properties remain testable when the vocabulary is extended. So it

suffices to consider the minimal relevant vocabulary. Simple modifications of the

proof of Lemma 1 give the corresponding results for Tr and Tmr-style testing.

3.2 Comparing Models of Testability

In Subsection 2.3.1 above, we gave several distance definitions, each of which

results in a model of relational property testing. In this section, we consider these

different models and prove the relationship between them. The main result is

Theorem 1, which shows that these models form a strict hierarchy.

Theorem 1. Tmr ⊂ Tr ⊂ T .

That is, Tmr-style testing is the most difficult, while T -style testing is the easiest.

Theorem 1 provides guidance for many of our results: when possible, we prefer
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to prove positive results in the strictest (Tmr) model and negative results in the

weakest (T ).

In addition, Tr-testing is equivalent to the model of Fischer et al. [22], while Tmr-

testing is equivalent to the model of Austin and Tao [11]. Theorem 1 therefore

provides some way of relating these results. However, we will see in Lemma 5 below

that although in general these models are all distinct, Tr and Tmr are equivalent

for many natural classes of properties.

3.2.1 Proof of Theorem 1

We begin the proof of Theorem 1 with the following simple lemma.

Lemma 2. Let τ be a vocabulary and A,B ∈ STRUC n(τ). Then,

dist(A,B) ≤ rdist(A,B) ≤ mrdist(A,B).

Proof (Lemma 2). We first show dist(A,B) ≤ rdist(A,B). If an ε-fraction of all

assignments differs and we partition the assignments, there must be a partition

such that at least an ε-fraction of the assignments differs in the partition. Let

dist(A,B) = ε and let αi be the fraction of Ri-assignments that differ between the

structures,

αi :=
|{x | x ∈ Uai and RA

i (x)⊕RB
i (x)}|

nai
.

Then, rdist(A,B) = maxi αi and we can write dist(A,B) in terms of the αi,

dist(A,B) =

∑
i αin

ai∑
i n

ai
= ε .
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This implies that
∑

i αin
ai = ε

∑
i n

ai , and so there must be an αi ≥ ε.

Next, we show that rdist(A,B) ≤ mrdist(A,B). The proof is nearly identical to

the above. If rdist(A,B) = ε then there is an Ri such that an ε-fraction of the Ri-

assignments differs between the structures. If we partition the Ri-assignments into

the subtypes of Ri (which are disjoint), then there must be some partition such

that at least an ε-fraction of the assignments in that partition differ. Lemma 2

Assume a tester distinguishes between structures A having some property P and

those for which mrdist(A,P ) ≥ ε. Lemma 2 trivially implies that it also distin-

guishes between structures A that have P and those for which rdist(A,P ) ≥ ε.

The case with rdist and dist is analogous, which proves the following.

Corollary 1. Tmr ⊆ Tr ⊆ T .

Of course it is always desirable to show that such containments are strict. We

show the separations by encoding the following language of binary strings; recall

that ←u denotes the usual reversal of string u. It is also possible to use, e.g., one of

the untestable properties that will be seen in Chapter 5 to prove the separations

with a first-order expressible property that is closed under isomorphisms.

Theorem 2 (Alon et al. [5]). Language L = {u←uv←v | u, v are strings over {0, 1}}

is not testable.

We are now ready to prove Theorem 1.

Proof (Theorem 1). The inclusions are by Corollary 1 and so only the separations

remain. We first show that T \Tr is not empty. It suffices to give a vocabulary τ
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and a τ -property that is T -testable but not Tr-testable. We use the vocabulary

τC := (E2, S1).

We will show P1 ∈ T \Tr, where P1 ⊆ STRUC (τC) is the set of structures where

the S assignments encode the language L of Theorem 2. Recall that n denotes

the size of the universe and our convention is that S(i) is interpreted as “bit i of

the string is 1”. Therefore, A has P1 if there is some 0 ≤ k ≤ n/2 such that for

all 0 ≤ i < k, S(i) is true iff S(2k − 1− i) is true and for all 0 ≤ j < (n− 2k)/2,

S(2k + j) is true iff S(n − 1 − j) is true. The property uses only the low-arity

relation S; the E relation is for “padding” to make P1 testable under the dist

definition for distance.

We first show that P1 is in T . A structure with a universe of odd size cannot

have P1. A tester can begin by checking the parity of n and rejecting if it is odd

and so we assume in the following that the size of the universe is even.

Lemma 3. Property P1 is testable under the dist definition for distance.

Proof (Lemma 3). For any (even) n, 1n is of the form u
←
uv
←
v. Changing all S(i)

assignments to true in any given A results in the string 1n. This involves at most n

modifications and so dist(A,P1) ≤ dist(A,A′) = O(n)/Θ(n2) < ε, where the final

inequality holds for sufficiently large n. Let N(ε) be the smallest value of n for

which it holds. The following is an ε-tester for P1, where the input has universe

size n.

1. If n < N(ε), query all assignments and output whether the input has P1.

2. Otherwise, accept.
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If A has P1, we accept with zero error. If dist(A,P1) ≥ ε, then n < N(ε). In

this case we query all assignments and reject with zero error. Lemma 3

It remains to show that P1 is not testable when using the rdist definition for

distance. We do this by showing that it would contradict Theorem 2.

Lemma 4. Property P1 is not testable under the rdist definition for distance.

Proof (Lemma 4). Suppose there exist Tr-type ε-testers T ε for all ε > 0. The

following is an ε-tester using Definition 4 for the language L of Theorem 2. Let

the input be w, a binary string of length n.

1. Run T ε and intercept all queries.

2. When a query is made for S(i), return the value of S(i) in w.

3. When a query is made for E(i, j), return 0.

4. Output the decision of T ε.

We run T ε on the A ∈ STRUC n(τC) that agrees with w on S and where all E

assignments are false. If w ∈ L, then any such A has property P1 and so our tester

accepts with probability at least 2/3.

Assume dist(w,L) ≥ ε. Then, rdist(A,P1) = dist(w,L) ≥ ε and so our tester

rejects with probability at least 2/3. These are testers for the untestable language

of Theorem 2, and so P1 is untestable under the rdist definition. Lemma 4

Lemmata 3 and 4, together with Corollary 1 show Tr ⊂ T . The separation

Tmr ⊂ Tr is shown in a similar way, using a property with sufficient “padding” to

make Tr testing simple but Tmr testing would contradict Theorem 2.
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For example, one can use the property P2 of graphs in which the “loops” E(i, i)

encode the language from Theorem 2. That is, a graph has P2 if there is some

0 ≤ k ≤ n/2 such that for all 0 ≤ i < k, E(i, i) is true iff E(2k−1− i, 2k−1− i) is

true and for all 0 ≤ j < (n−2k)/2, E(2k+j, 2k+j) is true iff E(n−1−j, n−1−j)

is true. The non-loops are used as padding to ensure Tr testability while Tmr

testability would allow us to violate Theorem 2. Theorem 1

There exist properties that are testable in the rdist sense but not in the mrdist

sense. However, the definition of subtypes and Tmr testability allows for a sim-

ple mapping between vocabularies such that rdist-testability of certain classes of

properties implies mrdist-testability of the same classes. For these classes, proving

testability in the rdist sense is equivalent to proving it in the mrdist sense, and so

it suffices to use whichever definition is more convenient.

Lemma 5 is given in the context of the classification problem for first-order

logic but it is not difficult to prove similar results in other contexts. We will use

Lemma 5 in Section 4.1, to prove the testability of a class that has this particular

form.

Lemma 5. Let C := [Π, all]= be a prefix vocabulary class. Then, C is testable in

the rdist sense iff it is testable in the mrdist sense.

Proof. Recalling Theorem 1, Tmr testability implies Tr testability. We prove Tr

testability of such prefix classes implies Tmr testability using Lemma 6. In the

following, S(n, k) is the Stirling number of the second kind.

Lemma 6. Let C = [Π, (p1, p2, . . .)]= be a prefix vocabulary class and, furthermore,

let qj =
∑

i≥j piS(i, j). If C ′ = [Π, (q1, q2, . . .)]= is Tr testable, then C is Tmr
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testable.

Proof (Lemma 6). Let φ ∈ C be arbitrarily fixed and assume that the predicate

symbols of φ are {R1
1, R

1
2, . . . , R

1
p1
, R2

1, . . .}, where the arity of Ri
j is i. We construct

a φ′ ∈ C ′ and show that Tr testability of φ′ implies Tmr testability of φ. In φ′ we

will use a distinct predicate symbol for each subtype of each Ri
j in φ. A subtype

S of Ri
j such that |S| = k is a partition of the integers {1, . . . , i} into k non-empty

sets and so there are S(i, k) such subtypes. We therefore require a total of qk

distinct predicate symbols of arity k.

For example, we will map the “loops” in a binary predicate E to a new monadic

predicate and the non-loops to a separate binary predicate. Formally, recall

that sU maps the subtypes of a predicate to the sets of tuples comprising the

subtypes. For our example of a binary predicate, (0, 1) ∈ sU({{1}, {2}}) and

(0, 0) ∈ sU({{1, 2}}). Next, we let r be a bijection from the subtypes of predicates

to their new names, the predicate symbols that we will use in φ′.

We create φ′ by modifying φ. Replace all occurrences of Ri
j(x1, . . . , xi) with

 ∨
S∈SUB(Ri

j)

[
(x1, . . . , xi) ∈ sU(S) ∧ r(S, Ri

j)(y)
] .

Note that (x1, . . . , xi) ∈ sU(S) is an abbreviation for a simple conjunction, e.g.,

x1 ̸= x2 ∧ x1 ̸= x3 ∧ · · · . Likewise, y is an |S|-ary tuple, formed by removing the

duplicate components of (x1, . . . , xi). The implicit mapping from (x1, . . . , xi) is

invertible given S. To continue our example of a binary predicate E, we would

30



3.2. COMPARING MODELS OF TESTABILITY

replace all occurrences of E(x, y) in φ with

([x = y ∧ E1(x)] ∨ [x ̸= y ∧ E2(x, y)]) .

We assume that φ′ is Tr testable, and so there exists an ε-tester T ε for it. We

run this tester and intercept all queries. For a query to r(S, Ri
j)(y), we return the

value of Ri
j(x1, . . . , xi). This is possible because r is a bijection, and so we can

retrieve S and Ri
j using its inverse. Then, we can reconstruct the full i-ary tuple

(x1, . . . , xi) from y and S.

The tester implicitly defines a map1 from structures A which we wish to test

for φ to structures A′ (with the same universe as A) which we can test for φ′.

Given an A |= φ, the corresponding A′ |= φ′ and so T ε will accept with proba-

bility at least 2/3.

We map each subtype S to a distinct predicate symbol with arity |S|. Therefore,

for any structures A,B, the implicit mapping to A′, B′ is such that

mrdist(A,B) = rdist(A′, B′).

For convenience, let P := {B | B |= φ} and P ′ := {B′ | B′ |= φ′}. For an A such

that mrdist(A,P ) ≥ ε, we simulate T ε on an A′ such that rdist(A′, P ′) ≥ ε. The

tester T ε rejects with probability at least 2/3, as desired. Lemma 6

Proving Tr testability for [Π, all]= implies proving it for all (q1, . . .) that are
1Explicitly, map A to an A′ with the same universe size, where y ∈ r(S, Ri

j) in A′ if
(x1, . . . , xi) ∈ Ri

j in A. Note that we have not yet defined the assignments of tuples y with
duplicate components. By construction, the assignments of these tuples do not affect φ′ and so
any reasonable convention will do. For example, for any predicate symbol symbol Q of φ′ and
any tuple z that has at least one duplicate component, we define z ̸∈ Q. The resulting map is
injective but not necessarily surjective.
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“images” of some (p1, . . .) and so Lemma 6 is stronger than required. Lemma 5

3.3 Indistinguishability

Indistinguishability is a notion introduced by Alon et al. [3] that we use in several

of our proofs. Essentially, two τ -properties are indistinguishable if sufficiently large

structures that have one of the properties become arbitrarily close to having the

other (i.e., the limit of the distance goes to zero as the size of the structures

increases).

Definition 14 (Alon et al. [3]). Let P1, P2 ⊆ STRUC (τ) be τ -properties that are

closed under isomorphisms. We say that P1 and P2 are indistinguishable if for

every ε > 0 there exists an N := N(ε) ∈ N such that the following holds for all

n > N . For every A ∈ STRUC n(τ), if A has property P1, then mrdist(A,P2) < ε

and if A has P2, then mrdist(A,P1) < ε.

The most important fact regarding indistinguishability is that it preserves testa-

bility.

Lemma 7 (Alon et al. [3]). Let P1, P2 ⊆ STRUC (τ) be indistinguishable2 τ -

properties. Property P1 is testable iff P2 is testable.

The proof by Alon et al. [3] extends to relational structures (from undirected

loop-free graphs) without difficulty once we use mrdist in Definition 14. In fact,

because the proof shows that one can construct an ε-tester for one of the properties

by taking the majority vote of three runs of an ε/2-tester for the other property,

the query complexities of the two properties are closely related.
2If we are interested only in uniform testability, then the properties must also be decidable.
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3.4 Yao’s Principle

There are a number of tools used to prove lower bounds for testing, including re-

ductions to problems from communication complexity (cf. Blais et al. [13]). Yao’s

Principle (cf. Yao [69]), an interpretation of von Neumann’s minimax theorem [53]

in the context of probabilistic computation, is probably the most commonly used

such tool, and several of our results in Chapter 5 rely on applications of this

principle.

There are many variations of Yao’s Principle; we use the following.

Principle 1 (Yao’s Principle). If there is an ε ∈ (0, 1) and a distribution over

Gn such that all deterministic testers with complexity c have an error-rate greater

than 1/3 for property P , then property P is not testable with complexity c.

The definition of “testable” is of course our usual one involving random testers.

In applications, one usually seeks to show that for sufficiently large n and some

increasing function c := c(n), there is a distribution of inputs such that all deter-

ministic testers with complexity c have error-rates greater than 1/3.

For completeness, we prove our version of Principle 1. We prove only the di-

rection of the minimax theorem that is required for our purposes; for a survey of

minimax theorems and their proofs see Simons [65].

3.4.1 Proof of Principle 1

We begin by providing the definitions required to state Principle 1.
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Definition 15. A deterministic tester is a binary tree where each internal node

is labeled with a non-negative integer, each leaf is labeled “accept” or “reject,” and

the two edges from a node are labeled 0 and 1.

Given an input, we execute the tester as follows. Beginning at the root, we

interpret the labels on internal nodes as the bit position of the input that will be

queried. If the result of the query is 0, we follow the 0 edge and otherwise the

1 edge. When we reach a leaf we output the decision on the label. Note that it

is equivalent to label the internal nodes with atomic formulae such as E(0, 1) as

these are equivalent to specific bits of the input, the positions of which can be

easily computed.

Definition 16. The complexity of a deterministic tester is the number of internal

nodes, including the root unless it is a leaf, on the longest path from the root to a

leaf.

The complexity of a deterministic tester is then the maximum number of queries

that it makes. Our interest is limited to testers of finite complexity, i.e., those that

output a decision in finite time. Without loss of generality, we can restrict our

attention to balanced binary trees, by making extra, useless queries on the shorter

paths in order to “pad” their lengths.

For testability, we are concerned only with the error-rate on inputs that either

have our desired property or are ε-far from having the property. Therefore, we

define the error-rate of a tester to be non-zero only on such examples. Because of

this, it suffices to restrict our attention to distributions that give zero probability

to the remaining “possible” inputs (those that do not have the property in question,
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but are also not ε-far from it).

We begin by proving the following direction of the minimax theorem. We say

that a vector x ∈ R|x| is a probability vector if each of its components is a non-

negative real number and the sum of its components is 1. For n > 0, we let Pn be

the set of probability vectors with n components,

Pn :=

{
x | x = (x1, . . . , xn) ∈ Rn, xi ≥ 0 for all 1 ≤ i ≤ n, and

n∑
i=1

xi = 1

}
.

It is well-known that equality holds in the following, however we restrict our-

selves to stating and proving only the direction required for Principle 1, as men-

tioned above.

Theorem 3 (Minimax Theorem). Let M be an a × b matrix of non-negative

reals and X = Pa and Y = Pb be the sets of all probability vectors with a and b

components, respectively. Then,

max
y∈Y

min
x∈X

xMyT ≤ min
x∈X

max
y∈Y

xMyT . (3.1)

Proof (Theorem 3). Let y∗ be any of the argmax on the left in (3.1),

y∗ := argmax
y∈Y

min
x∈X

xMyT ,

and x∗ be any of the argmin on the left in (3.1),

x∗ := argmin
x∈X

xMy∗T .
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Then, for any probability vector x ∈ X, by the definition of minimum,

xMy∗T ≥ x∗My∗T . (3.2)

Let x+ and y+ be any of the argmin and argmax on the right of (3.1), that is

x+ := argmin
x∈X

max
y∈Y

xMyT and y+ := argmax
y∈Y

x+MyT .

Then, by the definition of maximum, x+My+T ≥ x+My∗T . Therefore, by (3.2),

min
x∈X

max
y∈Y

xMyT = x+My+T ≥ x+My∗T ≥ x∗My∗T = max
y∈Y

min
x∈X

xMyT .

Theorem 3

Given Theorem 3, it is easy to show Principle 1. In (3.1), we call x on the left

and y on the right “inner vectors.” This is because we can think of them as being

chosen after the “outer vectors” (y on the left and x on the right) are fixed. For the

“inner” vectors, it suffices to consider unit vectors ei, where component i is 1 and

all other elements are 0. This is because once the outer vector is fixed, denoting

the i-th component of a vector z by [z]i,

min
x∈X

xMyT = eargmini[MyT ]iMyT

and likewise for the maximum on the right of (3.1). This proves the following

simple corollary of Theorem 3.

Corollary 2. Let M be an a × b matrix of non-negative reals and X = Pa and
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Y = Pb be the sets of all probability vectors with a and b components, respectively.

Then,

max
y∈Y

min
ei∈X

eiMyT ≤ min
x∈X

max
ej∈Y

xMeTj . (3.3)

Proof (Principle 1). Principle 1 is an interpretation of (3.3) in the context of test-

ing. We let a be the number of deterministic testers with complexity c whose

queries are evaluable in structures of type τ that have n elements. We assume

that there is an enumeration of these testers. Then, a randomized tester with

complexity c for structures of n elements is given by a probability vector x ∈ X,

where [x]i is interpreted as the probability that the randomized tester behaves like

the i-th deterministic tester. A unit vector ei ∈ X specifies the i-th deterministic

tester.

Likewise, we assume there is an enumeration of structures of type τ that have

n elements and let b be the number of such structures. Then, a probability vector

y ∈ Y is a distribution over these structures and a unit vector ej specifies the j-th

structure.

For matrix M , we let Mij be 1 if the i-th deterministic tester is incorrect on

the j-th input and this input either has the desired property or is ε-far from it.

Otherwise, we let Mij be 0.

We now have have an a × b matrix M and a meaning for a and b component

probability vectors and so we can interpret the meaning of Corollary 2. On the left,

eiMyT is the average-error of the i-th deterministic tester on a structure chosen

according to distribution y. Likewise, on the right, xMeTj is the error-rate of the

randomized tester specified by x on the j-th structure.
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Therefore, the left side of (3.3) is the average-error of the “best” deterministic

tester on the “worst” distribution of inputs, when we define “best” as the lowest

average-error. If we find some distribution y+ of inputs such that all deterministic

testers have an error-rate greater than 1/3, then 1/3 is a lower bound on the left

side, and therefore the right side, of (3.3).

The right side of (3.3) is the error-rate of the “best” randomized tester on the

“worst” input structure, when “best” is defined as the best worst-case. If the “best”

randomized tester with complexity c has an error-rate greater than 1/3 on an input,

we can conclude that the property in question is not testable with complexity c.

Principle 1

3.5 Summary

In this chapter, we proved various basic results that we will use in later chapters.

In particular, Theorem 1 relates the three models of testability that we introduced

in Section 2.3. This encourages us to prove positive results in the strongest model

(i.e., we will focus on Tmr in Chapter 4) and negative results in the weakest model

(i.e., we will focus on T in Chapter 5).

38



Chapter 4

Testable Classes

We are now ready to prove the testability of two large, syntactic subclasses

of first-order logic. We prove the testability of Ackermann’s class with equality

([∃∗∀∃∗, all]=) in Section 4.1, and of Ramsey’s class ([∃∗∀∗, all]=) in Section 4.2.

4.1 Ackermann’s Class with Equality

In this section we show that Ackermann’s class with equality ([∃∗∀∃∗, all ]=) is

testable. We begin by reviewing the history of this class, which has a number of

nice properties.

Ackermann’s class was first considered (without equality) by Ackermann [1],

who showed that the satisfiability problem for the class is decidable and that it

has the finite model property1. Kolaitis and Vardi [45] showed the satisfiability

problem for Ackermann’s class with equality is complete for NEXPTIME and

1A class is said to have the finite model property if every satisfiable formula in the class has a
finite model. Classes without this property have infinity axioms, i.e., sentences with only infinite
models.
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that a 0-1 law holds for existential second-order logic2 where the first-order part

belongs to [∃∗∀∃∗, all ]=. Lewis [48] proved that satisfiability for Ackermann’s class

without equality is complete for (deterministic) EXPTIME. Grädel [31] showed

that satisfiability for Ackermann’s class without equality is complete for EXPTIME

even with the addition of arbitrarily-many function symbols.

If we allow equality and a unary function symbol, the result is Shelah’s class,

which Shelah [64] proved decidable. Shelah’s class is a decidable class that does

not have the finite model property, and it would be interesting to determine if

it is testable. This would require extending relational testing to allow function

symbols.

Ackermann’s class with equality has been studied in other settings as well. For

example, Fermüller and Salzer [18] used an extension of resolution to decide an

extension of Ackermann’s class with equality using automated theorem provers.

The main goal of this subsection is Theorem 4 below. Recalling Theorem 1, this

also implies that such properties are testable in the dist and rdist senses. If the

vocabulary consists of a single relation, the rdist and dist definitions are equivalent

to the dense hypergraph model. We therefore obtain the corresponding results in

the dense hypergraph and dense graph models as special cases.

We denote the set of monadic predicate symbols in a vocabulary τ by M :=

{Ri | Ri ∈ τ and ai = 1}. The set of assignments of the symbols in M for an

element in a universe is called the color of the element and there are 2|M | possible

2A class C of first-order logic has an associated 0-1 law if all existential second -order sentences
φ := ∃C1 . . . Caψ, where ψ is a first-order sentence in C, have the property that the limit as
n→ ∞ of the probability that a random structure of size n satisfies φ exists and is either 0 or 1.
Recall that the focus is on existential second -order because all of first-order admits a 0-1 law,
see the references in Kolaitis and Vardi [46].

40



4.1. ACKERMANN’S CLASS WITH EQUALITY

colors. We define Col(A, c) to be the set of colors that occur at least c times in A.

Theorem 4. All formulae in [∃∗∀∃∗, all ]= define properties that are in Tmr with

one-sided error.

Proof (Theorem 4). Recall that Ackermann’s class with equality is [∃∗∀∃∗, all ]=

and, therefore, it suffices to show the testability of property P of type τ =

(Ra1
1 , . . . , R

as
s ) defined by formula φ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zb : ψ, where ψ is

quantifier-free. Note that a is the number of leading existential quantifiers and b

is the number of trailing existential quantifiers. We can trivially test any φ that

has only finitely-many models with a constant number of queries and zero error,

and so it suffices to assume that φ has infinitely-many models.

The class [∃∗∀∃∗, all ]= is of the form required by Lemma 5 above, and so it

is mrdist-testable iff it is rdist-testable. It therefore suffices to show that P is

testable in the rdist sense. We will show that the following is an ε-tester in the

rdist sense for P on input A ∈ STRUC n(τ). Here, k := k(τ, ε) is the number of

elements queried and N := N(φ, τ, ε) is a constant, both of which are determined

below. Note the actual number of queries in Step 2 is not exactly k, but rather

a constant multiple of it depending on τ . Finally, we explicitly give κ := κ(φ, τ)

below.

1. If n < N , query all of A and decide exactly whether A has P .

2. Uniformly and independently choose k members of the universe of A and

query all monadic predicates on the members in this sample. Let B be the

observed substructure.
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3. Search over all A′ ∈ STRUC κ(τ). Accept if an A′ is found such that A′ |= φ

and Col(B, a+ 1) ⊆ Col(A′, a+ 1).

4. Otherwise, reject.

We will show that the tester accepts (with probability 1) if A |= φ and rejects

with probability 2/3 if rdist(A,P ) > ε. We first show that if A |= φ, then the tester

is guaranteed to accept. Then, we will show in Lemma 9 that with probability at

least 2/3, we get a “good” sample in Step 2. A sample is “good” if it contains at

least (a+1)-many distinct representatives of each color that occurs on at least an

ε/(2 · 2|M |) fraction of the elements of A. We then show that the tester is correct

if it obtains a good sample, and therefore rejects with probability at least 2/3 if

rdist(A,P ) > ε.

We will now show that if A |= φ, the tester will accept with probability 1. We

begin with Lemma 8.

Lemma 8. Let A be a model of φ such that #(A) > N and let

κ := a+ 3b
(
a+ 2

∑s
i=1

∑ai
j=1 (

ai
j )a

ai−j
)
+ 2|M |(a+ 1).

Then, there is an A′ |= φ such that #(A′) = κ and Col(A, a+1) ⊆ Col(A′, a+1).

Proof. Assume that N > κ. The structure A is a model of φ, and so there exists

at least one tuple of a elements (u1, . . . , ua) such that φ is satisfied when the

existential quantifiers bind ui to xi. We consider the xi and the substructure

induced by them to be fixed, and refer to this substructure as Ax.
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There are at most κ2 := a + 2
∑s

i=1

∑ai
j=1 (

ai
j )a

ai−j

many distinct structures con-

structed by adding an element labeled y to Ax when we include the structures

where the label y is simply placed on one of the xi. We let v ≤ κ2 be the number

of such structures that occur in A and assume there is an enumeration of them.

For each of these v substructures there exist b elements, w1, . . . , wb, such that

when we label wi with zi, the substructure induced by (x1, . . . , xa, y, z1, . . . , zb)

models ψ. We construct Ai,j for 1 ≤ i ≤ 3 and 1 ≤ j ≤ v such that Ai,j is a copy

of the w1, . . . , wb used for the j-th structure (see Figure 4.1). We connect each Ai,j

to Ax in the same way as in A, modifying assignments on tuples (Ax ∪ Ai,j)
ak .

Ax

A1,1

A1,2

A1,v

A3,1

A3,2

A3,v

A2,1

A2,2

A2,v

Figure 4.1. A sketch of the new structure

For each wh in Ai,j, we consider the case where y is bound to wh. By construction

the substructure induced by (x1, . . . , xa, y) occurs in A. We assume it is the g-th

structure and use the elements of Ai+1 mod 3,g to construct a structure satisfying ψ.

We modify the assignments of tuples as needed to create a structure identical

to that in A satisfying ψ. Note that by construction all of these assignments

are of tuples that contain wh and at least one element from Ai+1 mod 3,g. The

resulting structure, which we call A1, is a model of φ. Before this step we have not

modified any assignments “spanning” the “columns” Ai,j of A1 and so there are no
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assignments that we modify more than once.

However, there may be some color from Col(A, a+1) that does not appear a+1

times in A1. We therefore add a new block, denoted Ae, of at most 2|M |(a + 1)

elements which consists of a + 1 copies of each color from Col(A, a + 1). Each of

these colors occurred at least a+1 times in A, and so for each such color C, there

is an element q in A with color C such that q is not part of Ax. If the substructure

induced by (Ax, q) in A is the j-th structure in our enumeration, then we do the

following for each member p of Ae that has the same color as q. First, we make the

substructure induced by (Ax, p) identical to that induced by (Ax, q) in A. Next, we

make the substructure induced by (p,A1,j) identical to that induced by q and the

corresponding zi in A. All of these modifications are on tuples containing a p ∈ Ae

and so we do not modify any tuples more than once. We call this structure A2.

Finally, so far we only have an upper-bound on the size of A2 while the lemma

states it to be exactly of size κ. We therefore pad in the following simple way3.

We know that N > κ > 2|M |a and so there is a color that occurs at least a + 1

times in A. If #(A2) < κ, we simply make an additional κ −#(A2) many copies

of this color in Ae and modify the assignments of tuples containing these new

elements in the same manner as above. The resulting A′ has size κ and satisfies

the requirements of the lemma. Lemma 8

For any sample B of A, it is true that Col(B, a+ 1) ⊆ Col(A, a+ 1). If A |= φ,

then Lemma 8 implies that our tester will find an A′ satisfying the conditions of

Step 3 and will therefore accept. This holds for any sample B and so the tester

will accept such A with probability 1.

3One could instead change the tester to search structures with size at most κ.
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Next, assume that rdist(A,P ) ≥ ε. In this case we must show that the tester

rejects with probability at least 2/3. First, we show that the tester obtains a

“good” sample with probability at least 2/3.

Lemma 9. There are constants k and N such that, with probability at least 2/3, the

tester obtains a sample that contains at least (a+1)-many distinct representatives

of each color in Col(A, εn/(2 · 2|M |)).

Proof (Lemma 9). The probability that any particular query misses a fixed color

that occurs on at least an ε/(2 · 2|M |) fraction of A is at most (1 − ε/(2 · 2|M |)).

Moreover, the probability that we miss such a fixed color after k1 independent

queries is at most (1−ε/(2 ·2|M |))k1 . There are at most 2|M | such colors, and so the

probability that a sample of k1 elements fails to contain at least one representative

of all such colors is at most

p1 := 2|M |
(
1− ε/2

2|M |

)k1

.

The |M | is a constant, and we choose k1 such that (a+ 1)p1 is at most 1/6.

Let k := (a + 1)k1. We will make k independent queries, and consider the

total sample as (a + 1) separate samples of size k1. All of these smaller samples

will contain at least one representative of every color in Col(A, εn/(2 · 2|M |)) with

probability at least 1 − (a + 1)p1 ≥ 5/6. However, there is the possibility that

some of these smaller samples contain elements in common. We will choose N

such that for n > N , the probability that any particular element in the universe

of A is chosen more than once is at most 1/6. In particular, if #(A) = n and we

define xy := x(x−1) · · · (x− (y−1)) = x!/(x−y)!, then the probability that some
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element is queried more than once is

p2 := 1− n!

n(a+1)k1(n− (a+ 1)k1)!
= 1− n(a+1)k1

n(a+1)k1
.

The sample size (a+1)k1 is a constant, and so we can choose N such that p2 ≤ 1/6

for n > N .

The probability that the tester obtains a sample that contains at least (a+ 1)-

many distinct representatives of each color in Col(A, εn/(2 · 2|M |)) is at least

1− (a+ 1)p1 − p2 ≥ 2/3.

Lemma 9

Our goal is to show that if rdist(A,P ) ≥ ε, then we reject with probability

at least 2/3. It is easier to show the contrapositive: if the tester accepts with

probability strictly greater than 1/3, then rdist(A,P ) < ε.

If we accept a structure A with probability strictly greater than 1/3, then we

must accept it when we obtain a good sample. We construct a B such that B |= φ

and rdist(A,B) < ε from the A′ that the tester must find to accept. We begin

with Lemma 10, which we will use to “grow” smaller models.

Lemma 10. Let φ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zb : ψ be a formula with vocabulary τ ,

where ψ is quantifier-free and A ∈ STRUC (τ) be such that A |= φ. Additionally,

let B ∈ STRUC (τ) be any structure containing A as an induced substructure such

that #(B) = #(A) + 1. If the additional element of B has a color that occurs at

least a + 1 times in A, then we can construct a B′ |= φ by modifying at most a
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constant number of non-monadic assignments in B.

Proof (Lemma 10). Structure B contains an induced copy of A and one additional

element, which we will denote by q. By assumption, A is a model of φ and therefore

contains an a-tuple (u1, . . . , ua) such that the formula is satisfied when xi is bound

to ui. In addition, there are at least a+ 1 elements in A that have the same color

as q. Therefore, there is at least one such element p that is not one of the ui. We

will make q equivalent to p without modifying any monadic assignments.

We begin by modifying the assignments as needed to make the structure induced

by (x1, . . . , xa, q) identical to that induced by (x1, . . . , xa, p). This requires at most∑s
i=1

∑ai
j=1

(
ai
j

)
aai−j = O(1) modifications, all of which are non-monadic. There

must be (v1, . . . , vb) in A such that ψ is satisfied when zi is bound to vi and

y to p. We modify the assignments needed to make the structure induced by

(q, v1, . . . , vb) identical to that induced by (p, v1, . . . , vb)
4. This requires at most∑s

i=1

∑ai
j=1

(
ai
j

)
bai−j = O(1) modifications, all of which are non-monadic. The

result has #(A) + 1 elements, models φ and was constructed from B by making a

constant number of modifications to non-monadic assignments. Lemma 10

Let A be the structure that the tester is running on and A′ be the structure

found in Step 3 of the tester. As mentioned above, we will construct a B |= φ

from A′ such that B |= φ and rdist(A,B) < ε.

Note that there must exist at least one color in Col(A, εn/(2 · 2|M |)) and assume

that N is large enough that εn/(2 · 2|M |) ≥ a+ 1. We first make a constant-sized

portion of A identical to A′. This requires at most O(1)-many modifications to

4The case where vi = p can be handled by replacing vi with q in (q, v1, . . . , vb).
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each relation. All colors in Col(A, εn/(2 · 2|M |)) occur at least a + 1 times in A′,

allowing us to recursively apply Lemma 10 and add the elements of A that have

colors in Col(A, εn/(2 · 2|M |)). This entails making O(1)-many modifications to

non-monadic relations (and none to monadic relations) at each step, for a total of

O(n) modifications to the non-monadic relations.

Finally, we consider the elements of A that have colors which occur at most

εn/(2 · 2|M |) times. There are at most 2|M | such colors and at most εn/2 elements

with these colors. We change the monadic assignments on such elements as re-

quired to give them colors contained in Col(A, εn/(2 ·2|M |)). This requires at most

εn/2 modifications to each of the monadic assignments. We again recursively ap-

ply Lemma 10 to A, making O(1) modifications to non-monadic assignments at

each step. The resulting structure is B and is such that B |= φ.

Finally, we show that rdist(A,B) < ε. If Ri is a monadic relation, then the

i-th term of the maximum in the definition of rdist (cf. Definition 5 above) is at

most ε/2 + o(1). If Ri has arity at least two, then the i-th term of the maximum

is O(n)/Ω(n2) = o(1). All o(1) terms can be made arbitrarily small by choosing

N(φ, τ, ε) appropriately and so we can assume that all terms are strictly less than ε.

The maximum is then strictly less than ε and so rdist(A,B) < ε as desired.

Theorem 4

4.2 Ramsey’s Class

In this section we revisit a result of Alon et al. [3] in the light of recent work

by Austin and Tao [11]. The main result is the testability of the full Ramsey’s
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class (i.e., removing the restriction to undirected loop-free graphs). As we did for

Ackermann’s class with equality in Section 4.1, we begin by reviewing the history

and properties of the class, denoted [∃∗∀∗, all ]=.

Ramsey’s class is also known as the Bernays-Schönfinkel-Ramsey class. Bernays

and Schönfinkel [12] proved the finite model property and that satisfiability is

decidable for the class without equality. Ramsey [56] extended these results to the

class with equality as part of a stronger result. Lewis [48] showed that satisfiability

is NEXPTIME-complete for Ramsey’s class and Kolaitis and Vardi [44] proved that

a 0-1 law holds for existential second-order logic where the first-order part belongs

to [∃∗∀∗, all ]=. Omodeo and Policriti [54] have recently shown that the class is

semidecidable for set theory.

The main goal of this subsection is Theorem 5 below. Recalling Theorem 1, this

also implies testability in the T and Tr senses. The proof of Theorem 5 follows

the proof by Alon et al. [3], and relies on a reduction to a strong result by Austin

and Tao [11].

An outline of the proof is as follows. First, we show that all sentences in

[∃∗∀∗, all ]= define properties which are indistinguishable from instances of a gen-

eralized colorability problem. Next, we note that all such problems are hereditary

and therefore testable when mapped to the setting defined by Austin and Tao [11].

Finally, we show that this implies testability under our definitions, which gives the

following.

Theorem 5. All sentences in [∃∗∀∗, all ]= define properties in Tmr.

We begin the proof of Theorem 5 by defining a generalized colorability problem,
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as did Alon et al. [3].

For any fixed set F of structures with vocabulary τ , some positive number of

colors c, and functions that assign a color between 1 and c to each element of

each structure in F , we define the F -colorability problem as follows. A structure

A ∈ STRUC (τ) is F -colorable if there exists some (not necessarily proper) c-

coloring of A such that A does not contain any induced substructures isomorphic

to a member of F . We let PF be the set of structures that are F -colorable.

For example, we can consider the case of graphs and let F contain c copies of K2.

We enumerate these copies in some fashion from 1 to c, and for copy i, color both

vertices with i. The resulting problem is of course the usual (k- or equivalently)

c-colorability. The following is a straightforward generalization of the proof by

Alon et al. [3].

Lemma 11. Let φ be any first-order sentence in the class [∃∗∀∗, all ]=. There

exists an instance of the F -colorability problem that is indistinguishable from P ,

the property defined by φ.

Proof (Lemma 11). Let ε > 0 be arbitrary and φ := ∃x1 . . . ∃xt∀y1 . . . ∀yu : ψ be

any first-order formula with quantifier-free ψ and vocabulary τ . We note, as did

Alon et al. [3], that we can restrict our attention to formulae ψ where it is sufficient

to consider only cases where the variables are bound to distinct elements. This

is because, given any ψ′, we can construct a ψ satisfying this restriction that is

equivalent on structures with at least t + u elements, and the smaller structures

do not matter in the context of indistinguishability.

Let P = {A | A ∈ STRUC (τ), A |= φ} be the property defined by φ. We
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now define an instance of F -colorability that we will show to be indistinguishable

from P . We denote our c colors by the elements of

{(0, 0)} ∪ {(a, b) | 1 ≤ a ≤ π1, 1 ≤ b ≤ π2, a, b ∈ N} .

Here, π1 is the number of distinct structures of vocabulary τ with exactly t ele-

ments, π1 := 2
∑s

i=1 t
ai . Similarly, we denote by π2 the number of ways it is possible

to “connect” or “add” a single element to some existing, fixed t-element structure

of vocabulary τ , i.e., π2 := 2
∑s

i=1

∑ai−1
j=1 (aij )t

ai−j

. We will use fixed enumerations

of these π1 structures with t elements and π2 ways of connecting an additional

element to a fixed t element structure.

We impose on the coloring of the structure the following restrictions. Each can

be expressed by prohibiting finite sets of colored induced substructures.

(1) The color (0, 0) may be used at most t times. Therefore, we prohibit all

(t+ 1)-element structures that are colored completely with (0, 0).5

(2) The graph must be colored using only {(0, 0)} ∪ {(a, b) | 1 ≤ b ≤ π2} for

some fixed a ∈ {1, . . . , π1}. Therefore, we prohibit all two-element structures

colored ((a, b), (a′, b′)) with a ̸= a′.

(3) We now consider some fixed coloring of a u-element structure V , whose

universe we identify with {v1, . . . , vu}. We assume that this coloring satisfies

the previous restriction and that color (0, 0) does not appear. We must

decide whether to prohibit this structure. In order to do so, we first take the

5Note that introducing a constraint guaranteeing the existence of t such elements cannot be
done by forbidding finite sets of structures, and would result in a non-hereditary property.
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fixed a guaranteed by the previous restriction, and consider the t-element

structure E, whose universe we identify with {e1, . . . , et}, that is the ath

structure in our enumeration of t element structures. We connect each vi to

E in the following way. If vi is colored (a, b), we use the bth way of connecting

an additional element to a t-element structure in our enumeration. We denote

the resulting (t + u)-element structure as M and allow (do not prohibit) V

iff M is a model of ψ when we replace xi with ui and yj with vj.

We now show that the resulting F -colorability problem is indistinguishable

from P . Recall the definition of indistinguishability (Definition 14) and assume

that we are given an A |= φ. Color the t vertices existentially bound to the xi with

(0, 0). Then, we can color all remaining vertices vi with (a, b), where a corresponds

to the substructure induced by {x1, . . . , xt} in our enumeration of t-element struc-

tures, and b corresponds to the connection between vi and {x1, . . . , xt}. It is easy

to see that this coloring satisfies the restrictions of our F -colorability problem. We

have not made any modifications to the structure and so clearly mrdist(A,PF ) = 0

(i.e., A ∈ PF ).

Next, we assume that we are given a structure with a coloring that satisfies our

restrictions. We will show that we can obtain a model of φ by making only a small

number of modifications. First, if there are less than t elements colored (0, 0), we

arbitrarily choose additional elements to color (0, 0) so that there are exactly t

such elements. We will denote these t elements with {e1, . . . , et}. Restriction (2)

guarantees that all colors which are not (0, 0) share the same first component.

Let a be this shared component. We make the structure induced by {e1, . . . , et}

identical to the ath structure in our enumeration of t-element structures, requiring
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at most
∑s

i=1 t
ai = O(1) modifications. Next, for each element vi that is colored

(a, b) with a, b ̸= 0, we modify the connections between vi and {e1, . . . , et} in order

to make these connections identical to the bth way of making such connections in

our enumeration. This requires at most

(n− t)
r∑

i=1

ai−1∑
j=1

[(
ai
j

)
tai−j

]
= O(n)

additional modifications, all of which are to non-monadic subrelations. Binding xi

to ei, the resulting structure is a model of φ. We made at most O(1) modifications

to monadic subrelations and O(n) modifications to non-monadic subrelations, and

so mrdist(A,P ) ≤ max{O(1)/n,O(n)/Ω(n2)} = o(1) < ε, where the inequality

holds for sufficiently large n.

Therefore, all such properties P are indistinguishable from instances of F -

colorability, as desired. Lemma 11

Recall that a hereditary property of relational structures is one which is closed

under taking induced substructures. F -colorability is clearly a hereditary property;

if A is F -colorable, then so are its induced substructures. However, the definitions

of Austin and Tao [11] are significantly different from ours and so we explicitly

reduce the following translation in our setting to their result.

Theorem 6 (Translation of Austin and Tao). Let P be a hereditary property of

relational structures which is closed under isomorphisms. Then, property P is

testable in the sense of Tmr with one-sided error.

Theorem 6 is, in a sense, the latest in a series of generalizations of Corollary 6.3

of Alon et al. [3], i.e., the testability of colorability problems for undirected loop-
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free graphs. The first such generalization was by Fischer [20], who extended the

result to more general colorability problems with counting restrictions. This was

followed by Alon and Shapira [8] who extended it to hereditary graph properties.

Ishigami [37] extended the testability result to hereditary partite uniform hyper-

graph properties, and Rödl and Schacht [57] extended it to hereditary uniform

hypergraph properties. These generalizations are closely related to extensions of

Szemerédi’s Regularity Lemma and the Removal Lemma, see the references in

Section 1.1.

Before reducing Theorem 6 to its statement in [11], we first briefly introduce

their definitions. All of the definitions in Subsection 4.2 are from Austin and

Tao [11], although we omit definitions which are not necessary for our purposes.

Framework of Austin and Tao

We begin by introducing their analogue of vocabularies: finite palettes.

Definition 17. A finite palette K is a sequence K := (Kj)
∞
j=0 of finite sets, of

which all but finitely-many are singletons. The singletons are called points and

denoted pt. A point is called trailing if it occurs after all non-points.

We will write K = (K0, . . . , Kk), omitting trailing points and call k the order

of K. We use the elements of Kj to color the j-ary edges in hypergraphs.

Definition 18. A vertex set V is any set which is at most countable. If V,W are

vertex sets, then a morphism f from W to V is any injective map f : W → V and

the set of such morphisms is denoted Inj(W,V ). For N ∈ N, we denote the set

{1, . . . , N} by [N ].
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Of course, [N ] is a vertex set. Our structures are finite so we are mostly inter-

ested in finite vertex sets. Next, we define the analogue of relational structures.

Definition 19. Let V be a vertex set and K be a finite palette. A K-colored

hypergraph G on V is a sequence G := (G)∞j=0, where each Gj : Inj([j], V ) → Kj

is a function. Let K(V ) be the set of K-colored hypergraphs on V .

Only finitely many of the Kj are not points, and so only finitely many Gj are

non-trivial. The Gj assign colors from Kj to the morphisms in Inj([j], V ). In

our relational setting, this set of morphisms corresponds to the set of j-ary tuples

(x1, . . . , xj) with pairwise distinct components.

Before defining hereditary K-properties, we need one last technical definition.

Definition 20. Let V,W be vertex sets and f ∈ Inj(W,V ) be a morphism from

W to V . The pullback map K(f) : K(V ) → K(W ) is

(
K(f)(G)

)
j
(g) := Gj(f ◦ g) ,

for all G = (Gj)
∞
j=0 ∈ K(V ), j ≥ 0 and g ∈ Inj([j],W )). If W ⊆ V and f ∈

Inj(W,V ) is the identity map on W , we abbreviate

G ⇂W := K(f) .

Abusing notation, the pullback map K(f) maps K-colored hypergraphs on V to

those on W , by assigning the color of f ◦ g to g, for all tuples g. Note that G ⇂W

is equivalent to the induced subhypergraph on W . For clarity, we reserve P for

properties of relational structures and use P to denote properties of hypergraphs.
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Definition 21. Let K = (Kj)
∞
j=0 be a finite palette. A hereditary K-property P is

an assignment P : V 7→ P(V ) of a collection P(V ) ⊆ K(V ) of K-colored hypergraphs

for every finite vertex set V such that for every morphism f ∈ Inj(W,V ) between

finite vertex sets,

K(f)(P(V )) ⊆ P (W ) .

Finally, we state the definition of (one-sided error) testability used by Austin

and Tao [11]. For vertex set V and c ∈ N, we write
(
V
c

)
:= {V ′ | V ′ ⊆ V, |V ′| = c}

to denote the set of subsets of V with exactly c elements.

Definition 22. Let K be a finite palette with order k ≥ 0 and P be a hereditary

K-property. Property P is testable with one-sided error if for every ε > 0, there

exists N ≥ 1 and δ > 0 satisfying the following. For all vertex sets V with |V | ≥ N ,

if G ∈ K(V ) satisfies

1∣∣(V
N

)∣∣
∣∣∣∣{W | W ∈

(
V

N

)
, G ⇂W∈ P (W )

}∣∣∣∣ ≥ 1− δ , (4.1)

then there exists a G′ ∈ P (V ) satisfying

1∣∣(V
k

)∣∣
∣∣∣∣{W | W ∈

(
V

k

)
, G ⇂W ̸= G′ ⇂W

}∣∣∣∣ ≤ ε . (4.2)

To see that this is a variant of testability, it is easiest to consider the contraposi-

tive. If there is a G′ satisfying (4.2), then G is not ε-far from P , using the implicit

distance measure based on the fraction of differing induced subhypergraphs with

size k. If there is no such G′ (i.e., G is ε-far from P) and P is testable, then (4.1)

must not hold. That is, there are many induced subhypergraphs of size N that do
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not have P . The definition is for hereditary P, and so if G has P , then so do all

induced subhypergraphs. This allows the construction of testers.

Finally, we can state one of the main results of Austin and Tao [11].

Theorem 7 (Austin and Tao [11]). Let K be a finite palette and let P be a

hereditary K-property. Then, P is testable with one-sided error.

In the following subsection we will map our vocabularies, structures and prop-

erties to this setting. We will then show that hereditary properties in our setting

correspond to hereditary properties (in the sense of Definition 21 above) here, and

that testability in the sense of this section (Definition 22) implies testability of

the original relational properties. That is, we explicitly reduce our translation

(Theorem 6) to Theorem 7.

Reducing Theorem 6 to Theorem 7

To begin, we map vocabulary τ = {Ra1
1 , . . . , R

as
s } to finite palette Kτ = (Ki)

∞
i=0.

We use the color of a “tuple” to represent the set of assignments on it. The dif-

ference between the set of j-ary tuples over a finite universe U and Inj([j], U) is

that the latter does not permit repeated components. If S ∈ SUB(Rai
i ) is such

that |S| < ai, the corresponding subrelation consists of tuples with repeated com-

ponents. We treat such S as relations with arity |S| and no repeated components.

Recall that S(n, k) is the Stirling number of the second kind.

For a ≥ 1, let Pa := {Rai
i | Rai

i ∈ τ, ai = a} be the set of predicate symbols with

arity a. We now define palette K. Let K0 := pt and Ki :=
[
2
∑i

j |Pj |S(j,i)
]
. There

are finitely-many predicate symbols and so only finitely-many Ki ̸= pt.
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Let Sa := {Si
a | Si

a ∈ SUB(Rai
i ), |Si

a| = a, 1 ≤ i ≤ s} be the set of subtypes with

cardinality a for all a ≥ 1. Now, 2|Sa| = |Ka| and we have exactly enough colors

to encode the set of assignments of the a-ary subtypes on a-ary tuples.

We will now define a map h from relational structures A on universe U to

hypergraphs GA ∈ K(U). For any Si
a ∈ Sa, there is a bijection

r(Si
a) : s

U(Si
a) → {(x1, . . . , xa) | xi ∈ U, xi ̸= xj for i ̸= j}

from sU(Si
a) to the a-ary tuples without duplicate components, formed by removing

the duplicate components. That is, r(Si
a) maps (x1, . . . , xai) to (xi1 , . . . , xia) where

1 ≤ i1 < i2 < . . . < ia ≤ ai. We can now define GA = h(A).

For j > 0, we define Gj : Inj([j], U) → Kj as follows. Assign to f ∈ Inj([j], U)

the color encoding the set of assignments of the subtypes Sj on (f(1), . . . , f(j)),

using the inverses (r(Si
j))

−1 to get assignments for subtypes of high-arity relations.

For j = 0, Inj([j], U) = ∅ and K0 = pt and we can use a trivial map.

Of course, we extend the map to properties in the obvious way. If P is a

property of relational structures, we let P(U) := {h(A) | A ∈ P}. Formally, we

define P(U) := P(U), but there is a small technical point. We have identified

finite universes with subsets of the naturals, allowing us to call STRUC (τ) a set.

However, Definition 18 in this section allows a vertex set to be any finite set

and Definition 21 requires hereditary hypergraph properties to be closed under

bijections between vertex sets. To remedy this, for each finite vertex set W , we fix
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a6 bijection gW : W → {0, . . . , |W | − 1}. We then define P := h(P ) formally as

P(W ) :=


P(W ), if W = {0, 1, . . . , |W | − 1};

K(gW ) (P({0,...,|W |−1})) , otherwise.

Hereditary relational properties are mapped to hereditary hypergraph prop-

erties, which are testable in the sense of this section (Definition 22 above) by

Theorem 7.

Lemma 12. If P is a hereditary property of relational structures, then h(P ) is a

hereditary property of hypergraphs.

Proof (Lemma 12). Let P be a hereditary property of relational structures with

vocabulary τ . Assume that P := h(P ) is not a hereditary K-property. Then,

by Definition 21 above, there exist finite vertex sets V and W , and a morphism

f ′ ∈ Inj(W,V ) such that

K(f)(P(V )) ̸⊆ P (W ) . (4.3)

Since f ′ exists, Inj(W,V ) cannot be the empty set and so |V | ≥ |W |. Let

UV := {0, . . . , |V |−1} and UW := {0, . . . , |W |−1}. By the definition of P , we can

fix bijections gV : V → UV and gW : W → UW such that P(V ) = K(gV ) (P(UV )
)

and P(W ) = K(gW ) (P(UW )
)
. By the definition of P = h(P ), this implies

K(f)
(
K(gV ) (P(UV )

))
̸⊆ K(gW ) (P(UW )

)
.

6Our properties are closed under isomorphisms, so any fixed bijection is acceptable.
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Bijections are invertible, and so this implies

K

(
gV ◦f◦(gW )

−1
) (

P(UV )
)
̸⊆ P(UW ) .

Rename f ′ := gV ◦ f ◦
(
gW

)−1 and note f ′ ∈ Inj(UW , UV ). Let A′ ∈ P (UV ) be such

that K(f ′)(A′) ̸∈ P (UW ).

We defined P as h(P ) for a hereditary property P of relational structures. Prop-

erty P is closed under isomorphisms, and so there is an

A := h−1(A′) ∈ P ∩ STRUC |UV |(τ)

such that the |UW |-element structure induced by {a | a = f ′(u) for some u ∈ Uw}

does not have P . This contradicts the hereditariness of P and so P must be

hereditary in the sense of this section (Definition 21).

Lemma 12

We mapped hereditary relational properties to hereditary hypergraph properties,

which are testable by Theorem 7. We will show this implies testability of the

original properties.

Definition 23. Let A,B ∈ STRUC n(τ) be structures with vocabulary τ and uni-

verse U := {0, . . . , n − 1} of size n, k := maxi ai be the maximum arity of the

predicate symbols, and h : STRUC n(τ) → K(U) be the map defined above. The

h-distance between A and B is

hdist(A,B) :=
1∣∣(U
k

)∣∣
∣∣∣∣{W | W ∈

(
U

k

)
, h(A) ⇂W ̸= h(B) ⇂W

}∣∣∣∣ .
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4.2. RAMSEY’S CLASS

We now relate the two distances with the following simple lemma.

Lemma 13. Let A,B ∈ STRUC n(τ) be relational structures with vocabulary τ

and size n. Then, hdist(A,B) ≥ mrdist(A,B).

Proof (Lemma 13). Assume that mrdist(A,B) = ε. Then, there exists a predicate

symbol Rai
i ∈ τ and subtype S ∈ SUB(Rai

i ) such that

∣∣sA(S)△ sB(S)
∣∣ /(n!/(n− |S|)!) = ε .

Let k := maxi ai and let the universe of both structures be Un := {0, . . . , n− 1}.

Consider a random permutation of the universe (i.e., a bijection r : Un → Un)

chosen uniformly from the set of such permutations. The probability that the

substructures induced on {r(0), . . . , r(k − 1)} differ in A and B is hdist(A,B).

The probability that the tuple of the first |S| elements, i.e. (r(0), . . . , r(|S| − 1)),

differ in sA(S) and sB(S) is ε and so hdist(A,B) ≥ ε. Lemma 13

Equality is obtained when |S| = k. It is possible to show that the two distances

differ by at most a constant factor, and so the corresponding notions of testability

are essentially equivalent. However, Lemma 13 suffices for our purposes.

Lemma 14. Let P ⊆ STRUC (τ) be a property of relational structures which is

mapped by h to a property of hypergraphs that is testable with one-sided error.

Then, P is testable with one-sided error.

Proof (Lemma 14). Let P := h(P ) be the hypergraph property which P maps to.

We show that the following is an ε-tester for P with one-sided error. Let N ≥ 1,
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δ > 0 be the constants of Definition 22 above for ε. Assume that we are testing a

structure A ∈ STRUC n(τ) and recall that U = {0, . . . , n− 1}.

1. If #(A) ≤ N , query the entire structure and decide exactly whether A ∈ P .

2. Otherwise, repeat the following q(δ) times.

(a) Uniformly select N elements and query the induced substructure.

(b) If it has P , continue. Otherwise, reject.

3. Accept if all of the induced substructures had P .

If A ∈ P , then all induced substructures have P because P is hereditary and

the tester accepts with probability 1. Next, assume mrdist(A,P ) > ε. We use

Definition 22 above to show the tester will find a witness for A ̸∈ P with probability

at least 2/3. By Lemma 13, hdist(A,P ) ≥ mrdist(A,P ) > ε. We assumed h(P ) is

hereditary, and so (by Theorem 7) it is testable in the sense of Definition 22. The

probability that a uniformly chosen N -element substructure does not have P is at

least δ. We use q(δ) to amplify the success probability from δ to 2/3.

Lemma 14

This completes the proof of the testability of Ramsey’s class (Theorem 5). All

properties expressible in Ramsey’s class are indistinguishable from instances of

F -colorability. Indistinguishability preserves testability and so it sufficed to show

that these instances are testable. All instances of F -colorability are hereditary

relational properties, which are testable by Theorem 6, which we reduced to the

statement by Austin and Tao [11].
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4.3 Summary

We proved the testability of two classes in this chapter. In Section 4.1, we used

model-theoretic techniques to prove testability for Ackermann’s class with equality

and explicitly constructed testers for each formula in the class. This result first

appeared in [38] with two-sided error, and the improved (i.e., one-sided) version

proven here will appear in [42].

In Section 4.2, we used a reduction to a strong result by Austin and Tao [11] to

prove testability for Ramsey’s class. This extends a result of Alon et al. [3] from

loop-free, undirected graphs to relational structures, and answers a question of

Fischer [20] (who asked whether the hypergraph properties expressible with prefix

∃∗∀∗ are testable). This result first appeared in [39], and will also appear in [42].

It is interesting to consider the query complexities for these two classes. In

particular, our construction for Ramsey’s class gives a tremendous dependence on

ε (towers of 1/ε). Improving the query complexity for Ramsey’s class is difficult,

and is closely linked to open problems in extremal (hyper)graph theory (see the

Conclusion in Chapter 6).
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Chapter 5

Untestable Classes

In the previous chapter, we saw that two large syntactic classes of first-order logic

are testable. However, there are also first-order properties that are not testable.

In this chapter, we prove that several classes are untestable.

5.1 Untestable Properties in [∀3∃, (0, 1)]=

As mentioned in Subsection 1.1.1, Alon et al. [3] proved that there exists an

untestable property of undirected, loop-free graphs expressible with quantifier pre-

fix ∀12∃5. In this section, we simplify their untestable example and thereby show

that the classes [∀3∃, (0, 1)]=, [∀2∃∀, (0, 1)]=, [∀∃∀2, (0, 1)]= and [∀∃∀∃, (0, 1)]= are

untestable. The focus on graphs is justified by recalling that monadic first-order

logic is testable.

We will improve on three of these prefixes in Section 5.2, where we prove that

there are untestable properties in [∀∃∀, (0, 1)]=. However, we still need Theorem 8

for the prefix [∀3∃, (0, 1)]= and we present it first due to its relative simplicity.
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The class [∀3∃, (0, 1)] (usually without equality) is well-known in the literature.

It is trivial to prove that this class does not have the finite model property. In

addition, Kolaitis and Vardi [45] showed that a 0-1 law does not hold for second-

order existential logic when the first order part is in this class (even without

equality). However, it is an essentially finite class (i.e., it can only express a finite

number of properties up to logical equivalence) and therefore decidable.

We will begin by defining property P , which is essentially the graph isomorphism

problem for undirected loop-free graphs encoded in directed graphs that may con-

tain loops. We will begin by showing in Lemma 15 that P is indistinguishable

from property Pf (cf. Definition 25 below) which is expressible in any of the prefix

vocabulary classes mentioned in Theorem 8 below. We will then show that P is

not testable. Indistinguishability preserves testability and so this implies that Pf

is also untestable, which will suffice to show the following theorem.

Theorem 8. The following prefix classes are not testable:

1. [∀∃∀∃, (0, 1)]=

2. [∀∃∀2, (0, 1)]=

3. [∀2∃∀, (0, 1)]=

4. [∀3∃, (0, 1)]=

We define property P as follows. First, a graph that has property P must consist

of an even number of vertices, of which exactly half have loops. The subgraph

induced by the vertices with loops must be isomorphic to that induced by the

vertices without loops, ignoring all loops, and there must be no edges connecting
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the vertices with loops to those without loops. Finally, all edges must be undirected

(i.e., an edge from x to y implies an edge from y to x). We refer to such undirected

edges as paired edges.

Definition 24. A graph G ∈ Gn has P iff the following conditions are satisfied:

1. For some s, n = 2s.

2. There are exactly s vertices x satisfying E(x, x). We will refer to the set of

such vertices as H1 and to the remaining s vertices as H2.

3. The substructure induced by H1 is isomorphic to that induced by H2 when all

loops are removed. That is, there is a bijection f from H1 to H2 such that

for distinct x, y ∈ H1, it is true that G |= E(x, y) iff G |= E(f(x), f(y)).

4. There are no edges between H1 and H2.

5. All edges are paired.

Graph isomorphism is not directly expressible in first-order logic, and so we

use the following encoding where the bijection f is made explicit by adding n

edges between H1 and H2. This of course reduces the complexity from the level

of finding an isomorphism to the level of checking a given one, in order to achieve

first-order expressivity. However, it maintains hardness for testability: essentially,

our samples are too small to see any part of the given isomorphism.

Definition 25. A graph G ∈ Gn has Pf iff the following conditions are satisfied:

1. For every vertex x, if E(x, x) then there is an edge from x to exactly one y

such that ¬E(y, y).
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2. For every vertex x, if ¬E(x, x) then there is an edge from x to exactly one y

such that E(y, y).

3. For all vertices x and y, E(x, y) iff E(y, x).

4. For all pairwise-distinct vertices x1, x2, x3, x4, if E(x1, x1), ¬E(x2, x2),

E(x3, x3), ¬E(x4, x4), E(x1, x2) and E(x3, x4), then E(x1, x3) iff E(x2, x4).

Expressing Conditions 1 and 2 as “there is at most one such y” and “there is

at least one such y,” Pf can be expressed in each of the classes [∀∃∀∃, (0, 1)]=,

[∀∃∀2, (0, 1)]=, [∀2∃∀, (0, 1)]= and [∀3∃, (0, 1)]=.

For example, in the class [∀3∃, (0, 1)]=, we can express Pf by

∀x1∀x3∀x4∃x2 :
[

(
(E(x1, x1) ↔ ¬E(x2, x2)) ∧ E(x1, x2)

)
∧[(

(E(x1, x1) ↔ ¬E(x3, x3)) ∧ (E(x3, x3) ↔ E(x4, x4))∧

E(x1, x3) ∧ E(x1, x4)
)
→ x3 = x4

]
∧(

E(x1, x3) → E(x3, x1)
)

∧(
[E(x1, x1) ∧ E(x3, x3) ∧ x1 ̸= x3 ∧ ¬E(x4, x4) ∧ E(x3, x4)] →

(¬E(x2, x2) ∧ E(x1, x2) ∧ (E(x1, x3) ↔ E(x2, x4)))
)]
.

To express Pf with prefixes ∀2∃∀ and ∀∃∀2, it suffices to reorder the quantifiers

(keeping x2 existential and x1 first). The prefix ∀∃∀∃ requires a few additional

modifications.

The two properties P and Pf differ only in the edges which make the isomor-

phism explicit in Pf but are forbidden in P . There are at most n such edges, none
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of which are loops. This suffices to prove the following.

Lemma 15. Properties P and Pf are indistinguishable.

Proof (Lemma 15). Let ε > 0 be arbitrary and let Nε = ε−1. Assume that G

is a structure that has property P and that #(G) > Nε. We will show that

mrdist(G,Pf ) < ε.

Structure G has P and so there is a bijection f satisfying Condition 3 of Def-

inition 24. For all x ∈ H1, we add the edges E(x, f(x)) and E(f(x), x) and call

the result G′. Property Pf differs from P only in that the isomorphism is made

explicit by the edges connecting loops and non-loops, and so G′ has Pf . Indeed, it

satisfies Conditions 1 and 2 of Definition 25 because G had no edges between loops

and non-loops and we have connected each to exactly one of the other, following

the bijection f . Next, G′ satisfies Condition 3 of Definition 25 because G satisfied

Condition 5 of Definition 24 and we added only paired edges. Finally, G′ satisfies

Condition 4 of Definition 25 because the edges between loops and non-loops follow

the isomorphism f from Condition 3 of Definition 24.

We have added exactly n (directed) edges, none of which are loops and so we

have mrdist(G,P ) ≤ mrdist(G,G′) = 0+n/n2 < ε, where the inequality holds for

n > Nε. The converse is analogous; given a G that has property Pf , we simply

remove the n edges between loops and non-loops after using them to construct the

isomorphism f . Lemma 15

Properties P and Pf are indistinguishable. We saw in Section 3.3 that testability

is preserved by indistinguishability (cf. Theorem 7) and thus showing that P is

not testable suffices to prove that Pf is not testable (and therefore Theorem 8).
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The proof closely follows that of Alon et al. [3]. The crucial lemma is the following,

a combination of Lemmata 7.3 and 7.4 from Alon et al. [3]. We use countH(T ) to

refer to the number of times that a graph T occurs as an induced subgraph in H.

A bipartite graph is a graph where we can partition the vertices into two sets U1

and U2 such that there are no edges “internal” to the partitions. That is, for all

x1, y1 ∈ U1 and x2, y2 ∈ U2, ¬E(x1, y1) and ¬E(x2, y2).

Lemma 16 (Alon et al. [3]). There exists a constant ε′ > 0 such that for every

D ∈ N, there exist two undirected bipartite graphs H = H(D) and H ′ = H ′(D),

and a number t satisfying the following conditions.

1. Both H and H ′ have a bipartition into classes U1 and U2, each of size t.

2. In both H and H ′, for all subgraphs X with size t/3 ≤ #(X) ≤ t, there are

more than t2/18 undirected edges between X and the remaining part of the

graph.

3. The minimum degree of both H and H ′ is at least t/3.

4. dist(H,H ′) ≥ ε′.

5. For all D-element graphs T , countH(T ) = countH′(T ).

Lemma 16 is due to Alon et al. [3], although they only sketch the proof. We

include a complete proof here for completeness.

5.1.1 Proof of Lemma 16

We follow the proof outlined by Alon et al. [3] and begin with their proof of the

following simple lemma.
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Lemma 17 (Alon et al. [3]). There exist constants ε and N such that every graph

H with n > N (labelled) vertices is ε-far from all but at most 2n
2/5 other graphs

with the same vertex set.

Proof (Lemma 17). Choose an ε < 1/2 such that
(
e
ε

)ε
< 21/10 and an N > ε−1

such that nn < 2n
2/10 for n > N . The number of graphs that are less than ε-far

from a given H with n > N vertices is at most

n!
εn2∑
i=0

((n
2

)
i

)
. (5.1)

We apply the identity
(
a
b

)
=

(
a−1
b−1

)
+
(
a−1
b

)
inductively to

(
n2

εn2

)
. A simple inductive

proof shows that applying this identity once to each term, repeating for a levels,

gives
(
n2

εn2

)
=

∑a
i=0

(
a
i

)(
n2−a
εn2−i

)
=: L(a), and so

(
n2

εn2

)
= L(n) =

n∑
i=0

(
n

i

)(
n2 − n

εn2 − i

)
. (5.2)

Recalling that
∑n

i=0

(
n
i

)
= 2n, there are 2n > εn2 total “terms” in the summation.

Each term in the summation
∑εn2

i=0

((n2)
i

)
can therefore be paired with a term from

(5.2) that upper-bounds it. Combining with (5.1), we see that the number of

graphs that are less than ε-far from H is less than

n!

(
n2

εn2

)
< nn

(e
ε

)εn2

< 2n
2/5 ,

as desired. Lemma 17

Next, we show that most (sufficiently large) bipartite graphs satisfy Conditions 2

and 3 of Lemma 16. We use the following statement of Chernoff bounds (see
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Appendix A of Alon and Spencer [10]);

Pr[X < a] ≤ E[e−λX ]eλa , (5.3)

where λ is chosen to optimize the bound, and also the following lemma.

Lemma 18 (Lemma A.1.5 in Alon and Spencer [10]).

eλ + e−λ

2
= cosh(λ) ≤ eλ

2/2 . (5.4)

Lemma 19 (Alon et al. [3]). There exists an N ′ such that for n > N ′, at least

1
2
2n

2 of the bipartite graphs with a given (labeled) bipartition U1, U2 where |U1| =

|U2| = n satisfy both of the following conditions.

(191) The minimum degree is at least n/3.

(192) For every subset X of U1∪U2 with size n/3 ≤ |X| ≤ n, there are more than

n2/18 edges between X and (U1 ∪ U2)\X.

Proof (Lemma 19). We let G be a random bipartite graph with a given, labeled

bipartition U1, U2 chosen in the following way. Each possible edge (u, v) ∈ U1×U2

is placed independently and uniformly with probability 1/2. There are n2 possible

edges, and so each of the 2n
2 possible such bipartite graphs is generated with

equal probability. The probability of G satisfying (19.1) and (19.2) above is (by

definition)

|{H | H is such a graph that satisfies (19.1) and (19.2)}|
2n2 .
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We want a lower-bound on the number of such graphs, or equivalently a lower-

bound on Pr[G satisfies (19.1) and (19.2)] ·2n2 that is greater than 1
2
2n

2 . It suffices

therefore to show that this probability is at least 1/2. Using the union bound,

Pr[G satisfies (19.1) and (19.2)] ≥

1− Pr[G does not satisfy (19.1)]− Pr[G does not satisfy (19.2)] .

We will show in Claims 1 and 2 that this is at least 1 − o(1) > 1/2, where the

inequality holds for sufficiently large N ′. We will let U = U1 ∪ U2 be the set of all

vertices.

Claim 1. Pr[G does not satisfy (19.1)] = o(1).

Proof (Claim 1). Let deg(v) be the degree of a vertex v. By the union bound,

Pr[G does not satisfy (19.1)] ≤
∑
v∈U

Pr[deg(v) ≤ n/3].

Let Nuv be an “indicator” variable for the event that there is an edge E(u, v)

which is normalized to take the following values,

Nuv :=


−1, if ¬E(u, v);

1, if E(u, v).

(5.5)

Then, deg(v) ≤ n/3 iff

Yv :=
∑

{u|u∈U1 if v∈U2, u∈U2 if v∈U1}

Nuv ≤ −n/3 ,
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and so
∑

v∈U Pr[deg(v) ≤ n/3] =
∑

v∈U Pr[Yv ≤ −n/3]. We apply (5.3) and

Lemma 18, and so

Pr[Yv ≤ −n/3] ≤ E[e−λYv ]e−λn/3 = cosh(λ)e−λn/3 ≤ eλ
2n/2−λn/3 .

Minimizing the bound by setting λ = 1/3 gives

Pr[G does not satisfy (19.1)] ≤ (2n)e−n/18 = o(1) ,

as desired. Claim 1

Claim 2. Pr[G does not satisfy (19.2)] = o(1).

Proof (Claim 2). By the union bound,

Pr[G does not satisfy (19.2)] ≤
∑

{X|X⊆U,n/3≤|X|≤n}

Pr[G violates (19.2) with X] .

(5.6)

Let a := |X ∩ U1|, b := |X ∩ U2|, i := a + b = |X|. As in (5.5), we let Nuv

be a normalized indicator for the event E(u, v). Let YX :=
∑

{u,v|u∈X,v∈U\X}Nuv.

Then, G violates (19.2) with X iff YX < −i(2n− i) + n2/9. Using again (5.3),

∑
{X|X⊆U,n/3≤|X|≤n}

Pr[G violates (19.2) with X] =

∑
{X|X⊆U,n/3≤|X|≤n}

Pr[YX < −i(2n− i) + n2/9] ≤

∑
{X|X⊆U,n/3≤|X|≤n}

E[e−λYX ]eλ(−i(2n−i)+n2/9) =

∑
{X|X⊆U,n/3≤|X|≤n}

∏
{u,v|u∈X,v∈U\X}

E[e−λNuv ]eλ(−i(2n−i)+n2/9) . (5.7)
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We can divide the product into four cases,
∏

{u,v|u∈X,v∈U\X} E[e−λNuv ] =

 ∏
{u,v|u∈X∩U1,v∈U1\X}

eλ

 ∏
{u,v|u∈X∩U2,v∈U2\X}

eλ

 ·

 ∏
{u,v|u∈X∩U1,v∈U2\X}

eλ + e−λ

2

 ∏
{u,v|u∈X∩U2,v∈U1\X}

eλ + e−λ

2

 .

Recalling Lemma 18 and combining with (5.7), Pr[G does not satisfy (19.2)] ≤

∑
{X⊆U |n/3≤|X|≤n}

e
λ(a(n−a)+b(n−b))+λ2

2
(a(n−b)+b(n−a))+λ

(
−i(2n−i)+n2

9

)
. (5.8)

There are at most
(
n
a

)(
n

i−a

)
choices of X with size i when a = |X ∩ U1| and

b = i− a = |X ∩ U2|, and so after simplifying, (5.8) is at most

n∑
i=⌈n/3⌉

i∑
a=0

(
n

a

)(
n

i− a

)
eλ(2ai+n2/9−2a2−in)+λ2

2 (2a2+in−2ai) . (5.9)

Using the simple bound
(
n
k

)
≤

(
en
k

)k, we get that (5.9) is at most

n∑
i=⌈n/3⌉

i∑
a=0

ei+a ln(n/a)+(i−a) ln(n/(i−a))+λ(2ai+n2/9−2a2−in)+λ2

2 (2a2+in−2ai) . (5.10)

Let us consider 2ai+ n2/9− 2a2 − in. If a ≥ 5n/6, then

2ai+
n2

9
− 2a2 − in ≤ 2in+

n2

9
− 25

18
n2 − in

≤ − 5

18
n2 = −Θ(n2) .

If a < 5n/6, then the maximum of 2ai + n2/9 − 2a2 − in occurs at a = i/2.
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Therefore,

2ai+
n2

9
− 2a2 − in ≤ i2 +

n2

9
− i2

2
− in =

i2

2
+
n2

9
− in

≤ n2

18
+
n2

9
− n2

3
= −n

2

6
= −Θ(n2) ,

because the maximum occurs at the boundary i = n/3. Applying these bounds,

(5.10) is at most

n∑
i=⌈n/3⌉

i∑
a=0

ei+a ln(n/a)+(i−a) ln(n/(i−a))+λ(−n2/6)+λ2

2 (2a2+in−2ai) . (5.11)

Choosing the non-optimal λ = 1/
√
n and looking only at asymptotics, we see from

(5.11) that Pr[G does not satisfy (19.2)] ≤

n∑
i=⌈n/3⌉

i∑
a=0

eO(n)+O(n lnn)−Θ(n3/2)+O(n) = O(n2)e−Θ(n3/2) = o(1) .

Claim 2

The two claims combine to give the lemma. Lemma 19

We are now ready to complete the proof of Lemma 16. We let ε′ be the ε of

Lemma 17, and choose a sufficiently large s = 2n > max(N, 2N ′) where N and N ′

are from Lemmata 17 and 19 respectively. There are at most E := 2(
D
2) graphs

on D vertices and each appears at most sD times as an induced subgraph in a

graph on s vertices. An “appearance count” for a graph is an 2(
D
2)-tuple giving, for

each of the possible graphs on D vertices, the number of appearances as an induced

subgraph. There are therefore at most (sD)E = 2DE log s many distinct appearance

counts (tuples). By Lemma 19, there are at least 1
2
2n

2 bipartite graphs satisfying
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the conditions of that lemma, and

1

2
2n

2

= 2s
2/4−1 = 2s

2/20−12s
2/5 > 2DE log s2s

2/5 ,

where the inequality holds for sufficiently large s.

There are at most 2DE log s distinct appearance counts and so there must be some

appearance count shared by more than 2s
2/5 of the above graphs. By Lemma 17,

there must be two such graphs (satisfying the conditions of Lemma 19 and with

the same appearance count) that are ε-far from each other. This completes the

proof of Lemma 16.

5.1.2 Completing the Proof of Theorem 8

It is worth noting that the above is for undirected, loop-free graphs. However,

bipartite graphs never have loops and “undirected” in our setting results in paired

edges. It is easy to show that if two structures agree on the counts for all size D

induced subgraphs, they agree on the counts for all induced subgraphs of size at

most D. This is done by applying the following lemma inductively.

Lemma 20. Let H and H ′ be two graphs, both of size s, and let 2 < D ≤ s. If

for every graph T of size D, countH(T ) = countH′(T ), then for every graph T ′ of

size D − 1, countH(T ′) = countH′(T ′).

Proof (Lemma 20). Assume H and H ′ satisfy the initial conditions of Lemma 20,

but that there exists a T ′ of size D − 1 such that countH(T ′) ̸= countH′(T ′). Let

C = {T | #(T ) = D and T contains T ′ as an induced subgraph}.
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Note that
∑

T∈C countH(T ) countT (T ′) = countH(T ′)(s−D+1) and likewise for∑
T∈C countH′(T ) countT (T ′). We assumed that H and H ′ satisfy countH(T ) =

countH′(T ) for T ∈ C, but countH(T ′) ̸= countH′(T ′), giving a contradiction and

the Lemma follows. Lemma 20

Lemma 21. Property P is not testable.

Proof (Lemma 21). Assume that P is testable. Then, there exists an ε-tester for

ε := min {ε′/8, 1/144} ,

where ε′ is the constant from Lemma 16 above. We can assume without loss of

generality that the tester queries all edges in a random sample of D := D(ε)

vertices.

Consider the graph G which contains two copies of H = H(D) from Lemma 16,

where one of the copies is marked by loops on each vertex and there are no edges

between the copies. This graph has property P , and so the tester must accept

it with probability at least 2/3. Next, consider the graph G′ which contains one

copy of H marked by loops and one copy of H ′, again where there are no edges

between the two (induced) subgraphs. Graph G′ is such that dist(G′, P ) ≥ ε (cf.

Lemma 22 above) and so it must be rejected with probability at least 2/3. Both G

and G′ consist of two bipartite graphs, each of which has a bipartition into two

classes of size t, and so #(G) = #(G′) = 4t.

However, G and G′ both contain exactly the same number of each induced

subgraph with D vertices. This is because both have loops on exactly half of

the vertices and the two halves are not connected by any edges. Some of the D
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vertices must be in the first copy of H and the others in the second H (resp. H ′).

By Lemma 20 above, H and H ′ contain the same number of each induced subgraph

with size at most D. The tester therefore obtains any fixed sample with the same

probability in G and G′ and is unable to distinguish between them. Hence, it is

unable to accept G with probability 2/3 and also reject G′ with probability 2/3.

This completes the proof, taking into account Lemma 22 below. Lemma 21

Recall that testing is easiest under the dist definition, and so Lemma 21 also

implies P is not testable under other definitions.

Lemma 22. The graph G′ is such that dist(G′, P ) ≥ ε.

Proof (Lemma 22). Suppose that dist(G′, P ) < ε. Then, there is an M ∈ P such

that dist(G′,M) < ε. Let M1 be the set of vertices with loops in M and let M2

be the set of vertices without loops. We will refer to the subgraph induced by the

vertices with loops in G′ as H and to that induced by those without loops as H ′.

Without loss of generality, assume that |M1∩H| ≥ |M1∩H ′|. Then, |M1∩H| ≥ t.

We let α1 be the set M1\H and α2 be M2\H ′. Note that |α1| = |α2| and |α1| ≤ t

because |M1 ∩H| ≥ t.

Informally, M is formed by moving vertices α1 from H ′ to H and vertices α2

from H to H ′, and then possibly making other changes. There are three cases,

which we will consider in order.

1. |α1| = 0.

2. |α1| ≥ t/3.

3. 0 < |α1| < t/3.
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If |α1| = 0, then we can construct M from G′ without exchanging vertices

between H and H ′, and in particular, construct H ′ from H (ignoring loops), by

making less than ε(4t)2 modifications. However, dist(H,H ′) ≥ ε′ by Lemma 16

above and so this must require at least ε′(2t)2 modifications. By definition, ε < ε′/4

so ε(4t)2 < ε′(2t)2. The first case is therefore not possible.

Recall that |α1| ≤ t. If |α1| ≥ t/3, then by Condition 2 of Lemma 16 there exists

at least t2/18 undirected edges between α1 and H ′\α1 and between α2 and H\α2.

All of these edges must be removed to satisfy P because each would connect a

vertex with a loop to a vertex without a loop. Therefore,

dist(G′,M) ≥ 4t2/18

(4t)2
= 1/72 .

But, ε < 1/72 and so the second case is not possible.

Therefore, it must be that 0 < |α1| < t/3. Here, we will show that it must be

the case that α1 and α2 are relatively far apart. If they are not far apart, then it is

possible to modify them instead of swapping them. This essentially results in the

first case considered above. Condition 3 of Lemma 16 requires that each vertex

has relatively high degree. These edges can be either internal to α1 (resp. α2) or

connecting α1 (α2) with H ′\α1 (H\α2). If α1 and α2 are relatively far apart, then

we will see that this forces too many edges “outside” of α1 (resp. α2), resulting in

a similar situation to the second case considered above.

We have assumed that dist(G′,M) < ε and that we can construct M from G′

by making less than ε(4t)2 modifications if we move α1 to H and α2 to H ′. This

entails the following modifications.
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1. Removing all edges connecting α1 to H ′\α1.

2. Removing all edges connecting α2 to H\α2.

3. Adding any required edges between α1 and H\α2.

4. Adding any required edges between α2 and H ′\α1.

5. Changing α1, α2, H\α2 and H ′\α1 to their final forms.

We can assume that the total number of modifications is less than ε(4t)2. It

must be that dist(α1, α2)|α1|2/(4t)2+ε ≥ ε′/4. If this does not hold, then we could

first modify α1 to make it identical to α2 and then make H ′ identical to M2. Next,

M2 is identical to M1, which we could make identical to H. This would require

less than ε′(2t)2 modifications, which would violate Lemma 16. Therefore,

dist(α1, α2) ≥ 16(ε′/4− ε)t2

|α1|2
. (5.12)

If both α1 and α2 are complete graphs then they cannot be far apart. Given

that all vertices in α1 (α2 is analogous) have degree at least t/3, then there must

be at least

|α1|(t/3− |α1|+ 1) + 2r

edges connecting α1 to H ′\α1, where r is the number of edges internal to α1 that

must be omitted to satisfy (5.12). The simple lower bound on r, the number

of edges needed for two graphs with at most r edges to be dist(α1, α2)-far, that

follows from dist(α1, α2) ≤ 2r/|α1|2 is sufficient. Finally, combining this with

Inequality (5.12) yields

r ≥ 8(ε′/4− ε)t2 . (5.13)
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The number of edges connecting α1 to H ′\α1 is therefore, by (5.13), at least

|α1|(t/3− |α1|+ 1) + 16(ε′/4− ε)t2 ≥ 16(ε′/4− ε)t2 .

All of these edges must be removed to move α1 (resp. α2), and so

dist(G′,M) ≥ 16(ε′/4− ε)t2

(4t)2
=

ε′

4
− ε .

We have defined ε ≤ ε′/8 and so dist(G′,M) ≥ ε, a contradiction.

The cases are exhausted and so dist(G′, P ) ≥ ε as desired. Lemma 22

5.2 The Kahr-Moore-Wang Class with Equality

In Section 5.1, we saw an untestable first-order property that is an encoding of

graph isomorphism similar to the untestable property of Alon et al. [3]. However,

expressing graph isomorphism seems to require us to use four quantifiers, as we’d

like to say that some edge is present if some other (in general, disjoint) edge is

present. In this section we prove the untestability of a prefix with length three,

using a variant of graph isomorphism that is closely related to Boolean function

isomorphism.

The main result of this section is Theorem 9.

Theorem 9. The prefix class [∀∃∀, (0, 1)]= is not testable.
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5.2.1 From Four to Three Quantifiers

We begin by introducing the idea that allows us to remove one quantifier from the

prefix while maintaining the hardness of our property for testing. Recall that graph

isomorphism is generally hard for testing (see, e.g., Fischer and Matsliah [21]). In

fact, restricting the properties to checking an explicitly given isomorphism between

undirected, bipartite graphs (see Figure 5.1(a)) maintains hardness for testing.

(a) A graph with Pb (b) A graph with Pe (c) A graph with Pf

Figure 5.1. Properties Pb, Pe and Pf

Sharing one of the partitions (see Figure 5.1(b)) would seem to remove the need

for four quantifiers. The resulting property is perhaps closer to a variant of function

isomorphism, e.g., for functions f, g : [n] → {0, 1}n where bit i of f(j) is 1 if there

is an edge from j in the leftmost partition to i in the middle partition and likewise

for g(j) and the right partition. This property is not first-order expressible, but

there is a somewhat tedious first-order encoding that is similar (see Figure 5.1(c)

and the formula in Subsection 5.2.2 below).

This connection with function isomorphism allows us to leverage recent work

on the testability of (Boolean) function isomorphism and use recent ideas and

techniques from Alon and Blais [2] to prove Lemma 23.
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5.2.2 Proof of Theorem 9

We begin by outlining the proof. First, we define Pf , a property expressible

in the class [∀∃∀, (0, 1)]= which, as described above, is in some sense a somewhat

tedious but first-order expressible variant of checking (explicit) isomorphism of

undirected bipartite graphs in tripartite graphs. We then define a variant P2, in

which the isomorphism is not explicitly given and we must test whether there exists

some suitable isomorphism. Although this increases the complexity of deciding the

problem from checking an isomorphism to finding one, it does not change hardness

for testing. We will show that P2 and Pf are indistinguishable and so P2 is testable

iff Pf is testable. Finally, we prove directly that P2 is untestable, even with o(
√
n)

queries, using an argument based on a recent proof by Alon and Blais [2].

Proof (Theorem 9). We begin by defining Pf . Formally, it is the set of graphs sat-

isfying the following conjunction of four clauses (see Figure 5.1(c) for an example).

∀x∃y∀z : { ((¬E(x, x) ∧ ¬E(z, z) ∧ x ̸= z) → E(x, z))

∧ (E(x, x) → (E(x, y) ∧ ¬E(y, y) ∧ [(¬E(z, z) ∧ E(x, z)) → y = z]))

∧ (¬E(x, x) → (E(y, x) ∧ E(y, y) ∧ [(E(z, z) ∧ E(z, x)) → y = z]))

∧ ((E(x, x) ∧ E(z, z)) → [¬E(y, y) ∧ E(x, y) ∧ (E(x, z) ↔ E(y, z))]) }

A graph satisfies this formula if the following conditions are all satisfied.

1. The nodes without loops form a complete subgraph.

2. For every node x with a loop, there is exactly one y without a loop such that

there is an edge from x to y.
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3. For every node y without a loop, there is exactly one x with a loop such that

there is an edge from x to y.

4. For all nodes x, z with loops, and y the unique node without a loop such

that E(x, y), it holds that E(x, z) iff E(y, z).

Property P2 below is similar to Pf , except that the isomorphism is not explicitly

given.

Definition 26. A graph G = (V,E) has P2 if it satisfies the following conditions.

1. There is a partition1 V1, V2 ⊆ V such that |V1| = |V2|, there are loops

(E(x, x)) on all x ∈ V1 and no loops (¬E(x, x)) for all x ∈ V2.

2. The nodes without loops form a complete subgraph.

3. There are no edges from a node with a loop to a node without a loop.

4. There exists a bijection b : V1 → V2 such that if x, z have loops, then E(x, z)

iff E(b(x), z).

It is not difficult to show that properties Pf and P2 are indistinguishable.

Claim 3. Properties Pf and P2 are indistinguishable.

Proof (Claim 3). Let ε > 0 be arbitrary and let Nε = ε−1. Assume that G has

property P2 and that #(G) > Nε. We will show that mrdist(G,Pf ) < ε.

GraphG has P2 and so there is a bijection satisfying Condition 4 of Definition 26.

We therefore add the edges E(i, b(i)) making the isomorphism (from V1 to V2)

explicit. The resulting graph Gf has Pf .

1V1, V2 partition V if V1 ∩ V2 = ∅ and V1 ∪ V2 = V .
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We have made exactly n/2 modifications, all to non-loops, and n − 1 ≥ Nε, so

mrdist(G,Pf ) ≤ mrdist(G,Gf ) = 1/2(n− 1) < ε.

The converse is analogous; given a G that has Pf , simply remove the n/2 edges

from loops to non-loops after using them to construct a suitable bijection b.

Claim 3

Properties Pf and P2 are indistinguishable and so (by Lemma 7), it suffices to

show that P2 is is untestable. Lemma 23 below is stronger than necessary, and

actually implies a Ω(
√
n) lower bound for testing Pf per the discussion following

Lemma 7. Theorem 9

Lemma 23. Fix 0 < ε < 1/2. Any ε-tester for P2 must perform Ω(
√
n) queries.

Proof (Lemma 23). The proof is via Yao’s Principle (cf. Principle 1), and so we

define two distributions, Dno andDyes and show that all deterministic testers have

an error-rate greater than 1/3 for property P2 when the input is chosen randomly

from Dno with probability 1/2 and from Dyes with probability 1/2.

In the following, we consider a distribution over graphs of sufficiently large

size 2n, and an arbitrary fixed partition of the vertices into V1 and V2 such that

|V1| = |V2| = n (for example, let the vertices be the integers V := [2n], V1 := [n]

and V2 := V \V1).

We begin with Dno, defined as the following distribution.

1. Place a loop on each vertex in V1 and place no loops in V2.

2. Place all edges (except loops) in V2 × V2.
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3. Place each possible edge (except loops) in V1×V1 and V2×V1 uniformly and

independently with probability 1/2.

That is, Dno is the uniform distribution of graphs (with this particular partition)

satisfying the first three conditions of P2.

Next, we define Dyes as the following.

1. Choose uniformly a random bijection π : V1 → V2.

2. Place a loop on each vertex in V1 and place no loops in V2.

3. Place all edges (except loops) in V2 × V2.

4. For each possible edge (i, j ̸= i) ∈ V1 × V1, uniformly and independently

place both (i, j) and (π(i), j) with probability 1/2 (otherwise place neither).

It is easy to see that Dyes generates only positive instances. Next, we show that

Dno generates negative instances with high probability.

Lemma 24. Fix 0 < ε < 1/2 and let n be sufficiently large. Then,

Pr
G∼Dno

[dist(G,P2) ≤ ε] = o(1) .

Proof (Lemma 24). Dno is the uniform distribution over graphs of size 2n with a

particular partition satisfying the first three conditions of P2. Let Gε be the set

of graphs G′ of size 2n satisfying these conditions and such that dist(G′, P2) ≤ ε

(regardless of partition).

Counting the number of such graphs shows

|Gε| ≤
(
2n

n

)
2n(n−1)n!

⌈ε2n2⌉∑
i=0

(
2n2

i

)
≤

(
2n

n

)
2n(n−1)n!2H(ϵ)2n2

,
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where H(ε) := −ε log ε − (1 − ε) log(1 − ε) is the binary entropy function (cf.

Lemma 16.19 in Flum and Grohe [23] for the bound on the summation).

Distribution Dno produces each of 2n(n−1)2n
2 graphs with equal probability, so

Pr
G∼Dno

[dist(G,P2) ≤ ε] ≤ |Gε|
2n(n−1)+n2 ≤

(
2n

n

)
n!2H(ϵ)2n2

/2n
2

≈ 4nn!2H(ϵ)2n2

√
πn2n2 = o(1) .

The approximation is asymptotically tight, which suffices. Lemma 24

We have shown that Dyes generates only positive instances and that (with high

probability) Dno generates instances that are ε-far from P2. Next, we show that

(again, with high probability) the two distributions look the same to testers making

only o(
√
n) queries.

The proof is similar to a proof by Alon and Blais [2]. We begin by defining two

random processes, Pno and Pyes, which answer queries from testers and generate

instances according to Dno and Dyes, respectively.

Process Pno is defined in the following way.

1. Choose uniformly a random bijection π : V1 → V2.

2. Intercept all queries from the tester and respond as follows.

(a) To queries E(i, i) with i ∈ V1: respond 1.

(b) To queries E(i, i) with i ∈ V2: respond 0.

(c) To queries E(i, j) with i ∈ V1 and j ∈ V2: respond 0.

(d) To queries E(i, j) with i ̸= j ∈ V2: respond 1.
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(e) To queries E(i, j) with i ̸= j ∈ V1: quit if we have queried E(π(i), j),

otherwise respond 1 or 0 randomly with probability 1/2 in each case.

(f) To queries E(i, j) with i ∈ V2 and j ∈ V1: quit if we have queried

E(π−1(i), j), otherwise respond 1 or 0 randomly with probability 1/2

in each case.

3. When the process has quit or the tester has finished its queries, complete

the generated instance in the following way. First, fix the edges that were

queried according to our answer. Next, place loops on each vertex in V1, no

loops in V2, all non-loop edges in V2 and no edges from V1 to V2. For each

remaining possible edge, place it (uniformly, independently) with probability

1/2, ignoring π.

We define Pyes in the same way, except for the final step. When Pyes quits or the

tester finishes, it fixes the edges that were queried according to its answers, and

also fixes the corresponding edges (when relevant) according to π. More precisely,

for each fixed E(i, j) with i ̸= j ∈ V1, we also fix E(π(i), j) and for fixed E(i, j)

with i ∈ V2, j ∈ V1, we also fix E(π−1(i), j), in both cases the same as our response

to E(i, j) (not randomly). The remaining edges are placed as in Pno.

Note that Pno generates instances according to Dno and Pyes generates in-

stances according to Dyes. In addition, Pyes and Pno behave identically until

they quit or answer all queries. In particular, if a tester does not cause the process

to quit, the distribution of responses of its queries is identical for the two processes.

We show that, with high probability, a tester that makes o(
√
n) queries does not

cause either process to quit.
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Lemma 25. Let T be a deterministic tester which makes o(
√
n) queries, and let

T interact with Pyes or Pno. In both cases,

Pr [T causes the process to quit] = o(1) .

Proof (Lemma 25). The condition causing the process to quit is identical in Pyes

and Pno. The probability that any pair of queries E(i, j) and E(i′, j′) cause the

process to quit is at most

Pr [i′ = π(i) or i = π(i′)] ≤ (n− 1)!

n!
= 1/n .

The tester makes at most o(
√
n) queries and so

Pr [T causes the process to quit] ≤ o(
√
n)2O(1/n) = o(1) .

Lemma 25

Any deterministic tester T which makes o(
√
n) queries can only distinguish

between Dyes and Dno with probability o(1), but it must accept Dyes with prob-

ability 2/3, and reject Dno with probability 2/3 − o(1). It is impossible for T to

satisfy both conditions, and the lemma follows from Principle 1. Lemma 23

5.3 Untestable Classes without Equality

We now consider classes without equality. Of course, any prefix class that is

testable with equality remains testable without equality (because we are not forced
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to use equality). However, we now show that there are some untestable properties

that are expressible in first-order logic even without equality.

Theorem 10. There are properties in [∀∃∀, (0, 1)] that are not Tmr-testable, even

given o(
√
n) queries.

Note that Theorem 10 is restricted to Tmr-testability. It is trivial to modify

the proof for Tr-testability of [∀∃∀, (1, 1)]. It remains open whether this class is

T -testable, however we suspect that [∀∃∀, (0, 1)] is not T -testable.

Proof (Theorem 10). The proof is similar to the proof of Theorem 9. We will begin

by defining a property Pf that is expressible in our class. We will then define a

property P which is indistinguishable from Pf , and use Yao’s Principle to show

that P is not Tmr-testable.

A graph has property Pf if it satisfies the following conditions.

1. For every x with a loop, there is an outgoing edge to at least one y without

a loop.

2. For every x without a loop, there is an incoming edge from at least one y

without a loop.

3. There are no edges between vertices without loops.

4. For every x with a loop, there is an edge to at least one y without a loop

such that for all z with loops, the following holds. There is a directed edge

from y to z iff there are an odd number2 of directed edges between x and z.

2There is an odd number of edges between x and z if there is a directed edge from x to z or
from z to x, but not both. Note that a loop is counted as an even number of edges.
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5. For every x without a loop, there is an incoming edge from at least one y

with a loop such that for all z with loops, the following holds. There is

a directed edge from x to z iff there are an odd number of directed edges

between y and z.

More formally, Pf is the set of graphs that satisfy the following formula.

∀x∃y∀z : { (E(x, x) → (¬E(y, y) ∧ E(x, y)))

∧ (¬E(x, x) → (E(y, y) ∧ E(y, x)))

∧ ((¬E(x, x) ∧ ¬E(z, z)) → ¬E(x, z))

∧ ((E(x, x) ∧ E(z, z)) → ((E(x, z)⊕ E(z, x)) ↔ E(y, z)))

∧ ((¬E(x, x) ∧ E(z, z)) → ((E(y, z)⊕ E(z, y)) ↔ E(x, z))) }

Next, we define a property P that we will show to be indistinguishable from Pf .

A graph has property P if it satisfies the following conditions.

1. There is a partition of the vertices into (non-empty) V1, V2.

2. All vertices in V1 have loops and no vertices in V2 have loops.

3. There are no edges in V2 × V2.

4. There exist functions f : V1 → V2 and g : V2 → V1 satisfying the following.

For all x, z ∈ V1, there is an edge from f(x) to z iff there are an odd number

of directed edges between x and z. For all x ∈ V2 and z ∈ V1, there is an

edge from x to z iff there are an odd number of directed edges between g(x)

and z.
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It is not difficult to show that P and Pf are indistinguishable.

Lemma 26. Properties P and Pf are indistinguishable.

Proof (Lemma 26). Let G be graph with property Pf and let ε > 0 be arbitrary.

Then, G also has property P , that is mrdist(G,P ) = 0. In the other direction, if

G has property P , then we can satisfy property Pf by adding at most O(n) (non-

loop) edges from x to f(x) and g−1(y) to y. Thus, mrdist(G,Pf ) ≤ O(n)/Θ(n2) =

o(1) < ε for sufficiently large graphs. Lemma 26

Indistinguishability preserves testability (cf. Lemma 7) and so it suffices to show

that P is untestable. Lemma 27 below is stronger than necessary and actually

implies a Ω(
√
n) lower bound for testing Pf per the discussion following Lemma 7

in Section 3.3. Theorem 10

Lemma 27. There is an 0 < ε < 1/2 such that any Tmr-style ε-tester for P must

perform Ω(
√
n) queries.

Proof (Lemma 27). The proof is via Yao’s Principle (cf. Principle 1) and so we

must define a distribution of inputs and show that all deterministic ε-testers have

an error rate greater than 1/3 for P on inputs from the distribution. For our

distribution, we will draw from a distribution Dno with probability 1/2 and from

a distribution Dyes with probability 1/2.

In the following, we consider distributions over graphs with sufficiently large

vertex set [2n] and an arbitrary fixed partition of the vertices into V1 and V2 such

that |V1| = |V2| = n.

We begin with Dno, defined as the following distribution.
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1. Place loops on all vertices in V1 and no loops in V2.

2. For each ordered pair in V1 × V2, place a directed edge with probability 1/2.

3. For each unordered pair (i, j ̸= i) ∈ V1 × V1, with probability 1/2 place no

edge, and with probability 1/2 place a single directed edge, from i to j if

i ≤ j and from j to i if j ≤ i.

4. For each ordered pair in V2×V1, with probability 1/2 place the directed edge

and with probability 1/2 do not.

Note that Dno is the uniform distribution of graphs that satisfy the following

conditions.

1. The vertex set is [2n] and the vertices with loops follow the given partition.

2. There are no undirected edges between vertices with loops (when a loop is

not considered an undirected edge).

3. There are no edges between vertices without loops.

4. All directed edges (i, j) between vertices with loops satisfy i ≤ j.

Next, we define Dyes.

1. Place loops on all vertices in V1 and no loops in V2.

2. For each ordered pair in V1 × V2, place a directed edge with probability 1/2.

3. Choose uniformly a random bijection π : V1 → V2.
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4. For each unordered pair in (i, j ̸= i) ∈ V1 × V1, with probability 1/2 do the

following. Place directed edges (π(i), j) and (π(j), i), and then place either

(i, j) (if i ≤ j) or (j, i) (if j ≤ i). Otherwise, do not place any edges right

now.

Distribution Dyes generates only positive instances for P . Now, we show that

with high probability, Dno generates instances that are ε-far.

Lemma 28. Let ε > 0 be sufficiently small and n be sufficiently large. Then,

Pr
G∼Dno

[mrdist(G,P ) ≤ ε] = o(1) .

Proof (Lemma 28). Distribution Dno is the uniform distribution over graphs of

size 2n with a fixed partition V1, V2 satisfying the following.

1. All vertices in V1 have loops and no vertices in V2 have loops.

2. There are no undirected edges between vertices with loops.

3. There are no edges between vertices without loops.

4. All directed edges (x, y) between vertices with loops satisfy x ≤ y.

We want a small upper-bound on the probability of a graph being drawn from

Dno that is not ε-far from P . Dno is the uniform distribution over a certain class

of graphs, and so this probability is

|{G | G ∼ Dno,mrdist(G,P ) ≤ ε}|
|{G | G ∼ Dno}|

.

The number of distinct graphs produced by Dno is 2(
n
2)22n

2
= 22.5n

2−n/2.
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Let G2n be the set of graphs with vertices [2n] that have property P and are

not ε-far from all graphs in Dno. Then,

Pr
G∼Dno

[mrdist(G,P ) ≤ ε] ≤
|G2n|

∑⌊4εn2⌋
i=0

(
4n2

i

)
22.5n2−n/2

. (5.14)

Any graph G that is not ε-far from all graphs in Dno must have loops on

n− εn ≤ j ≤ n+ εn vertices. Therefore, |G2n| ≤

n+εn∑
j=n−εn

(
2n

j

)
4(

j
2)2j(2n−j)j2n−j ≤ (2εn+ 1)

(
2n

n

)
22(

n+εn
2 )+(n+εn)2+(n+εn) log (n+εn) .

(5.15)

Using the (asymptotically tight)
(
2n
n

)
≈ 4n/

√
πn, we see that (5.15) is approxi-

mately

(2εn+ 1)√
πn

22n+(n+εn)2+(n+εn)(n+εn−1)+(n+εn) log(n+εn) .

Combining this with (5.14) and using
∑⌊ε4n2⌋

i=0

(
4n2

i

)
≤ 2H(ε)4n2 , where H(ε) =

−ε log ε − (1 − ε) log(1 − ε) is the binary entropy function (cf. Lemma 16.19 in

Flum and Grohe [23]), we get PrG∼Dno [mrdist(G,P ) ≤ ε] ≤

2εn+ 1√
πn

2−n2/2+4H(ε)n2+3/2n+2(ε2+ε)n2+εn+(n+εn) log (n+εn) = o(1) ,

because the −n2/2 in the exponent dominates when ε is sufficiently small.

Lemma 28

We have shown that Dyes generates only positive instances and, with high prob-

ability, Dno generates ε-far instances. Next, we show that, with high probability,

the two distributions look identical to testers making only o(
√
n) queries. The
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proof is similar to a proof by Alon and Blais [2].

We begin by defining two random processes, Pno and Pyes, which answer queries

from testers and generate instances according to Dno and Dyes, respectively.

Process Pno is defined in the following way.

1. Choose uniformly a random bijection π : V1 → V2.

2. Intercept all queries from the tester and respond as follows.

(a) To queries E(i, i) with i ∈ V1, respond 1.

(b) To queries E(i, i) with i ∈ V2, respond 0.

(c) To queries E(i, j) with i ∈ V2, j ∈ V2, respond 0.

(d) To queries E(i, j) with i ∈ V1, j ∈ V2, randomly respond 1 or 0 with

probability 1/2 in each case.

(e) To queries E(i, j) with i > j ∈ V1, respond 0.

(f) To queries E(i, j) with i < j ∈ V1, quit if we have queried E(π(i), j) or

E(π(j), i). Otherwise randomly respond 1 or 0 with probability 1/2 in

each case.

(g) To queries E(i, j) with i ∈ V2, j ∈ V1, quit if we have queried E(π−1(i), j)

or E(j, π−1(i)). Otherwise randomly respond 1 or 0 with probability

1/2 in each case.

3. When the process has quit, or the tester has finished its queries, complete

the generated instance in the following way. First, fix the edges that were

queried according to our answers. Next, place loops on all vertices in V1, no

loops in V2 and no edges internal to V2. Place each edge in V1×V2 uniformly
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and independently with probability 1/2. For each remaining possible edge

(i, j) ∈ V1×V1, place the edge uniformly and independently with probability

1/2 if i < j and do not place the edge if i > j. For each remaining possible

edge in V2×V1, place the edge uniformly and independently with probability

1/2 (ignoring π).

We define Pyes in the same way, except for the final step. When Pyes quits or

the tester finishes, it fixes the edges that were queried according to its answers, and

also fixes the corresponding edges (when relevant) according to π. More precisely,

for each fixed E(i, j) with i ̸= j ∈ V1, we also fix E(π(i), j) and E(j, π(i)), and for

fixed E(i, j) with i ∈ V2, j ̸= π−1(i) ∈ V1, we also fix E(π−1(i), j) and E(j, π−1(i)),

in both cases according to our previous decision. The remaining edges are placed

as in Pno.

Note that Pno generates instances according to Dno and Pyes generates in-

stances according to Dno. In addition, Pyes and Pno behave identically until they

quit or answer all queries. In particular, if a tester does not cause the process to

quit, the distribution of responses to queries is identical for the two processes. We

show that, with high probability, a tester that makes o(
√
n) queries does not cause

either process to quit.

Lemma 29. Let T be a deterministic tester which makes o(
√
n) queries, and let

T interact with Pyes or Pno. In both cases,

Pr[T causes the process to quit] = o(1) .

Proof (Lemma 29). The condition causing the process to quit is identical in Pyes
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and Pno. The probability that any fixed pair of queries E(i, j) and E(i′, j′) cause

the process to quit is at most

Pr[i′ = π(i) or i′ = π(j)] ≤ 2(n− 1)!

n!
= 2/n .

The tester makes at most o(
√
n) queries and so

Pr[T causes the process to quit] ≤ o(
√
n)2O(1/n) = o(1) .

Lemma 28

Any deterministic tester T which makes o(
√
n) queries can only distinguish

between Dyes and Dno with probability o(1), but it must accept Dyes with prob-

ability at least 2/3 and reject Dno with probability at least 2/3 − o(1). It is

impossible for T to satisfy both conditions, so the lemma follows from Principle 1.

Lemma 27

5.4 Summary

In this chapter, we proved that several classes of first-order properties of directed

graphs are not testable. We used a different variant of graph isomorphism in each

case. We began with the prefix ∀3∃ in Section 5.1. This result first appeared in [40],

and we thank an anonymous referee from LATA for improving it significantly. This

result will also appear in [42].

In Section 5.2, we proved the untestability of ∀∃∀ by using a variant of graph iso-

morphism related to Boolean function isomorphism. The connection with Boolean
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function isomorphism allows us to leverage recent ideas from Alon and Blais [2].

This result first appeared in [41].

Finally, we considered classes without equality in Section 5.3. There, we showed

that, even without equality, ∀∃∀ can express untestable properties of directed

graphs. However, this proof is currently limited to Tmr-style testing and it remains

open whether this class is Tr-testable. Our suspicion is that it is untestable in all

of our models. This result appears here for the first time.

We’re grateful to Neil Immerman for pointing out that removing equality in our

untestable properties does not really change the “spirit” of why they’re untestable.

Section 5.3 formalizes this for one of our classes; we suspect that similar arguments

will also allow us to remove equality from the classes in Section 5.1. We’re also

grateful to Hiro Ito for pointing out an omission in a previous version of the proof

of Lemma 23.
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Conclusions

In this thesis, we focused on the testability of prefix-vocabulary classes of first-order

logic, extending work that was initiated by Alon et al. [3]. They first considered

the idea of testing syntactic subclasses of first-order logic, and showed that all

properties of undirected, loop-free graphs expressible in first-order sentences with

quantifier pattern ∃∗∀∗ are testable, while there exists an untestable property

expressible with quantifier pattern ∀∗∃∗.

Their proof of the latter result implies upper bounds of twelve, five and seventeen

for the minimum number of universal, existential and total quantifiers, respectively,

sufficient to express an untestable property. One of our goals was to optimize these

bounds and find the minimum number of universal and existential quantifiers,

as well as quantifiers in total, sufficient to express an untestable property. Our

results imply that these minima are two universal, one existential and three total

quantifiers, respectively. In addition, we remove the restriction to undirected,

loop-free graphs and focus on relational structures.

Our main results are as follows. First, we proved that all properties express-
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ible in Ackermann’s class with equality ([∃∗∀∃∗, all ]=) are testable. Then, we

extended the positive result of Alon et al. [3] from undirected, loop-free graphs

to relational structures by using a result from Austin and Tao [11]. This answers

a question of Fischer [20] on the testability of hypergraph properties expressible

with quantifier pattern ∃∗∀∗, although much of the work for this case is by Austin

and Tao [11]. Next, we simplified the untestable property of Alon et al. [3] and

showed that there are untestable properties of directed graphs expressible with

quantifier prefixes ∀3∃. Finally, we used a variant of graph isomorphism related

to Boolean function isomorphism to prove that there are untestable properties of

directed graphs expressible with prefix ∀∃∀ (for Tmr testability, this remains true

without equality).

The current classification of prefix-vocabulary classes for testability is the fol-

lowing.

• Testable classes

1. Monadic first-order logic: [all , (ω)]=.

2. Ackermann’s class with equality: [∃∗∀∃∗, all ]=.

3. Ramsey’s class: [∃∗∀∗, all ]=.

• Untestable classes

1. [∀3∃, (0, 1)]=.

2. [∀∃∀, (0, 1)]=.

3. [∀∃∀, (0, 1)]1.
1We only prove this for Tmr testability, although we suspect that it also holds for our other

models.
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It is interesting to compare this classification for testability with known (com-

plete) classifications for other properties. For example, the current classification

for testability is consistent with the classifications for the finite model property

(see, e.g., Chapter 6 of Börger et al. [15]), for docility2 (see Kolaitis and Vardi [46])

and for 0-1 laws for fragments of existential second-order logic (see Kolaitis and

Vardi [46]). These classifications may be helpful in providing guidance in the

classification for testability.

This similarity between classifications may indicate a deeper connection between

these seemingly distinct properties. We would like to know which (if any) of the

traditional classifications coincides with the classification for testability, and hope

to understand the connections between testability and other properties of prefix-

vocabulary classes.

As concrete open problems, we are especially interested in the testability of

[∀3∃, (0, 1)] (without equality) and variants of the Gödel class (i.e., classes whose

prefix contain at least ∀2∃). Determining the testability of these classes may suffice

to complete the classification. We are also interested in the special case of predicate

logic with equality.

There are many possible variations of the classification for testability. For ex-

ample, one could be more interested in classes which are constructively testable,

i.e., where it is possible to compute an ε-tester given ε and a formula from the

class. However, in the present paper we are fortunate that many of the possi-

ble classifications coincide. Namely, all of our positive results are for constructive

(and therefore uniform) testability in the most-restricted model (Tmr) that we con-
2A class is said to be docile (or decidable for finite satisfiability) if given an arbitrary formula

from the class, one can decide if there exists a finite model of the property.
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sider, while all of the negative results hold even for non-uniform testability in the

least-restricted model (T ).

As is common in the literature, we have focused on testable properties, i.e., those

which can be approximated with a number of queries (or time) depending on ε but

not on n. Given the deep connection between dense graph property testing and ap-

plications of strong versions of Szemerédi’s regularity lemma (see Alon et al. [4]), it

is not surprising that there are testable properties with enormous query complexity

(e.g., towers of 1/ε with height growing in 1/ε). Even relatively simple properties

such as triangle-freeness3 are testable, but not with query complexity polynomial

in 1/ε4. However, in practice we are perhaps more interested in properties that

can be tested with a number of queries polynomial in 1/ε.

Our construction for Ramsey’s class (cf. Section 4.2) results in a rather large

query complexity. However, this class contains the problems of triangle-freeness

and R-freeness (for finite sets R of finite structures). Significantly improving the

query complexity of these problems is considered to be a difficult open problem,

and so significantly improving the query complexity for Ramsey’s class (in general)

is likely to be challenging.

3A graph is triangle-free if it contains no 3-cliques.
4See Alon and Shapira [6] for the lower-bound. The best known upper-bound, a tower of 1/ε

of height logarithmic in 1/ε is due to Fox [24].
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