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Abstract

Property testing is essentially a kind of constant-time randomized approxima-
tion. Alon et al. [3] were the first to consider the idea of testing properties ex-
pressible in syntactic subclasses of first-order logic. They proved the testability
of all properties of undirected, loop-free graphs expressible with quantifier prefix
3*V* and also that there exist untestable properties of undirected, loop-free graphs
expressible with quantifier prefix V*3*.

In this dissertation, we continue the study of testing subclasses of first-order
logic. In particular, we focus on the classification of prefix-vocabulary classes, or
classes defined by quantifier prefix and vocabulary, according to their testability.

The main results are as follows. First, we develop a framework for relational
property testing including variations corresponding to the different models con-
sidered in the literature for non-uniform hypergraph testing. We then use this

framework to prove the following.

1. All (relational) properties expressible by formulae in Ackermann’s class with

equality ([3*V3*, all]=) are testable in all of our models.

2. All (relational) properties expressible in Ramsey’s class ([3*V*, all]=) are
testable in all of our models. This extends the result by Alon et al. [3] to the

full class.



Abstract

3. There exist graph properties expressible in the class [V33,(0,1)]= that are
untestable in all of our models. This considerably sharpens the untestable

class of Alon et al. [3].

4. There exist graph properties expressible in the class [V3V, (0, 1)]= (the Kahr-

Moore-Wang prefix) that are untestable in all of our models.

5. There exist graph properties expressible in the class [V3V, (0,1)] (without

equality) that are untestable in (at least) one of our models.
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Chapter 1

Introduction

Property testing is an application of inductive reasoning. Given a large ob-
ject, for example a massive graph or database, we wish to state some conclusion
about the entire structure after examining only a small, randomly selected sam-
ple. Lovasz [50] has described it as the “third reincarnation” of this kind of general
approach, after statistics and machine learning.

The astonishing growth in massive data-sets requires us to find new techniques
and approaches for much of the computation that we want to do. In fact, for many
large data-sets of interest (e.g., the Internet), we cannot even determine the precise
size of the data. Such objects are generally stored remotely, and there is a non-
trivial cost for examining particular bits. It may be impractical to move beyond
constant time if we cannot even determine the size of the data we are interested
in, and the sheer amount of data renders many common algorithms impractical.
Given the (time) cost of accessing remote data, we may also wish to minimize the
number of bits that we examine.

At first, it may seem that linear time is a minimum requirement for meaningful
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computation; after all, how can we compute a property of some data that we
don’t have time to look at? Surprisingly, there is an entire world of interesting
computation that can be done in sub-linear time, and even in constant time.

Informally!, we call a property testable if we can approximate it as closely
as we like in constant time. In this thesis, we focus on testing properties that
are expressible in first-order logic. The focus on queries expressed in a formal
languages is quite natural; in databases, for example, users generally make queries
against massive objects in a formal query language (e.g., SQL). Given the “unusual
effectiveness” of logic in computer science [35], it is natural to focus (in particular)
on first-order properties.

This thesis indicates the possibility of a system that takes queries in a restricted
formal language (e.g., the restricted syntactic fragments of first-order logic that
are testable), and automatically generates probabilistically approximate answers to
these queries in constant time. Such a system is also natural from the perspective
of formal verification (where this general approach originated, see Section 1.1).
There, users generally specify properties of systems they wish to verify by writing
(Boolean) queries in a logic. Given the computational demands of verification, a
very fast (constant-time) randomized approximate verification could be useful by
allowing us to quickly reject very bad systems.

The idea of testing syntactic subclasses of first-order logic was first-considered
in an influential paper by Alon et al. [3] (see Section 1.1 for a discussion of related

work), and this thesis builds upon the classification that began there. Here, we

1See Section 2.3 for formal definitions.
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prove a nearly-complete classification of prefix-vocabulary classes? according to
their testability.

The thesis is structured as follows. We begin by introducing related work,
together with a brief history of property testing in Section 1.1. Then, we state the
main results of this thesis in Section 1.2.

Chapter 2 focuses on definitions and other preliminaries. In Chapter 3, we prove
basic, fundamental results about property testing that we will need for proofs in
later chapters. These basic results first appeared in [38, 43|, and will also appear
in [42]. We consider testable classes in Chapter 4. The results in Section 4.1
first appeared in [38] in a preliminary form with two-sided error. The results in
Section 4.2 first appeared in [39].

We proceed to untestable classes in Chapter 5. The results in Section 5.1 first
appeared in [40]. These last three results will also appear as [42]. The results in
Section 5.2 first appeared in [41], while the results in Section 5.3 have not been

previously published.

1.1 Related Work

We begin with a brief history and overview of property testing. There is a recent
introduction to graph property testing by Goldreich [28], and two recent surveys
by Ron, one focusing on connections with learning theory [61] and one focusing on
the algorithmic techniques [62] used in testability. There are also earlier surveys,

including those by Ron [60] and the wonderfully-titled Fischer [19].

2 A prefix-vocabulary class is defined by the pattern of quantifiers and vocabulary, see Defini-
tion 3 in Section 2.2.
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Property testing is a form of approximation where we trade accuracy for effi-
ciency. It seems that de Leeuw et al. [47] was the first to formalize probabilis-
tic machines. They showed that such machines cannot compute uncomputable
properties under reasonable assumptions. However, they mention the possibility
that probabilistic machines could be more efficient than deterministic machines,
a topic which was then investigated by Gill [26]. An early example of such a result
is Freivalds’ [25] matrix multiplication checker.

The study of property testing itself began in program verification (see, e.g.,
Blum et al. [14] as well as Rubinfeld and Sudan [63]). Goldreich et al. [29] first
considered the testability of graph properties in a seminal paper and showed the
existence of testable NP-complete properties. An approach using incidence lists
to represent bounded-degree graphs was introduced by Goldreich and Ron [27].
Parnas and Ron [55] generalized this approach and attempted to move away from
the functional representation of structures. There has been a great deal of recent
work on graph property testing, see the survey by Alon and Shapira [7].

For other types of structures, Alon et al. [5] showed that the regular languages
are testable and that there exist untestable context-free languages. Chockler and
Kupferman [17] extended the positive result to the w-regular languages.

There is also recent work on testing properties of (usually uniform) hypergraphs.
Fischer et al. [22] defined a general model that is roughly equivalent to one of our
models, namely 7, based on Definition 5 below, and showed that hypergraph par-
tition problems are testable in this framework. Very recently, Austin and Tao [11]

have shown that all hereditary properties® of colored, directed, non-uniform hyper-

3A hereditary property is one that is closed under taking induced substructures.
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graphs are testable in a model that is roughly equivalent to another of our models,
T based on Definition 8 below.

Szemerédi’s regularity lemma (see, e.g., the survey by Rédl and Schacht [59])
has been extremely influential in (dense) graph property testing and there has
been a great deal of work on recent extensions (see, e.g., [30, 58, 68]) of this
lemma to hypergraphs. We are not aware of any extensions to non-uniform hyper-
graphs or finite (relational) structures, but are very interested in such topics. As
Alon et al. [3] noted, proofs of testability that avoid the regularity lemma often
result in better query complexity. We therefore prove testability directly when we
know how to.

Alon et al. [3] began a logical characterization of the testable (graph) properties,
see Subsection 1.1.1. Alon and Shapira [8] gave a characterization of a natural
subclass of the graph properties testable with one-sided error, which Rodl and
Schacht [57] generalized to hypergraphs. Alon et al. [4] showed a combinatorial
characterization of the graph properties testable with a constant number of queries.
It would be particularly interesting to consider extensions of this last result to

hypergraphs or relational structures.

1.1.1 Previous Work on the Classification

We briefly outline prior work on the classification for testability before stating
our main results. We begin with monadic first-order logic. Léwenheim [51] proved

that satisfiability is decidable* for monadic first-order logic, and McNaughton and

4A class is said to be decidable (for satisfiability) if, given an arbitrary formula from the class,
one can decide if there exists a (possibly infinite) model satisfying the formula.
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Papert [52] showed that it (with ordering and some arithmetic) characterizes the
star-free regular languages. The testability of this class is then implied by a result
of Alon et al. [5]. Using instead Biichi’s [16] result that monadic second-order logic
characterizes the regular languages, we get a parallel with Skolem’s [66] extension
of Lowenheim’s result to second-order logic. Of course, we are focused on the
testability of classes of first-order formulae.

Below, we use the classification notation that will be introduced formally in
Definition 3. Informally, we represent classes with a triple [I1, p|., where II denotes
the pattern of quantifiers allowed, the infinite sequence p denotes the maximum
number of permitted predicate symbols for each arity (we omit trailing zeros and
all means that any number of predicate symbols with any arities are permitted),
and e denotes whether = is allowed.

Skolem [67] also showed that [V*3*, all] is a reduction class®. Alon et al. [3] found
an untestable graph property (essentially an encoding of graph isomorphism). In
particular, this property is expressible in [V*3*, (0, 1)]=, and an examination of the
proof reveals that a prefix of V?3° suffices.

The class [F*V*, all |= was first studied in a seminal paper by Ramsey [56], who
showed that it is decidable as part of a stronger result characterizing its spectrum.
Alon et al. [3] showed that the restriction of Ramsey’s class to undirected loop-free

graphs (a restriction of [3*V*, (0,1)]-) is testable.

5A class is a reduction class if the satisfiability problem for first-order logic can be reduced to
the satisfiability problem for the class. These classes are therefore undecidable (for satisfiability).

6



1.2. RESULTS

1.2 Results

As mentioned above, Alon et al. [3] found an untestable property expressible
with seventeen quantifiers (V'23%). Although this is an impressive result, we might
wish to know whether it is optimal. More concretely, we would like to know the
minimum number of universal quantifiers, as well as of existential quantifiers, re-
quired to express an untestable property. In addition, we would like to know the
minimum total number of quantifiers needed to express an untestable property, as
it is not prima facie necessary that one can achieve these two minima simultane-
ously. Previous work by Alon et al. [3] implies upper bounds of twelve universal,
five existential and seventeen total quantifiers, and it is natural to ask if these
bounds can be improved. The following is an informal summary of our results

addressing this question.

Remark 1. The minimum number of quantifiers sufficient to express an untestable

property in a first-order relational language is
1. Two universal quantifiers;
2. One existential quantifier;
3. Three quantifiers in total.

These minima can be achieved in the vocabulary of directed graphs (i.e., one binary

relation).

We now introduce the main results of this thesis. First, we develop a framework

for relational property testing including variations corresponding to the different
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models considered in the literature for non-uniform hypergraph® testing. We use

this framework to prove the following.

1. All (relational) properties expressible by formulae in Ackermann’s class with

equality ([3*V3*, all]-) are testable in all of our models.

2. All (relational) properties expressible in Ramsey’s class ([3*V*, all]=) are
testable in all of our models. This extends the result by Alon et al. [3] to the

full class.

3. There exist graph properties expressible in the class [V33,(0,1)]= that are
untestable in all of our models. This considerably sharpens the untestable

class of Alon et al. [3].

4. There exist graph properties expressible in the class [V3V, (0, 1)]= (the Kahr-

Moore-Wang prefix) that are untestable in all of our models.

5. There exist graph properties expressible in the class [V3V, (0,1)] (without

equality) that are untestable in (at least) one of our models.

The last four results improve upon results of Alon et al. [3] in various ways, and
the second result relies on an application of a strong result by Austin and Tao [11].
In the notation introduced as Definition 3 below, the current classification for

testability is as follows.
e Testable classes

1. Monadic first-order logic: [all, (w)]=.

6 A hypergraph is uniform if all edges have the same arity, and non-uniform if edges may have
different arities.
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2. Ackermann’s class with equality: [3*V3*, all]_.

3. Ramsey’s class: [3*V*, all|-.
e Untestable classes

1. [v33,(0,1)]=.

2. [v3av, (0, 1)]-.

3. [Vav, (0,1)]".

"Our proof for this class without equality is currently restricted to one of our models of
testability (7, based on Definition 8 below). We suspect that this class is also untestable in
the other models, however 7,,,-style testing seems the most natural to us.



Chapter 2

Preliminaries

In this chapter, we introduce our notation and definitions. We separate these
preliminaries into sections related to basic, fundamental notions (e.g., sets, etc.),
logic (e.g., prefix vocabulary classes) and property testing. Much of this material
is standard and readers familiar with a particular section can safely skip it. How-
ever, we introduce several variations of property testing for relational structures
in Section 2.3 and encourage readers unfamiliar with our variations to review, at

least, their relationship with other models from the literature.

2.1 Fundamentals

Before proceeding further, we recall fundamental definitions and introduce nota-
tion for familiar objects such as natural numbers, sets and strings. Our definitions
are standard and readers familiar with this material can safely skip to Section 2.2.

The natural numbers are denoted by N and are the set of non-negative integers.

We denote the set of real numbers by R, although these are generally used for

10
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probabilities and so we usually use only real numbers p € [0,1]. We use bold
characters to denote vectors, for example x € R3. Vectors are row vectors unless
otherwise noted, we denote the transpose of a vector by x*. If x = (z1,...,z,) is
a vector, we call x; the i-th component of x.

The empty set is denoted by (). If A and B are sets, then the union of A
and Bis AUB = {x | z € Aorx € B} and the intersection of A and B is
ANB:={z |z € Aand z € B}. Furthermore, the set difference of A and B is
A\B :={x |z € Aand © ¢ B}. We generalize the union and intersection in the
usual way, ;g Ai = AgU A1 U... and ;59 4i == Ao N Ay N... respectively.

Set A is a subset of set B, written A C B if A\B = (). Set A is a proper subset
of set B, written A C B if A C B and B\ A # (). The cardinality of a set A is the
number of elements in the set, written |A].

The product of sets A and B is the set of ordered pairs, A x B :={(a,b) | a €
A and b € B}. The set of n-tuples of set A, written A™ is defined inductively as
follows. First, A' = A. Then, A""! = A" x A. We will always omit the extra
parentheses, and so (1,2,3) denotes ((1,2),3). The number of elements in the
tuple is the arity n. A predicate P with arity n of set A is any subset of A™. If
x € A" we will generally abbreviate the proposition x € P with P(x).

An alphabet Y is a set of symbols, and a string w over X is some sequence of
the symbols in ¥. The empty string is denoted by A. For example, {0, 1} is the
alphabet of binary strings and 0100 is an example of such a string. We number
the positions in a string w from left to right with 0,1,...,n — 1 where n is the
length of the string. Of course, the empty string A has length 0. As usual, ¥* is

the free monoid of ¥ and any subset L C ¥* of it is a language.

11
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Let w be a string over the alphabet ¥. The concatenation of strings v and v
is wv, while the product of two sets of strings Ly and Ly is LiLy := {uv | u €
Ly and v € Lo}. The reversal of w is written w. Position i of w corresponds to
position n — 1 — i of w. Formally, X =\ and dw = wa for a € ¥.

We mention a number of well-known classes of languages, for example the classes
of regular and context-free languages. Hopcroft and Ullman [36] is a well-known
introduction to these classes.

It is natural to represent a binary string w € {0,1}* as a pair {U, S} where U is
the finite set of bit positions 0,...,n — 1! and S C A is a monadic predicate. We
will define S(7) to mean that “bit position i of w is 1.”

Graphs provide another natural example and allow for representation as a pair,
(V,E). Here V is the set of vertices and the edge set £ C V2, a set of ordered pairs
of V. The “names” of the vertices are not interesting to us, and we will identify
them as 0,...,n — 1 where n is the number of vertices. It is therefore natural to
represent a graph as a pair {V,E} where £ is a binary predicate over V.

We will formalize these notions more exactly in the following section. In particu-
lar, one of our goals is a generalized notion of property testing instead of restricting
ourselves to fixed kinds of structures such as graphs and binary strings. The def-
initions in the following section are therefore necessarily abstractions of the ideas

above.

!The universe is the empty set if w is the empty string.
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2.2. LOGIC

2.2 Logic

We are particularly interested in the testability of classes of first-order logic, and
so we need various definitions related to logic. We begin with vocabularies and

structures.

Definition 1. A (relational) vocabulary 7 is a tuple of distinct predicate symbols

R; together with their arities aj;,
T:=(R",...,R¥).
Two examples (unique up to renaming) of vocabularies are 7¢ := (FE?), the

vocabulary of directed graphs and 7g := (S), the vocabulary of binary strings.

Definition 2. A 7-structure A is an (s + 1)-tuple

A= (UR}...,RY,

where U is a finite universe and each R C U% is a predicate corresponding to

the predicate symbol R; of T.

We generally identify U with the non-negative integers {0,...,n — 1} and use
n = #(A) for the size of the universe of a structure A. The universe U of a binary
string is the set of bit positions, which we will identify as {0,...,n — 1} from left
to right. For i € U, we interpret ¢ € S as “bit ¢ of the string is 1.” We generally
omit the superscript A from the relations and include it only when we wish to

explicitly distinguish the same relation in different structures.

13



CHAPTER 2. PRELIMINARIES

The set of all 7-structures with universe size n is STRUC" (1) and the set of
all (finite) T-structures is STRUC(7) := U,5o STRUC" (7). A property P of 7-
structures is any subset of STRUC (7). We also call such properties T-properties.
We say that a 7-structure A has P if A € P.

We use language to refer to string properties and P to denote properties. We
refer to members of STRUC (7¢) as graphs, and note that our graphs are directed
and may contain loops.

A simple example of a graph property is the property of being a complete graph.
This property is the set of all (finite) graphs which have full edge relations, i.e.,
Py = Unzo{(Un,EG) | U, =1{0,...,n—1},E¢ = U, x U,}.

We use a predicate logic with equality that does not contain function symbols.
There are no ordering symbols such as < or arithmetic relations such as PLUS.
The first-order logic of vocabulary 7 is built from the atomic formulae z; = x; and
Ri(x1,...,1,,) for variable symbols z; and predicate symbols R; € 7 by using the
Boolean connectives and quantifiers 3 and V in the usual way.

Formula ¢ of vocabulary 7 is evaluated in the usual way and defines property
P:={A]| Ae STRUC(r) and A |= p}. Lower-case Greek letters ¢, 1 and ~ refer
to first-order formulae and z, y, and z to first-order variables.

Our classification definitions are from Borger et al. [15] except that we omit
function symbols. Essentially, we classify first-order sentences according to their

pattern of quantifiers and vocabulary.

Definition 3. A prefix vocabulary class is specified as [I1, p|., where 11 is a string
over the four-character alphabet {3,¥,3*,V*}, p is a sequence over N and the first
ifinite ordinal w, and e is ‘=" or the empty string.

14
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We often use all as an abbreviation for the sequence (w,w,w,...). Now that we
have defined the syntactic specification of a prefix vocabulary class, we define the
class specified by a triple [II, p].. Recall that a first-order sentence ¢ is in prenex
normal form if it is in the form ¢ := maimexs ... 72, : ¢, with quantifiers m;,
1 <1 <r, and quantifier-free ). Such a ¢ is a member of the prefix vocabulary

class given by [II, (p1, p2, - . .)]e, where p; € NU {w} if

1. The string w7, ... 7, is contained in the language specified by II when II is

interpreted as a regular expression?.
2. If p is not all, at most p; distinct predicate symbols of arity ¢ appear in ).
3. Equality (=) appears in ¢ only if e is ‘=".

Here, II is the pattern of quantifiers, p is the maximum number of predicate
symbols of each arity and e determines whether or not the equality symbol is

permitted.

2.3 Property Testing

In property testing, the basic goal is to distinguish between structures that have
a desired property and those that are far from having the property. Formaliz-
ing this requires a definition of “far”, and different definitions results in different
models of testing. We will give three different distance measures, each based on
progressively refining a generalization of the dense graph testing model introduced

by Goldreich et al. [29].

2Technically, we also let the empty string match expressions V and 3. See the discussion in
Borger et al. [15].
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2.3.1 Distance Measures

Our first definition is dist(A, B), the fraction of tuples with differing assignments

in A and B. We use @ to denote exclusive-or.

Definition 4. Let A,B € STRUC(7) be any T-structures such that #(A) =
#(B) = n. The distance between structures A and B is

i [{x|x U™ and R(x) @ RE(x)}|

dist(A4, B) := -
D i Nt

This is a natural definition; it is equivalent to mapping the structures to binary
strings in the usual way and using the normal string testing definitions (based
on normalized Hamming distance). We note that Definition 4 is common in the
literature on graph property testing, but that it is generally not used in non-
uniform hypergraph testing. However, it results in the weakest (cf. Theorem 1
below) notion of testability that we consider, and so we prefer to use it when
proving untestability results.

The simplicity of Definition 4 is attractive, however it has some shortcomings.
In particular, any difference in low-arity relations is asymptotically dominated by
the number of high-arity tuples. This has a number of undesirable effects, as
testing relational structures degenerates roughly to testing uniform hypergraphs.
For example, consider (not necessarily admissible3, vertex) 3-colored graphs with
the vocabulary 7¢ := (E? R, G', B'), where we use the binary predicate F to
represent edges and the monadic predicates to represent colors. We might wish to

test if the given coloring is admissible. However, if we use Definition 4, then (in

3An admissible vertex-coloring is one that assigns distinct colors to adjacent vertices.
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large graphs), the given coloring is insignificant and we actually test whether the
graph is 3-colorable. We need a different model for our task.

Our first attempt to resolve this is rdist.

Definition 5. Let A, B € STRUC" (1) be T-structures. Then, the r-distance is

rdist(A, B) := max [{x | x € U* and R?(X) @Rf(X)H '

1<i<s na

While Definition 4 gave equal weight to each tuple regardless of its arity, the
above gives equal weight to each relation. The model of testability resulting from
Definition 5 is essentially equivalent to the model used by Fischer et al. [22].

However, loops (i.e., self-edges (x,z)) in graphs and other subrelations of rela-
tions are similar to low-arity relations. In Definition 5, these are still dominated
by the “non-degenerate” tuples. Definition 8 will resolve this issue and result in a
model of testability essentially equivalent to that implicit in Austin and Tao [11].
We begin by defining the syntactic notion of subtype before proceeding to subre-

lations.

Definition 6. A subtype S of a predicate symbol with arity a is any partition of

the set {1,... a}.

For example, graphs have a single, binary predicate symbol E? which has two
subtypes: {{1,2}} and {{1},{2}}, corresponding to loops and non-loops respec-

tively. Let SUB(R;") denote the set of subtypes of predicate symbol R;".

Definition 7. Let A € STRUC(7) be a T-structure with universe U, and let S be

a subtype of predicate symbol R;* € 7. We define the following.

17
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e sY(9), the tuples that belong to S, is the set of (x1,...,x,.,) € U% satisfying
the following condition. For every 1 < j,k < a;, x; = x iff 7 and k are

contained in the same element of S.
e The subrelation s4(S) of A corresponding to S is s*(S) := sV (S) N R

Returning to our example of graphs, the sets of loops and non-loops are the
subrelations of the edge relation £ corresponding to the subtypes {{1,2}} and
{{1},{2}} of E?, respectively.

We denote the symmetric difference of sets U and V by U AV, i.e.,

UAV = (U\V)U(V\U).

Definition 8. Let A, B € STRUC"(7) be T-structures with universe size n. The

mr-distance between A and B is

A B
mrdist(A, B) := max max [57(5) & s7(S)] :
Rer sesuB(rR) n!/(n —|S|)!

The mr-distance between structures is the fraction of assignments that differ in
the most different subtype. Although this definition is the most involved, it has
a number of advantages. First, it is essentially equivalent to the model used by
Austin and Tao [11] based on the fraction of induced structures (of a particular
size) differing between structures.

More importantly, it does not allow us to make untestable properties testable
by increasing the arity of relations (i.e., untestable graph properties encoded in

binary subrelations of higher-arity relations remain untestable). This means that

18



2.3. PROPERTY TESTING

the untestable properties (and prefix-vocabulary classes) are closed downwards in
the way required by Gurevich’s Classifiability Theorem?, and so we are guaranteed

a finite classification of the testable and untestable prefix vocabulary classes.

SR

Figure 2.1. Comparison of distance measures dist, rdist and mrdist.

Figure 2.1 demonstrates the differences between the distance measures. The
colored graphs in the figure have a binary edge relation and a monadic color
relation. If we assume that the graphs are large enough for asymptotic behavior

to dominate, then we can make the following observations.

1. The dist between all graphs is small. This is because the non-loop edges do

not differ, and these tuples dominate dist.

2. The rdist is large between GG7 and G, large between G5 and Gz, and small be-
tween (G; and G5. This is because the rdist reflects the difference in monadic
color assignments, but still allows non-loop edges to dominate loops in the

edge relation.

3. The mrdist is large between all graphs. This is because rdist reflects differ-

ences in each subrelation.

Given that testers make queries to a small portion of the structure, mrdist is

4Gurevich [34] gives a nice introduction to this theorem, which first appeared as [32] (in
English as [33]). See Section 2.3 of Borger et al. [15] for a nice proof and related material.
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particularly natural as a distance measure. This is because testers can notice dif-

ferences in subrelations and low-arity relations, which are best reflected in mrdist.

2.3.2 Testing Definitions

All three distance measures generalize to distances from properties in the usual
way. The distance from a structure to a property is the distance to the closest

structure that has the property. For example, dist(A, P) is defined as follows.

Definition 9. Let P be a T-property and let A be a T-structure with universe

size n. Then,

dist(A, P) := min dist(A, A") .
A'€PNSTRUC™ (1)

The remaining two distance measures extend in the same way.

Definition 10. An e-tester for property P is a randomized algorithm given an
oracle which answers queries for the universe size and truth values of relations on
desired tuples in a structure A. The tester must accept with probability at least 2/3

if A has P and must reject with probability at least 2/3 if dist(A, P) > e.

Testers are called oblivious (see Alon and Shapira [8]) if they are not allowed to
make decisions based on the size of the universe. More concretely, a tester in their
setting is only allowed to give the oracle a natural (), and the oracle then uniformly
randomly selects () elements of the universe of A and returns the resulting induced
substructure. However, if A is of size smaller than @), then the entire structure
is returned. This is more restricted than our model, but our positive results hold

even in the oblivious setting.
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If the input has the
property, accept with
probability 2/3.

Accept

Property
Tester

If the input is far from
the property, reject
with probability 2/3.

Figure 2.2. A property tester.

Figure 2.2 is an example of a property tester. Note that the sample is of constant
size — one must choose a new tester to get a new sample size. Also, note that
although the graph in Figure 2.2 is not bipartite, it is not far from being bipartite.

Some of our results hold even when the testers are restricted to one-sided error,

where the following definition applies.

Definition 11. An e-tester for P has one-sided error if it accepts with probability 1

if A has P and rejects with probability at least 2/3 if dist(A, P) > €.

Definition 12. Property P is testable if for every € > 0 there is an e-tester
making a number of queries which is upper-bounded by a function depending only

on €.

We say that a property P is testable with one-sided error if the e-testers satisfy
the additional restriction of having one-sided error. Note that we allow the e-
testers to be different for each £ > 0, which results in uniform and non-uniform
versions of testability. Although most positive results in the literature hold for
uniform testability, see Alon and Shapira [9] for a property that is testable only

with uncomputable ¢(g), or [43] for an undecidable property that is testable non-
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uniformly but not uniformly. Our results hold in both cases® and so we will not
distinguish between them.

We let T be the set of testable properties using the dist definition, 7, be the
set of testable properties using the rdist definition and 7,,, be the set of testable
properties using the mrdist definition. For convenience, we often refer to, e.g.,

T-style testers or 7,-style testing.
Definition 13. We use the following conventions to avoid unwieldy language.
1. A sentence is (un)testable if the property it defines is (un)testable.

2. A prefix class is testable if every sentence in it expresses a testable property

for every vocabulary in which it is evaluable.

3. A prefix class is untestable if it contains an untestable sentence.

5That is, our negative results hold for non-uniform testing and positive results for uniform
testing. In the uniform case, we must restrict Lemma 7 to decidable properties. All properties
considered in the present paper are clearly decidable.
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Chapter 3

Basic Results

In this chapter, we prove various basic results that we will need for later results.
We include the proofs here for completeness, even though these results are not

particularly difficult.

3.1 Testing is Hardest in Minimal Vocabularies

We begin with the following simple lemma, which justifies the intuition that we
can focus on the minimal vocabulary needed in a formula and ignore vocabularies
that include extraneous predicate symbols. Here, an extension of a vocabulary 7

is any vocabulary formed by adding a new, distinct predicate symbol to 7.

Lemma 1. Let ¢ be a formula in the first-order logic of vocabulary T and let 7'
be any extension of 7. If ¢ defines a testable T-property, then the v'-property it

defines is also testable.

Proof (Lemma 1). Let ¢ define 7-property P and 7'-property P’. Assume the

“new” predicate symbol in 7" is N of arity a. Let 77 be an e-tester for P. We will
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show that it is also an e-tester for P'. Assume A € STRUC(7') has property P'.
Removing the N predicate, the corresponding A" € STRUC(7) has property P
and so T accepts with probability at least 2/3, as desired.

Assume that dist(A, P’) > ¢ and again let A’ be the structure of type 7 formed

by removing the N predicate from A. By the definition of distance,

i {xIx € U and R{¥'(x) & RF (%)}

. , — . >
dist(A’, P) win S >
s @i and RA B
BeP na + Zi:l naz

The tester rejects such an A with probability at least 2/3, as desired. [ Lemma 1

Testable properties remain testable when the vocabulary is extended. So it
suffices to consider the minimal relevant vocabulary. Simple modifications of the

proof of Lemma 1 give the corresponding results for 7, and 7,,,-style testing.

3.2 Comparing Models of Testability

In Subsection 2.3.1 above, we gave several distance definitions, each of which
results in a model of relational property testing. In this section, we consider these
different models and prove the relationship between them. The main result is

Theorem 1, which shows that these models form a strict hierarchy.
Theorem 1. 7, C 7T, CT.

That is, T,,,-style testing is the most difficult, while T -style testing is the easiest.

Theorem 1 provides guidance for many of our results: when possible, we prefer
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to prove positive results in the strictest (7,,,) model and negative results in the
weakest (7).

In addition, 7,-testing is equivalent to the model of Fischer et al. [22], while Ty,,-
testing is equivalent to the model of Austin and Tao [11|. Theorem 1 therefore
provides some way of relating these results. However, we will see in Lemma 5 below
that although in general these models are all distinct, 7, and 7, are equivalent

for many natural classes of properties.

3.2.1 Proof of Theorem 1

We begin the proof of Theorem 1 with the following simple lemma.

Lemma 2. Let 7 be a vocabulary and A, B € STRUC" (7). Then,
dist(A, B) < rdist(A, B) < mrdist(A, B).

Proof (Lemma 2). We first show dist(A4, B) < rdist(A, B). If an e-fraction of all
assignments differs and we partition the assignments, there must be a partition
such that at least an e-fraction of the assignments differs in the partition. Let
dist(A, B) = € and let «; be the fraction of R;-assignments that differ between the
structures,

_lxIxeU® and RAx) © REGOY

1 .

ni

Then, rdist(A, B) = max; o; and we can write dist(A, B) in terms of the «;,

dist(A, B) = ZE% —c.
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This implies that ) . a;n® = ¢ ). n%, and so there must be an «o; > .

Next, we show that rdist(A, B) < mrdist(A, B). The proof is nearly identical to
the above. If rdist(A, B) = ¢ then there is an R; such that an e-fraction of the R;-
assignments differs between the structures. If we partition the R;-assignments into
the subtypes of R; (which are disjoint), then there must be some partition such

that at least an e-fraction of the assignments in that partition differ.  [JLemma 2

Assume a tester distinguishes between structures A having some property P and
those for which mrdist(A, P) > . Lemma 2 trivially implies that it also distin-
guishes between structures A that have P and those for which rdist(A4, P) > e.

The case with rdist and dist is analogous, which proves the following.
Corollary 1. 7,,, C 7, C T.

Of course it is always desirable to show that such containments are strict. We
show the separations by encoding the following language of binary strings; recall
that & denotes the usual reversal of string u. It is also possible to use, e.g., one of
the untestable properties that will be seen in Chapter 5 to prove the separations

with a first-order expressible property that is closed under isomorphisms.

Theorem 2 (Alon et al. |5]). Language L = {uuvv | u,v are strings over {0,1}}

18 not testable.
We are now ready to prove Theorem 1.

Proof (Theorem 1). The inclusions are by Corollary 1 and so only the separations

remain. We first show that 7\7, is not empty. It suffices to give a vocabulary 7
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and a 7-property that is 7T-testable but not 7,-testable. We use the vocabulary
7o = (E?, SY).

We will show P, € T\7,, where P, C STRUC(7¢) is the set of structures where
the S assignments encode the language L of Theorem 2. Recall that n denotes
the size of the universe and our convention is that S(¢) is interpreted as “bit i of
the string is 17. Therefore, A has P, if there is some 0 < k < n/2 such that for
all 0 <i <k, S(7) is true iff S(2k — 1 — ) is true and for all 0 < j < (n — 2k)/2,
S(2k 4 j) is true iff S(n — 1 — j) is true. The property uses only the low-arity
relation S; the E relation is for “padding” to make P; testable under the dist
definition for distance.

We first show that P; is in 7. A structure with a universe of odd size cannot
have P;. A tester can begin by checking the parity of n and rejecting if it is odd

and so we assume in the following that the size of the universe is even.

Lemma 3. Property Py is testable under the dist definition for distance.

Proof (Lemma 8). For any (even) n, 1" is of the form wuvv. Changing all S(7)
assignments to true in any given A results in the string 1. This involves at most n
modifications and so dist(4, P;) < dist(4, A’) = O(n)/6(n?) < &, where the final
inequality holds for sufficiently large n. Let N(e) be the smallest value of n for
which it holds. The following is an e-tester for P;, where the input has universe

size n.

1. If n < N(¢), query all assignments and output whether the input has P;.

2. Otherwise, accept.
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If A has Py, we accept with zero error. If dist(A, P;) > ¢, then n < N(¢). In

this case we query all assignments and reject with zero error. [1Lemma 3

It remains to show that P; is not testable when using the rdist definition for

distance. We do this by showing that it would contradict Theorem 2.

Lemma 4. Property Py is not testable under the rdist definition for distance.

Proof (Lemma 4). Suppose there exist T.-type e-testers T¢ for all ¢ > 0. The
following is an e-tester using Definition 4 for the language L of Theorem 2. Let

the input be w, a binary string of length n.

1. Run 7° and intercept all queries.

2. When a query is made for S(i), return the value of S(7) in w.

3. When a query is made for E(7, j), return 0.

4. Output the decision of T*.

We run 7°¢ on the A € STRUC"(7¢) that agrees with w on S and where all £
assignments are false. If w € L, then any such A has property P, and so our tester
accepts with probability at least 2/3.

Assume dist(w, L) > e. Then, rdist(A, P;) = dist(w, L) > ¢ and so our tester
rejects with probability at least 2/3. These are testers for the untestable language

of Theorem 2, and so P; is untestable under the rdist definition. [JLemma 4

Lemmata 3 and 4, together with Corollary 1 show 7, C 7. The separation
T C T, is shown in a similar way, using a property with sufficient “padding” to

make 7, testing simple but 7,,, testing would contradict Theorem 2.
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For example, one can use the property P of graphs in which the “loops” E(i,1)
encode the language from Theorem 2. That is, a graph has P, if there is some
0 <k <n/2such that for all 0 <i < k, E(i,1) is true iff £(2k—1—14,2k —1—1) is
true and for all 0 < j < (n—2k)/2, E(2k+j,2k+j) is true iff E(n—1—j,n—1—})
is true. The non-loops are used as padding to ensure 7, testability while 7,,,

testability would allow us to violate Theorem 2. [1Theorem 1

There exist properties that are testable in the rdist sense but not in the mrdist
sense. However, the definition of subtypes and 7,,, testability allows for a sim-
ple mapping between vocabularies such that rdist-testability of certain classes of
properties implies mrdist-testability of the same classes. For these classes, proving
testability in the rdist sense is equivalent to proving it in the mrdist sense, and so
it suffices to use whichever definition is more convenient.

Lemma 5 is given in the context of the classification problem for first-order
logic but it is not difficult to prove similar results in other contexts. We will use
Lemma 5 in Section 4.1, to prove the testability of a class that has this particular

form.

Lemma 5. Let C := [II, all]= be a prefix vocabulary class. Then, C is testable in

the rdist sense iff it is testable in the mrdist sense.

Proof. Recalling Theorem 1, 7T, testability implies 7, testability. We prove 7T,
testability of such prefix classes implies 7,,, testability using Lemma 6. In the

following, &(n, k) is the Stirling number of the second kind.

Lemma 6. Let C = [I1, (p1, po, - . .)|= be a prefix vocabulary class and, furthermore,
let ¢ = > 5;0i6(i,7). If C" = [l (q1,q0,...)]= is T, testable, then C is Ty
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testable.

Proof (Lemma 6). Let ¢ € C be arbitrarily fixed and assume that the predicate

symbols of p are { R}, R, ..., R}

b RE, ...}, where the arity of R} is i. We construct

a ¢’ € C" and show that 7, testability of ¢’ implies 7,,, testability of p. In ¢’ we
will use a distinct predicate symbol for each subtype of each R; in ¢. A subtype
S of R} such that |S| = k is a partition of the integers {1,...,i} into &k non-empty
sets and so there are &(i, k) such subtypes. We therefore require a total of g
distinct predicate symbols of arity k.

For example, we will map the “loops” in a binary predicate E to a new monadic
predicate and the non-loops to a separate binary predicate. Formally, recall
that sV maps the subtypes of a predicate to the sets of tuples comprising the
subtypes. For our example of a binary predicate, (0,1) € sY({{1},{2}}) and
(0,0) € sY({{1,2}}). Next, we let r be a bijection from the subtypes of predicates
to their new names, the predicate symbols that we will use in ¢'.

We create ¢’ by modifying ¢. Replace all occurrences of R;'- (x1,...,x;) with

Vo @ 2) € s7(S) Ar(S R)(y)]

SESUB(RY)

Note that (z1,...,7;) € sY(S) is an abbreviation for a simple conjunction, e.g.,
1 # 9 ANy # 23 A\ ---. Likewise, y is an |S|-ary tuple, formed by removing the
duplicate components of (zy,...,z;). The implicit mapping from (xi,...,x;) is

invertible given S. To continue our example of a binary predicate E, we would
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replace all occurrences of E(z,y) in ¢ with

([r =y N EN@)]V [z # y A Ex(z,9)]) .

We assume that ¢ is 7, testable, and so there exists an e-tester T° for it. We
run this tester and intercept all queries. For a query to r(S, Rj-)(y), we return the
value of R;(xl, ..., x;). This is possible because r is a bijection, and so we can
retrieve S and R; using its inverse. Then, we can reconstruct the full ¢-ary tuple
(1,...,2;) from y and S.

The tester implicitly defines a map! from structures A which we wish to test
for ¢ to structures A’ (with the same universe as A) which we can test for ¢'.

Given an A = ¢, the corresponding A’ = ¢ and so T¢ will accept with proba-
bility at least 2/3.

We map each subtype S to a distinct predicate symbol with arity |S|. Therefore,

for any structures A, B, the implicit mapping to A’, B’ is such that

mrdist(A4, B) = rdist(4’, B').

For convenience, let P :={B | B |= ¢} and P’ := {B' | B’ = ¢'}. For an A such
that mrdist(A, P) > ¢, we simulate 7° on an A’ such that rdist(A’, P') > . The

tester T° rejects with probability at least 2/3, as desired. [ Lemma 6

Proving 7, testability for [II,all]- implies proving it for all (¢;,...) that are

!Explicitly, map A to an A’ with the same universe size, where y € ?”(S,R;) in A’ if
(x1,...,2;) € R; in A. Note that we have not yet defined the assignments of tuples y with
duplicate components. By construction, the assignments of these tuples do not affect ¢’ and so
any reasonable convention will do. For example, for any predicate symbol symbol @ of ¢’ and
any tuple z that has at least one duplicate component, we define z ¢ ). The resulting map is
injective but not necessarily surjective.
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“images” of some (py, ...) and so Lemma 6 is stronger than required. [0 Lemma 5

3.3 Indistinguishability

Indistinguishability is a notion introduced by Alon et al. [3] that we use in several
of our proofs. Essentially, two T-properties are indistinguishable if sufficiently large
structures that have one of the properties become arbitrarily close to having the
other (i.e., the limit of the distance goes to zero as the size of the structures

increases).

Definition 14 (Alon et al. [3]). Let Pi, P, C STRUC(1) be T-properties that are
closed under isomorphisms. We say that P, and P, are indistinguishable if for
every € > 0 there exists an N := N(e) € N such that the following holds for all
n > N. For every A € STRUC"(7), if A has property Py, then mrdist(A, P,) < e

and if A has P, then mrdist(A, P;) < e.

The most important fact regarding indistinguishability is that it preserves testa-
bility.
Lemma 7 (Alon et al. [3]). Let P, P, C STRUC(7) be indistinguishable* -

properties. Property Py is testable iff Py is testable.

The proof by Alon et al. [3] extends to relational structures (from undirected
loop-free graphs) without difficulty once we use mrdist in Definition 14. In fact,
because the proof shows that one can construct an e-tester for one of the properties
by taking the majority vote of three runs of an £/2-tester for the other property,

the query complexities of the two properties are closely related.

2If we are interested only in uniform testability, then the properties must also be decidable.
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3.4 Yao’s Principle

There are a number of tools used to prove lower bounds for testing, including re-
ductions to problems from communication complexity (cf. Blais et al. [13]). Yao’s
Principle (cf. Yao [69]), an interpretation of von Neumann’s minimax theorem [53|
in the context of probabilistic computation, is probably the most commonly used
such tool, and several of our results in Chapter 5 rely on applications of this
principle.

There are many variations of Yao’s Principle; we use the following.

Principle 1 (Yao’s Principle). If there is an € € (0,1) and a distribution over
g™ such that all deterministic testers with complexity ¢ have an error-rate greater

than 1/3 for property P, then property P is not testable with complexity c.

The definition of “testable” is of course our usual one involving random testers.
In applications, one usually seeks to show that for sufficiently large n and some
increasing function ¢ := ¢(n), there is a distribution of inputs such that all deter-
ministic testers with complexity ¢ have error-rates greater than 1/3.

For completeness, we prove our version of Principle 1. We prove only the di-
rection of the minimax theorem that is required for our purposes; for a survey of

minimax theorems and their proofs see Simons [65].

3.4.1 Proof of Principle 1

We begin by providing the definitions required to state Principle 1.
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Definition 15. A deterministic tester is a binary tree where each internal node
15 labeled with a non-negative integer, each leaf is labeled “accept” or “reject,” and

the two edges from a node are labeled 0 and 1.

Given an input, we execute the tester as follows. Beginning at the root, we
interpret the labels on internal nodes as the bit position of the input that will be
queried. If the result of the query is 0, we follow the 0 edge and otherwise the
1 edge. When we reach a leaf we output the decision on the label. Note that it
is equivalent to label the internal nodes with atomic formulae such as E(0,1) as
these are equivalent to specific bits of the input, the positions of which can be

easily computed.

Definition 16. The complexity of a deterministic tester is the number of internal
nodes, including the root unless it is a leaf, on the longest path from the root to a

leaf.

The complexity of a deterministic tester is then the maximum number of queries
that it makes. Our interest is limited to testers of finite complexity, i.e., those that
output a decision in finite time. Without loss of generality, we can restrict our
attention to balanced binary trees, by making extra, useless queries on the shorter
paths in order to “pad” their lengths.

For testability, we are concerned only with the error-rate on inputs that either
have our desired property or are e-far from having the property. Therefore, we
define the error-rate of a tester to be non-zero only on such examples. Because of
this, it suffices to restrict our attention to distributions that give zero probability

to the remaining “possible” inputs (those that do not have the property in question,
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but are also not e-far from it).

We begin by proving the following direction of the minimax theorem. We say
that a vector x € RX is a probability vector if each of its components is a non-
negative real number and the sum of its components is 1. For n > 0, we let P" be

the set of probability vectors with n components,

P" = {X|X:(:E1,...,xn)ER",xiZOforalllgiSn, and Zx,»zl}.

=1

It is well-known that equality holds in the following, however we restrict our-
selves to stating and proving only the direction required for Principle 1, as men-

tioned above.

Theorem 3 (Minimax Theorem). Let M be an a x b matriz of non-negative
reals and X = P* and Y = P® be the sets of all probability vectors with a and b

components, respectively. Then,

max min x My’ < minmaxxMy?. (3.1)
yeY xeX xeX yeY

Proof (Theorem 3). Let y* be any of the arg max on the left in (3.1),

y* ;= argmax min xMy”
yeY xeX

and x* be any of the arg min on the left in (3.1),

*

. T
x* = argminxMy™*" .
xeX
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Then, for any probability vector x € X, by the definition of minimum,

xMy*T > x*My*T. (3.2)

Let xT and y* be any of the arg min and arg max on the right of (3.1), that is

x ' ;= argminmax xMy” and y* := argmaxx" My”.

xex YeY yey

Then, by the definition of maximum, xtMy*+" > x* My*”. Therefore, by (3.2),

. T T T :
minmaxxMy’ = x"My"™ >x"My*" > x*My*" = maxminxMy”.
xeX yeY yeY xeX

0 Theorem 3

Given Theorem 3, it is easy to show Principle 1. In (3.1), we call x on the left
and y on the right “inner vectors.” This is because we can think of them as being
chosen after the “outer vectors” (y on the left and x on the right) are fixed. For the
“inner” vectors, it suffices to consider unit vectors e;, where component ¢ is 1 and
all other elements are 0. This is because once the outer vector is fixed, denoting
the i-th component of a vector z by [z];,

. T r
IxIél)I(l xMy = €arg min,[MyT]; My

and likewise for the maximum on the right of (3.1). This proves the following

simple corollary of Theorem 3.

Corollary 2. Let M be an a x b matriz of non-negative reals and X = P* and
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Y =P be the sets of all probability vectors with a and b components, respectively.
Then,

max min e; My’ < minmaxxMe . (3.3)
yeY e;eX xeX e;eY

Proof (Principle 1). Principle 1 is an interpretation of (3.3) in the context of test-
ing. We let a be the number of deterministic testers with complexity ¢ whose
queries are evaluable in structures of type 7 that have n elements. We assume
that there is an enumeration of these testers. Then, a randomized tester with
complexity ¢ for structures of n elements is given by a probability vector x € X,
where [x]; is interpreted as the probability that the randomized tester behaves like
the i-th deterministic tester. A unit vector e; € X specifies the i-th deterministic
tester.

Likewise, we assume there is an enumeration of structures of type 7 that have
n elements and let b be the number of such structures. Then, a probability vector
y € Y is a distribution over these structures and a unit vector e; specifies the j-th
structure.

For matrix M, we let M;; be 1 if the i-th deterministic tester is incorrect on
the j-th input and this input either has the desired property or is e-far from it.
Otherwise, we let M;; be 0.

We now have have an a x b matrix M and a meaning for a and b component
probability vectors and so we can interpret the meaning of Corollary 2. On the left,
e;My" is the average-error of the i-th deterministic tester on a structure chosen
according to distribution y. Likewise, on the right, xM e? is the error-rate of the

randomized tester specified by x on the j-th structure.
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Therefore, the left side of (3.3) is the average-error of the “best” deterministic
tester on the “worst” distribution of inputs, when we define “best” as the lowest
average-error. If we find some distribution y™ of inputs such that all deterministic
testers have an error-rate greater than 1/3, then 1/3 is a lower bound on the left
side, and therefore the right side, of (3.3).

The right side of (3.3) is the error-rate of the “best” randomized tester on the
“worst” input structure, when “best” is defined as the best worst-case. If the “best”
randomized tester with complexity ¢ has an error-rate greater than 1/3 on an input,
we can conclude that the property in question is not testable with complexity c.

[ Principle 1

3.5 Summary

In this chapter, we proved various basic results that we will use in later chapters.
In particular, Theorem 1 relates the three models of testability that we introduced
in Section 2.3. This encourages us to prove positive results in the strongest model
(i.e., we will focus on 7, in Chapter 4) and negative results in the weakest model

(i.e., we will focus on 7 in Chapter 5).
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Chapter 4

Testable Classes

We are now ready to prove the testability of two large, syntactic subclasses
of first-order logic. We prove the testability of Ackermann’s class with equality

([3F*Y3*,all]=) in Section 4.1, and of Ramsey’s class ([3*V*, all]-) in Section 4.2.

4.1 Ackermann’s Class with Equality

In this section we show that Ackermann’s class with equality ([3*V3*, all]-) is
testable. We begin by reviewing the history of this class, which has a number of
nice properties.

Ackermann’s class was first considered (without equality) by Ackermann [1],
who showed that the satisfiability problem for the class is decidable and that it
has the finite model property!. Kolaitis and Vardi [45] showed the satisfiability

problem for Ackermann’s class with equality is complete for NEXPTIME and

LA class is said to have the finite model property if every satisfiable formula in the class has a
finite model. Classes without this property have infinity axioms, i.e., sentences with only infinite
models.
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that a 0-1 law holds for existential second-order logic? where the first-order part
belongs to [3*V3*, all]=. Lewis [48| proved that satisfiability for Ackermann’s class
without equality is complete for (deterministic) EXPTIME. Grédel [31] showed
that satisfiability for Ackermann’s class without equality is complete for EXPTIME
even with the addition of arbitrarily-many function symbols.

If we allow equality and a unary function symbol, the result is Shelah’s class,
which Shelah [64] proved decidable. Shelah’s class is a decidable class that does
not have the finite model property, and it would be interesting to determine if
it is testable. This would require extending relational testing to allow function
symbols.

Ackermann’s class with equality has been studied in other settings as well. For
example, Fermiiller and Salzer [18] used an extension of resolution to decide an
extension of Ackermann’s class with equality using automated theorem provers.

The main goal of this subsection is Theorem 4 below. Recalling Theorem 1, this
also implies that such properties are testable in the dist and rdist senses. If the
vocabulary consists of a single relation, the rdist and dist definitions are equivalent
to the dense hypergraph model. We therefore obtain the corresponding results in
the dense hypergraph and dense graph models as special cases.

We denote the set of monadic predicate symbols in a vocabulary 7 by M =
{R; | R; € T and a; = 1}. The set of assignments of the symbols in M for an

element in a universe is called the color of the element and there are 2/M| possible

2A class C of first-order logic has an associated 0-1 law if all existential second-order sentences
p = 3C1...Cy1, where 1) is a first-order sentence in C, have the property that the limit as
n — oo of the probability that a random structure of size n satisfies ¢ exists and is either 0 or 1.
Recall that the focus is on existential second-order because all of first-order admits a 0-1 law,
see the references in Kolaitis and Vardi [46].
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colors. We define Col(A4, ¢) to be the set of colors that occur at least ¢ times in A.

Theorem 4. All formulae in [3*V3*, all|= define properties that are in Tp,,. with

one-sided error.

Proof (Theorem 4). Recall that Ackermann’s class with equality is [F*V3*, all |-
and, therefore, it suffices to show the testability of property P of type 7 =
(RY',..., R%) defined by formula ¢ := 3Jx;...3x,Vy3Iz; ... 3z, : ¢, where ¥ is
quantifier-free. Note that a is the number of leading existential quantifiers and b
is the number of trailing existential quantifiers. We can trivially test any ¢ that
has only finitely-many models with a constant number of queries and zero error,
and so it suffices to assume that ¢ has infinitely-many models.

The class [3*V3*, all]= is of the form required by Lemma 5 above, and so it
is mrdist-testable iff it is rdist-testable. It therefore suffices to show that P is
testable in the rdist sense. We will show that the following is an e-tester in the
rdist sense for P on input A € STRUC" (7). Here, k := k(7,¢) is the number of
elements queried and N := N(y, T,¢) is a constant, both of which are determined
below. Note the actual number of queries in Step 2 is not exactly k, but rather
a constant multiple of it depending on 7. Finally, we explicitly give k := r(p, 7)

below.

1. If n < N, query all of A and decide exactly whether A has P.

2. Uniformly and independently choose k& members of the universe of A and
query all monadic predicates on the members in this sample. Let B be the

observed substructure.
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3. Search over all A" € STRUC" (7). Accept if an A’ is found such that A" | ¢

and Col(B,a+1) C Col(A",;a +1).
4. Otherwise, reject.

We will show that the tester accepts (with probability 1) if A = ¢ and rejects
with probability 2/3 if rdist (A, P) > . We first show that if A |= ¢, then the tester
is guaranteed to accept. Then, we will show in Lemma 9 that with probability at
least 2/3, we get a “good” sample in Step 2. A sample is “good” if it contains at
least (a + 1)-many distinct representatives of each color that occurs on at least an
/(2 - 2M1) fraction of the elements of A. We then show that the tester is correct
if it obtains a good sample, and therefore rejects with probability at least 2/3 if
rdist(A, P) > e.

We will now show that if A |= ¢, the tester will accept with probability 1. We

begin with Lemma 8.

Lemma 8. Let A be a model of ¢ such that #(A) > N and let
k:=a+3b <G 4 9= it (af)aafj> + Q‘M‘(a +1).

Then, there is an A" = ¢ such that #(A') = k and Col(A,a+ 1) C Col(A",a+1).

Proof. Assume that N > k. The structure A is a model of ¢, and so there exists
at least one tuple of a elements (uq,...,u,) such that ¢ is satisfied when the
existential quantifiers bind u; to z;. We consider the z; and the substructure

induced by them to be fixed, and refer to this substructure as A,.
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There are at most ks := a + 9%zt Xity (% )ars? many distinct structures con-
structed by adding an element labeled y to A, when we include the structures
where the label y is simply placed on one of the x;. We let v < ko be the number
of such structures that occur in A and assume there is an enumeration of them.

For each of these v substructures there exist b elements, wy, ..., wy, such that
when we label w; with z;, the substructure induced by (z1,...,%q, Y, 21, .., 2p)
models ¥. We construct A;; for 1 <¢ <3 and 1 < j < wv such that A, ; is a copy
of the wy, ..., w, used for the j-th structure (see Figure 4.1). We connect each A; ;

to A, in the same way as in A, modifying assignments on tuples (A, U 4; ;)%.

| |

ALI A2,1 A311
ALZ A2,2 A312
ALv AZ,U A&,v

Figure 4.1. A sketch of the new structure

For each wy, in A, ;, we consider the case where y is bound to wy,. By construction
the substructure induced by (x1,...,2,,y) occurs in A. We assume it is the g-th
structure and use the elements of A; 11 mod 3,4 to construct a structure satisfying .
We modify the assignments of tuples as needed to create a structure identical
to that in A satisfying 1. Note that by construction all of these assignments
are of tuples that contain wj;, and at least one element from A;; modasg The
resulting structure, which we call Ay, is a model of . Before this step we have not

modified any assignments “spanning” the “columns” A; ; of A; and so there are no
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assignments that we modify more than once.

However, there may be some color from Col(A, a+ 1) that does not appear a+ 1
times in A;. We therefore add a new block, denoted A., of at most 2™l(a + 1)
elements which consists of a + 1 copies of each color from Col(A,a + 1). Each of
these colors occurred at least a + 1 times in A, and so for each such color C, there
is an element ¢ in A with color C such that ¢ is not part of A,. If the substructure
induced by (A;,q) in A is the j-th structure in our enumeration, then we do the
following for each member p of A, that has the same color as ¢. First, we make the
substructure induced by (A,, p) identical to that induced by (A,, ¢) in A. Next, we
make the substructure induced by (p, A ;) identical to that induced by ¢ and the
corresponding z; in A. All of these modifications are on tuples containing a p € A,
and so we do not modify any tuples more than once. We call this structure As,.

Finally, so far we only have an upper-bound on the size of A, while the lemma
states it to be ezactly of size k. We therefore pad in the following simple way?.
We know that N > x > 2Mlg and so there is a color that occurs at least a + 1
times in A. If #(As) < k, we simply make an additional kK — #(As) many copies
of this color in A, and modify the assignments of tuples containing these new
elements in the same manner as above. The resulting A’ has size k and satisfies

the requirements of the lemma. [1Lemma 8

For any sample B of A, it is true that Col(B,a + 1) C Col(A,a +1). If A |= ¢,
then Lemma 8 implies that our tester will find an A’ satisfying the conditions of
Step 3 and will therefore accept. This holds for any sample B and so the tester

will accept such A with probability 1.

30ne could instead change the tester to search structures with size at most .
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Next, assume that rdist(A, P) > e. In this case we must show that the tester
rejects with probability at least 2/3. First, we show that the tester obtains a

“good” sample with probability at least 2/3.

Lemma 9. There are constants k and N such that, with probability at least 2/3, the
tester obtains a sample that contains at least (a+ 1)-many distinct representatives

of each color in Col(A,en/(2 - 2M)).

Proof (Lemma 9). The probability that any particular query misses a fixed color
that occurs on at least an /(2 - 2/Ml) fraction of A is at most (1 — /(2 - 2M1)).
Moreover, the probability that we miss such a fixed color after k; independent
queries is at most (1 —¢/(2-2™M1))*1. There are at most 21"/ such colors, and so the
probability that a sample of k; elements fails to contain at least one representative

of all such colors is at most

k1
ol (4 _E/2

The |M| is a constant, and we choose k; such that (a + 1)p; is at most 1/6.

Let k£ := (a 4+ 1)k;. We will make k independent queries, and consider the
total sample as (a + 1) separate samples of size k;. All of these smaller samples
will contain at least one representative of every color in Col(A,en/(2 - 2M)) with
probability at least 1 — (a + 1)p; > 5/6. However, there is the possibility that
some of these smaller samples contain elements in common. We will choose N
such that for n > N, the probability that any particular element in the universe
of A is chosen more than once is at most 1/6. In particular, if #(A) = n and we

define ¥ .= x(z —1)--- (r — (y—1)) = z!/(x —y)!, then the probability that some
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element is queried more than once is

n! platDkL
Py i=1— I —
n@tDk(n — (a4 1)ky)! nlat)ki

The sample size (a+1)k; is a constant, and so we can choose N such that ps < 1/6
for n > N.
The probability that the tester obtains a sample that contains at least (a + 1)-

many distinct representatives of each color in Col(A,en/(2 - 2M1)) is at least

1—(a+1)p, —ps >2/3.

O Lemma 9

Our goal is to show that if rdist(A, P) > &, then we reject with probability
at least 2/3. It is easier to show the contrapositive: if the tester accepts with
probability strictly greater than 1/3, then rdist(A, P) < e.

If we accept a structure A with probability strictly greater than 1/3, then we
must accept it when we obtain a good sample. We construct a B such that B = ¢
and rdist(A, B) < € from the A’ that the tester must find to accept. We begin

with Lemma 10, which we will use to “grow” smaller models.

Lemma 10. Let ¢ := dxy ... 3x,Vydzy ... d2z, 1 ¥ be a formula with vocabulary T,
where ¢ is quantifier-free and A € STRUC (1) be such that A |= ¢. Additionally,
let B € STRUC(7) be any structure containing A as an induced substructure such
that #(B) = #(A) + 1. If the additional element of B has a color that occurs at

least a + 1 times in A, then we can construct a B" = ¢ by modifying at most a

46



4.1. ACKERMANN’S CLASS WITH EQUALITY

constant number of non-monadic assignments in B.

Proof (Lemma 10). Structure B contains an induced copy of A and one additional
element, which we will denote by ¢q. By assumption, A is a model of ¢ and therefore
contains an a-tuple (uq, ..., u,) such that the formula is satisfied when z; is bound
to u;. In addition, there are at least a + 1 elements in A that have the same color
as q. Therefore, there is at least one such element p that is not one of the u;. We
will make ¢ equivalent to p without modifying any monadic assignments.

We begin by modifying the assignments as needed to make the structure induced
by (z1,...,z,,q) identical to that induced by (x1, ..., 24, p). This requires at most
Doim1 2o ((}i)a‘”*j = O(1) modifications, all of which are non-monadic. There
must be (v1,...,v) in A such that ¢ is satisfied when z; is bound to v; and
y to p. We modify the assignments needed to make the structure induced by

(q,v1,...,vy) identical to that induced by (p,vy,...,vp)%

This requires at most
D el Do (‘;.")b“i_j = O(1) modifications, all of which are non-monadic. The

result has #(A) + 1 elements, models ¢ and was constructed from B by making a

constant number of modifications to non-monadic assignments. [1Lemma 10

Let A be the structure that the tester is running on and A’ be the structure
found in Step 3 of the tester. As mentioned above, we will construct a B |= ¢
from A’ such that B |= ¢ and rdist(4, B) < e.

Note that there must exist at least one color in Col(A,en/(2-2/*1)) and assume
that IV is large enough that en/(2 - 2M1) > a + 1. We first make a constant-sized

portion of A identical to A’. This requires at most O(1)-many modifications to

4The case where v; = p can be handled by replacing v; with ¢ in (q,v1,...,vp).
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each relation. All colors in Col(A,en/(2 - 2/M)) occur at least a + 1 times in A’,
allowing us to recursively apply Lemma 10 and add the elements of A that have
colors in Col(A,en/(2 - 2M1)). This entails making O(1)-many modifications to
non-monadic relations (and none to monadic relations) at each step, for a total of
O(n) modifications to the non-monadic relations.

Finally, we consider the elements of A that have colors which occur at most
en/(2 - 2M1) times. There are at most 2/™! such colors and at most £n/2 elements
with these colors. We change the monadic assignments on such elements as re-
quired to give them colors contained in Col(A, en/(2-2/™1)). This requires at most
en /2 modifications to each of the monadic assignments. We again recursively ap-
ply Lemma 10 to A, making O(1) modifications to non-monadic assignments at
each step. The resulting structure is B and is such that B = .

Finally, we show that rdist(A4, B) < e. If R; is a monadic relation, then the
i-th term of the maximum in the definition of rdist (cf. Definition 5 above) is at
most /2 + o(1). If R; has arity at least two, then the i-th term of the maximum
is O(n)/Q(n?) = o(1). All o(1) terms can be made arbitrarily small by choosing
N (¢, T,¢€) appropriately and so we can assume that all terms are strictly less than .
The maximum is then strictly less than ¢ and so rdist(A, B) < ¢ as desired.

0 Theorem 4

4.2 Ramsey’s Class

In this section we revisit a result of Alon et al. [3] in the light of recent work

by Austin and Tao [11]. The main result is the testability of the full Ramsey’s
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class (i.e., removing the restriction to undirected loop-free graphs). As we did for
Ackermann’s class with equality in Section 4.1, we begin by reviewing the history
and properties of the class, denoted [F*V*, all]_.

Ramsey’s class is also known as the Bernays-Schonfinkel-Ramsey class. Bernays
and Schonfinkel [12] proved the finite model property and that satisfiability is
decidable for the class without equality. Ramsey [56] extended these results to the
class with equality as part of a stronger result. Lewis [48] showed that satisfiability
is NEXPTIME-complete for Ramsey’s class and Kolaitis and Vardi [44] proved that
a 0-1 law holds for existential second-order logic where the first-order part belongs
to [3*V*, all]=. Omodeo and Policriti [54] have recently shown that the class is
semidecidable for set theory.

The main goal of this subsection is Theorem 5 below. Recalling Theorem 1, this
also implies testability in the 7 and 7, senses. The proof of Theorem 5 follows
the proof by Alon et al. 3|, and relies on a reduction to a strong result by Austin
and Tao [11].

An outline of the proof is as follows. First, we show that all sentences in
[3*V*, all |- define properties which are indistinguishable from instances of a gen-
eralized colorability problem. Next, we note that all such problems are hereditary
and therefore testable when mapped to the setting defined by Austin and Tao [11].
Finally, we show that this implies testability under our definitions, which gives the

following.

Theorem 5. All sentences in [3*V*, all|= define properties in Tp.

We begin the proof of Theorem 5 by defining a generalized colorability problem,
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as did Alon et al. [3].

For any fixed set F' of structures with vocabulary 7, some positive number of
colors ¢, and functions that assign a color between 1 and ¢ to each element of
each structure in F', we define the F-colorability problem as follows. A structure
A € STRUC(r) is F-colorable if there exists some (not necessarily proper) c-
coloring of A such that A does not contain any induced substructures isomorphic
to a member of F. We let Pr be the set of structures that are F-colorable.

For example, we can consider the case of graphs and let F' contain ¢ copies of K.
We enumerate these copies in some fashion from 1 to ¢, and for copy i, color both
vertices with 4. The resulting problem is of course the usual (k- or equivalently)
c-colorability. The following is a straightforward generalization of the proof by

Alon et al. [3].

Lemma 11. Let ¢ be any first-order sentence in the class [3*V*, all]—. There
exists an instance of the F-colorability problem that is indistinguishable from P,

the property defined by .

Proof (Lemma 11). Let € > 0 be arbitrary and ¢ := 3z ... 3z,Vy; ... Vy, : ¢ be
any first-order formula with quantifier-free ¢ and vocabulary 7. We note, as did
Alon et al. [3], that we can restrict our attention to formulae ¢ where it is sufficient
to consider only cases where the variables are bound to distinct elements. This
is because, given any v, we can construct a 1 satisfying this restriction that is
equivalent on structures with at least ¢t + u elements, and the smaller structures

do not matter in the context of indistinguishability.

Let P = {A | A € STRUC(1),A &= ¢} be the property defined by ¢. We
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4.2. RAMSEY’S CLASS

now define an instance of F-colorability that we will show to be indistinguishable

from P. We denote our ¢ colors by the elements of
{(0,0)}U{(a,b) |1 <a<m,1<b<m,abeN}.

Here, m; is the number of distinct structures of vocabulary 7 with exactly ¢ ele-
ments, mp = 22i=1*"" Similarly, we denote by 75 the number of ways it is possible
to “connect” or “add” a single element to some existing, fixed t-element structure
of vocabulary 7, i.e., my = 22;;12?511 ()e? We will use fixed enumerations
of these m structures with ¢ elements and 7w, ways of connecting an additional
element to a fixed t element structure.

We impose on the coloring of the structure the following restrictions. Each can

be expressed by prohibiting finite sets of colored induced substructures.

(1) The color (0,0) may be used at most ¢ times. Therefore, we prohibit all

(t + 1)-element structures that are colored completely with (0, 0).?

(2) The graph must be colored using only {(0,0)} U {(a,b) | 1 < b < my} for
some fixed a € {1,...,m}. Therefore, we prohibit all two-element structures

colored ((a,b), (a’,b")) with a # a'.

(3) We now consider some fixed coloring of a wu-element structure V', whose
universe we identify with {vy,...,v,}. We assume that this coloring satisfies
the previous restriction and that color (0,0) does not appear. We must

decide whether to prohibit this structure. In order to do so, we first take the

5Note that introducing a constraint guaranteeing the existence of ¢ such elements cannot be
done by forbidding finite sets of structures, and would result in a non-hereditary property.
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CHAPTER 4. TESTABLE CLASSES

fixed a guaranteed by the previous restriction, and consider the t-element
structure E, whose universe we identify with {e;,...,e;}, that is the ath
structure in our enumeration of ¢ element structures. We connect each v; to
E in the following way. If v; is colored (a, b), we use the pth way of connecting
an additional element to a t-element structure in our enumeration. We denote
the resulting (¢ + u)-element structure as M and allow (do not prohibit) V'

iff M is a model of ¢ when we replace x; with w; and y; with v;.

We now show that the resulting F'-colorability problem is indistinguishable
from P. Recall the definition of indistinguishability (Definition 14) and assume
that we are given an A = ¢. Color the ¢ vertices existentially bound to the x; with
(0,0). Then, we can color all remaining vertices v; with (a, b), where a corresponds
to the substructure induced by {x1,...,2;} in our enumeration of ¢-element struc-
tures, and b corresponds to the connection between v; and {x1,...,x:}. It is easy
to see that this coloring satisfies the restrictions of our F-colorability problem. We
have not made any modifications to the structure and so clearly mrdist(A, Pr) =0
(i.e., A € Pp).

Next, we assume that we are given a structure with a coloring that satisfies our
restrictions. We will show that we can obtain a model of ¢ by making only a small
number of modifications. First, if there are less than ¢ elements colored (0,0), we
arbitrarily choose additional elements to color (0,0) so that there are exactly ¢
such elements. We will denote these ¢ elements with {ei,...,e;}. Restriction (2)
guarantees that all colors which are not (0,0) share the same first component.
Let a be this shared component. We make the structure induced by {es,..., e}

th

identical to the a"" structure in our enumeration of t-element structures, requiring
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4.2. RAMSEY’S CLASS

at most » >, t% = O(1) modifications. Next, for each element v; that is colored
(a,b) with a,b # 0, we modify the connections between v; and {ey, ..., e;} in order

pth

to make these connections identical to the way of making such connections in

our enumeration. This requires at most

o EE[) o

i=1 j=1

additional modifications, all of which are to non-monadic subrelations. Binding z;
to e;, the resulting structure is a model of . We made at most O(1) modifications
to monadic subrelations and O(n) modifications to non-monadic subrelations, and
so mrdist(A, P) < max{O(1)/n,0(n)/Q(n?)} = o(1) < &, where the inequality
holds for sufficiently large n.

Therefore, all such properties P are indistinguishable from instances of F-

colorability, as desired. [0 Lemma 11

Recall that a hereditary property of relational structures is one which is closed
under taking induced substructures. F'-colorability is clearly a hereditary property;
if A is F-colorable, then so are its induced substructures. However, the definitions
of Austin and Tao [11] are significantly different from ours and so we explicitly

reduce the following translation in our setting to their result.

Theorem 6 (Translation of Austin and Tao). Let P be a hereditary property of
relational structures which s closed under isomorphisms. Then, property P is

testable in the sense of T,.. with one-sided error.

Theorem 6 is, in a sense, the latest in a series of generalizations of Corollary 6.3

of Alon et al. [3], i.e., the testability of colorability problems for undirected loop-
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free graphs. The first such generalization was by Fischer [20], who extended the
result to more general colorability problems with counting restrictions. This was
followed by Alon and Shapira [8] who extended it to hereditary graph properties.
Ishigami [37] extended the testability result to hereditary partite uniform hyper-
graph properties, and Rodl and Schacht [57] extended it to hereditary uniform
hypergraph properties. These generalizations are closely related to extensions of
Szemerédi’s Regularity Lemma and the Removal Lemma, see the references in
Section 1.1.

Before reducing Theorem 6 to its statement in [11], we first briefly introduce
their definitions. All of the definitions in Subsection 4.2 are from Austin and

Tao [11], although we omit definitions which are not necessary for our purposes.

Framework of Austin and Tao
We begin by introducing their analogue of vocabularies: finite palettes.

Definition 17. A finite palette K is a sequence K := (K})32, of finite sets, of
which all but finitely-many are singletons. The singletons are called points and

denoted pt. A point is called trailing if it occurs after all non-points.

We will write K = (K, ..., K}), omitting trailing points and call k the order

of K. We use the elements of K to color the j-ary edges in hypergraphs.

Definition 18. A vertex set V' is any set which is at most countable. If V.W are
vertex sets, then a morphism f from W to V is any injective map f: W — V and
the set of such morphisms is denoted Inj(W, V). For N € N, we denote the set
{1,...,N} by [N].
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4.2. RAMSEY’S CLASS

Of course, [N] is a vertex set. Our structures are finite so we are mostly inter-

ested in finite vertex sets. Next, we define the analogue of relational structures.

Definition 19. Let V' be a vertex set and K be a finite palette. A K-colored
hypergraph G on V' is a sequence G := (G)52,, where each G;: Inj([j],V) — K;

is a function. Let K) be the set of K -colored hypergraphs on V.

Only finitely many of the K are not points, and so only finitely many G; are
non-trivial. The G; assign colors from K, to the morphisms in Inj([j],V). In
our relational setting, this set of morphisms corresponds to the set of j-ary tuples
(21,...,x;) with pairwise distinct components.

Before defining hereditary K-properties, we need one last technical definition.

Definition 20. Let V,W be vertex sets and f € Inj(W, V') be a morphism from

W to V. The pullback map K" : KV) — KW) s

for all G = (G)2y € KV, j >0 and g € Inj([j],W)). If W CV and f €

Inj(W, V) is the identity map on W, we abbreviate

G |lw:=KWY.

Abusing notation, the pullback map K) maps K-colored hypergraphs on V to
those on W, by assigning the color of f o g to g, for all tuples g. Note that G |y
is equivalent to the induced subhypergraph on W. For clarity, we reserve P for

properties of relational structures and use P to denote properties of hypergraphs.
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Definition 21. Let K = (Kj})32, be a finite palette. A hereditary K-property P is
an assignment P: V — PV of a collection PY) C KV) of K -colored hypergraphs
for every finite vertex set V' such that for every morphism f € Inj(W, V') between

finite vertex sets,

K& (p(V)) cpW,

Finally, we state the definition of (one-sided error) testability used by Austin
and Tao [11]. For vertex set V' and ¢ € N, we write (‘2) ={V'"| V' CV|V'|=c}

to denote the set of subsets of V' with exactly ¢ elements.

Definition 22. Let K be a finite palette with order k > 0 and P be a hereditary
K -property. Property P is testable with one-sided error if for every e > 0, there
exists N > 1 and 6 > 0 satisfying the following. For all vertex sets V with |V| > N,

if G € KY) satisfies

! HW|W€(;),GLWEP(W)}‘zl—é, (4.1)

then there exists a G' € PVY) satisfying

1

149

friwe(Nowronl<e  w

To see that this is a variant of testability, it is easiest to consider the contraposi-
tive. If there is a G’ satisfying (4.2), then G is not e-far from P, using the implicit
distance measure based on the fraction of differing induced subhypergraphs with
size k. If there is no such G’ (i.e., G is e-far from P) and P is testable, then (4.1)

must not hold. That is, there are many induced subhypergraphs of size N that do
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not have P. The definition is for hereditary P, and so if G has P, then so do all
induced subhypergraphs. This allows the construction of testers.

Finally, we can state one of the main results of Austin and Tao [11].

Theorem 7 (Austin and Tao [11]). Let K be a finite palette and let P be a

hereditary K-property. Then, P is testable with one-sided error.

In the following subsection we will map our vocabularies, structures and prop-
erties to this setting. We will then show that hereditary properties in our setting
correspond to hereditary properties (in the sense of Definition 21 above) here, and
that testability in the sense of this section (Definition 22) implies testability of
the original relational properties. That is, we explicitly reduce our translation

(Theorem 6) to Theorem 7.

Reducing Theorem 6 to Theorem 7

To begin, we map vocabulary 7 = {R{*, ..., R%} to finite palette K, = (K;)52,.
We use the color of a “tuple” to represent the set of assignments on it. The dif-
ference between the set of j-ary tuples over a finite universe U and Inj([j],U) is
that the latter does not permit repeated components. If S € SUB(R;") is such
that |S| < a;, the corresponding subrelation consists of tuples with repeated com-
ponents. We treat such S as relations with arity |S| and no repeated components.

Recall that &(n, k) is the Stirling number of the second kind.

For a > 1, let P, := {R}"

R} € 7,a; = a} be the set of predicate symbols with
arity a. We now define palette K. Let Ky := pt and K; := [2E§ |Pj‘6(j’i)]. There

are finitely-many predicate symbols and so only finitely-many K; # pt.
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CHAPTER 4. TESTABLE CLASSES

Let S, :={S! | S € SUB(R{"),|S!| = a,1 <14 < s} be the set of subtypes with

%l = |K,| and we have exactly enough colors

cardinality a for all « > 1. Now, 2
to encode the set of assignments of the a-ary subtypes on a-ary tuples.

We will now define a map h from relational structures A on universe U to

hypergraphs G4 € KY). For any S! € S, there is a bijection

r(SH): sY(SE) = {(z1, .. 240) | i € Uy # x5 for i # j}

from sY(S?) to the a-ary tuples without duplicate components, formed by removing
the duplicate components. That is, r(S?) maps (x1, ..., %,,) to (zi, ..., z;,) where
1<iy <ig<...<ig<a;. We can now define G4 = h(A).

For j > 0, we define G;: Inj([j],U) — K; as follows. Assign to f € Inj([j],U)
the color encoding the set of assignments of the subtypes S; on (f(1),..., f(4)),
using the inverses (7(S})) ™" to get assignments for subtypes of high-arity relations.
For 7 =0, Inj([j],U) = 0 and Ky = pt and we can use a trivial map.

Of course, we extend the map to properties in the obvious way. If P is a
property of relational structures, we let PY) := {h(A) | A € P}. Formally, we
define P(U) := PWY), but there is a small technical point. We have identified
finite universes with subsets of the naturals, allowing us to call STRUC(1) a set.
However, Definition 18 in this section allows a vertex set to be any finite set
and Definition 21 requires hereditary hypergraph properties to be closed under

bijections between vertex sets. To remedy this, for each finite vertex set W, we fix
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a% bijection ¢": W — {0,...,|W|—1}. We then define P := h(P) formally as

POV it W={0,1,...,|[W| -1}

K(e") (PUO-WIZID) - otherwise.

Hereditary relational properties are mapped to hereditary hypergraph prop-
erties, which are testable in the sense of this section (Definition 22 above) by

Theorem 7.

Lemma 12. If P is a hereditary property of relational structures, then h(P) is a

hereditary property of hypergraphs.

Proof (Lemma 12). Let P be a hereditary property of relational structures with
vocabulary 7. Assume that P := h(P) is not a hereditary K-property. Then,
by Definition 21 above, there exist finite vertex sets V' and W, and a morphism
f € Inj(W, V) such that

KD POy g pi). (4.3)

Since f’ exists, Inj(W, V') cannot be the empty set and so |[V| > |W/|. Let
Uy :={0,...,|V|—1} and Uy := {0,...,|W]|—1}. By the definition of P, we can
fix bijections ¢": V — Uy and ¢V': W — Uy such that PV) = k(") (P

and PW) = (") (PWw)). By the definition of P = h(P), this implies

KW (K(gv) (p(Uv))) z k(") (POW))

60ur properties are closed under isomorphisms, so any fixed bijection is acceptable.
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Bijections are invertible, and so this implies
v w1
f(aVose(a™) ) (PWV)) g pUw)

Rename f':=¢" o fo (gW)fl and note f' € Inj(Uyw, Uy). Let A’ € PUV) be such
that K(F)(A") ¢ PUw),
We defined P as h(P) for a hereditary property P of relational structures. Prop-

erty P is closed under isomorphisms, and so there is an
A:=h"Y(A) e PN STRUC!YI(7)

such that the |Up |-element structure induced by {a | a = f'(u) for some u € U, }
does not have P. This contradicts the hereditariness of P and so P must be
hereditary in the sense of this section (Definition 21).

0 Lemma 12

We mapped hereditary relational properties to hereditary hypergraph properties,
which are testable by Theorem 7. We will show this implies testability of the

original properties.

Definition 23. Let A, B € STRUC" (1) be structures with vocabulary T and uni-
verse U := {0,...,n — 1} of size n, k := max;a; be the maximum arity of the
predicate symbols, and h: STRUC™(t) — KWU) be the map defined above. The

h-distance between A and B is

1

1]

hdist(A, B) := '{W W e (Z),h(A) lw+ h(B) [W}‘ .
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We now relate the two distances with the following simple lemma.

Lemma 13. Let A,B € STRUC"(7) be relational structures with vocabulary T

and size n. Then, hdist(A, B) > mrdist(A, B).

Proof (Lemma 13). Assume that mrdist(A, B) = €. Then, there exists a predicate

symbol R{" € 7 and subtype S € SUB(R;") such that

54(8) & 5P(S)] /(nl) (n — |S])1) =<

Let k := max; a; and let the universe of both structures be U,, := {0,...,n — 1}.
Consider a random permutation of the universe (i.e., a bijection r: U, — U,)
chosen uniformly from the set of such permutations. The probability that the
substructures induced on {r(0),...,r(k — 1)} differ in A and B is hdist(A, B).
The probability that the tuple of the first |S| elements, i.e. (r(0),...,7(]S] —1)),

differ in s(9) and sP(9) is ¢ and so hdist(4, B) > e. [JLemma 13

Equality is obtained when |S| = k. It is possible to show that the two distances
differ by at most a constant factor, and so the corresponding notions of testability

are essentially equivalent. However, Lemma 13 suffices for our purposes.

Lemma 14. Let P C STRUC(7) be a property of relational structures which is
mapped by h to a property of hypergraphs that is testable with one-sided error.

Then, P is testable with one-sided error.

Proof (Lemma 14). Let P := h(P) be the hypergraph property which P maps to.

We show that the following is an e-tester for P with one-sided error. Let N > 1,
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0 > 0 be the constants of Definition 22 above for €. Assume that we are testing a

structure A € STRUC™(7) and recall that U = {0,...,n — 1}.

1. If #(A) < N, query the entire structure and decide exactly whether A € P.

2. Otherwise, repeat the following ¢(9) times.

(a) Uniformly select N elements and query the induced substructure.

(b) If it has P, continue. Otherwise, reject.

3. Accept if all of the induced substructures had P.

If A € P, then all induced substructures have P because P is hereditary and
the tester accepts with probability 1. Next, assume mrdist(A, P) > . We use
Definition 22 above to show the tester will find a witness for A ¢ P with probability
at least 2/3. By Lemma 13, hdist(A, P) > mrdist(A, P) > . We assumed h(P) is
hereditary, and so (by Theorem 7) it is testable in the sense of Definition 22. The
probability that a uniformly chosen N-element substructure does not have P is at
least 6. We use ¢(d0) to amplify the success probability from ¢ to 2/3.

0 Lemma 14

This completes the proof of the testability of Ramsey’s class (Theorem 5). All
properties expressible in Ramsey’s class are indistinguishable from instances of
F-colorability. Indistinguishability preserves testability and so it sufficed to show
that these instances are testable. All instances of F-colorability are hereditary
relational properties, which are testable by Theorem 6, which we reduced to the

statement by Austin and Tao [11].
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4.3 Summary

We proved the testability of two classes in this chapter. In Section 4.1, we used
model-theoretic techniques to prove testability for Ackermann’s class with equality
and explicitly constructed testers for each formula in the class. This result first
appeared in [38] with two-sided error, and the improved (i.e., one-sided) version
proven here will appear in [42].

In Section 4.2, we used a reduction to a strong result by Austin and Tao [11] to
prove testability for Ramsey’s class. This extends a result of Alon et al. [3| from
loop-free, undirected graphs to relational structures, and answers a question of
Fischer [20] (who asked whether the hypergraph properties expressible with prefix
3*V* are testable). This result first appeared in [39], and will also appear in [42].

It is interesting to consider the query complexities for these two classes. In
particular, our construction for Ramsey’s class gives a tremendous dependence on
e (towers of 1/¢). Improving the query complexity for Ramsey’s class is difficult,
and is closely linked to open problems in extremal (hyper)graph theory (see the

Conclusion in Chapter 6).
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Chapter 5

Untestable Classes

In the previous chapter, we saw that two large syntactic classes of first-order logic
are testable. However, there are also first-order properties that are not testable.

In this chapter, we prove that several classes are untestable.

5.1 Untestable Properties in [V?3, (0,1)]—

As mentioned in Subsection 1.1.1, Alon et al. 3] proved that there exists an
untestable property of undirected, loop-free graphs expressible with quantifier pre-
fix V123°. In this section, we simplify their untestable example and thereby show
that the classes [V33, (0,1)]=, [V?3V, (0,1)]=, [V3V2, (0,1)]= and [V3V3, (0,1)]= are
untestable. The focus on graphs is justified by recalling that monadic first-order
logic is testable.

We will improve on three of these prefixes in Section 5.2, where we prove that
there are untestable properties in [V3V, (0, 1)]—. However, we still need Theorem 8

for the prefix [v33, (0, 1)]= and we present it first due to its relative simplicity.
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The class [V33, (0,1)] (usually without equality) is well-known in the literature.
It is trivial to prove that this class does not have the finite model property. In
addition, Kolaitis and Vardi [45] showed that a 0-1 law does not hold for second-
order existential logic when the first order part is in this class (even without
equality). However, it is an essentially finite class (i.e., it can only express a finite
number of properties up to logical equivalence) and therefore decidable.

We will begin by defining property P, which is essentially the graph isomorphism
problem for undirected loop-free graphs encoded in directed graphs that may con-
tain loops. We will begin by showing in Lemma 15 that P is indistinguishable
from property Py (cf. Definition 25 below) which is expressible in any of the prefix
vocabulary classes mentioned in Theorem 8 below. We will then show that P is
not testable. Indistinguishability preserves testability and so this implies that Py

is also untestable, which will suffice to show the following theorem.
Theorem 8. The following prefix classes are not testable:

1. [vav3, (0,1)]=

2. [Vav?,(0,1)]=

3. [V?3v,(0,1)]=

4. [¥v33,(0,1)]=

We define property P as follows. First, a graph that has property P must consist
of an even number of vertices, of which exactly half have loops. The subgraph
induced by the vertices with loops must be isomorphic to that induced by the

vertices without loops, ignoring all loops, and there must be no edges connecting
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the vertices with loops to those without loops. Finally, all edges must be undirected
(i.e., an edge from x to y implies an edge from y to z). We refer to such undirected

edges as paired edges.
Definition 24. A graph G € G™ has P iff the following conditions are satisfied:
1. For some s, n = 2s.

2. There are exactly s vertices x satisfying E(x,x). We will refer to the set of

such vertices as Hy and to the remaining s vertices as Hs.

3. The substructure induced by Hy is isomorphic to that induced by Hy when all
loops are removed. That is, there is a bijection f from Hy to Hy such that

for distinct x,y € Hy, it is true that G = E(x,y) iff G |E E(f(x), f(y)).
4. There are no edges between H, and Hs.
5. All edges are paired.

Graph isomorphism is not directly expressible in first-order logic, and so we
use the following encoding where the bijection f is made explicit by adding n
edges between H; and Hs. This of course reduces the complexity from the level
of finding an isomorphism to the level of checking a given one, in order to achieve
first-order expressivity. However, it maintains hardness for testability: essentially,

our samples are too small to see any part of the given isomorphism.
Definition 25. A graph G' € G" has Py iff the following conditions are satisfied:

1. For every vertex x, if E(x,x) then there is an edge from x to exactly one y

such that = E(y,y).

66



5.1. UNTESTABLE PROPERTIES IN [¥*3, (0,1)]—

2. For every vertex x, if = FE(x,x) then there is an edge from x to exactly one y

such that E(y,vy).
3. For all vertices x and y, E(x,y) iff E(y,x).

4. For all pairwise-distinct wvertices xi,xs,x3, x4, if E(xy,21), —FE(x2,x2),

E(x3,x3), ~"E(x4,14), E(x1,22) and FE(x3,14), then E(xy,x3) iff E(xe,z4).

Expressing Conditions 1 and 2 as “there is at most one such y” and “there is
at least one such y,” Py can be expressed in each of the classes [V3V3, (0, 1),
V32, (0, 1)), [¥23Y, (0, 1))- and [#3, (0, 1)]-.

For example, in the class [V?3, (0,1)]=, we can express P; by

Ve VgV, ;|
((E(z1,21) ¢ ~E(22,22)) A E(z1,22)) A
[((E(z1,21) <> =E(x3,23)) A (E(23,23) > E(24,24)) A
E(zy,33) N E(z,34)) = 23 =24] A
(E(z1,23) = E(zs,31)) A
([E(z1,21) A E(xs, 3) A w1 # 33 A ~E(4, 74) A E(23,74)] —

(=E(2, 22) A E(z1,22) A (E(21, 13) < E(2, 24))) )] .

To express P; with prefixes V23V and V3V?, it suffices to reorder the quantifiers
(keeping x5 existential and x; first). The prefix V3V3 requires a few additional
modifications.

The two properties P and Py differ only in the edges which make the isomor-

phism explicit in Py but are forbidden in P. There are at most n such edges, none
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of which are loops. This suffices to prove the following.
Lemma 15. Properties P and Py are indistinguishable.

Proof (Lemma 15). Let € > 0 be arbitrary and let N. = ¢7!. Assume that G
is a structure that has property P and that #(G) > N.. We will show that
mrdist(G, Py) < e.

Structure G has P and so there is a bijection f satisfying Condition 3 of Def-
inition 24. For all z € Hy, we add the edges E(z, f(z)) and E(f(x),z) and call
the result G’. Property Py differs from P only in that the isomorphism is made
explicit by the edges connecting loops and non-loops, and so G’ has Py. Indeed, it
satisfies Conditions 1 and 2 of Definition 25 because G had no edges between loops
and non-loops and we have connected each to exactly one of the other, following
the bijection f. Next, G’ satisfies Condition 3 of Definition 25 because G satisfied
Condition 5 of Definition 24 and we added only paired edges. Finally, G’ satisfies
Condition 4 of Definition 25 because the edges between loops and non-loops follow
the isomorphism f from Condition 3 of Definition 24.

We have added exactly n (directed) edges, none of which are loops and so we
have mrdist(G, P) < mrdist(G, G') = 0+ n/n* < &, where the inequality holds for
n > N.. The converse is analogous; given a G that has property Py, we simply
remove the n edges between loops and non-loops after using them to construct the

isomorphism f. [JLemma 15

Properties P and Py are indistinguishable. We saw in Section 3.3 that testability
is preserved by indistinguishability (cf. Theorem 7) and thus showing that P is

not testable suffices to prove that Py is not testable (and therefore Theorem 8).
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The proof closely follows that of Alon et al. [3]. The crucial lemma is the following,
a combination of Lemmata 7.3 and 7.4 from Alon et al. [3]. We use county(7T) to
refer to the number of times that a graph 7" occurs as an induced subgraph in H.
A bipartite graph is a graph where we can partition the vertices into two sets U,
and U, such that there are no edges “internal” to the partitions. That is, for all

x1,y1 € Uy and x5,y € Uy, ﬂE(%JJl) and ﬂE(iU%yz)-

Lemma 16 (Alon et al. [3]). There exists a constant € > 0 such that for every
D € N, there ezist two undirected bipartite graphs H = H(D) and H' = H'(D),

and a number t satisfying the following conditions.

1. Both H and H' have a bipartition into classes Uy and Us, each of size t.

2. In both H and H', for all subgraphs X with size t/3 < #(X) < t, there are
more than t?/18 undirected edges between X and the remaining part of the

graph.
3. The minimum degree of both H and H' is at least t/3.
4. dist(H,H') > €.
5. For all D-element graphs T, county(T') = county: (7T').

Lemma 16 is due to Alon et al. [3|, although they only sketch the proof. We

include a complete proof here for completeness.

5.1.1 Proof of Lemma 16

We follow the proof outlined by Alon et al. [3] and begin with their proof of the

following simple lemma.
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Lemma 17 (Alon et al. [3]). There exist constants € and N such that every graph
H with n > N (labelled) vertices is e-far from all but at most 27*/5 other graphs

with the same vertex set.

Proof (Lemma 17). Choose an & < 1/2 such that (¢)° < 21 and an N > e~*
such that n™ < 27°/%0 for n > N. The number of graphs that are less than e-far

from a given H with n > N vertices is at most

n 3 (%) 1)

(a_l) + (“21) inductively to (;;22). A simple inductive

We apply the identity (Z) 1

proof shows that applying this identity once to each term, repeating for a levels,

2

gives (22) = S0 () (2559 = L), and so

(o) = r =2 (1) (577 52

Recalling that ), (T;) = 2", there are 2" > en? total “terms” in the summation.
Each term in the summation Zfzz ((§>) can therefore be paired with a term from

(5.2) that upper-bounds it. Combining with (5.1), we see that the number of

graphs that are less than e-far from H is less than

as desired. O Lemma 17

Next, we show that most (sufficiently large) bipartite graphs satisfy Conditions 2

and 3 of Lemma 16. We use the following statement of Chernoff bounds (see
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Appendix A of Alon and Spencer [10]);

Pr[X < a] < Ele*]eM, (5.3)

where ) is chosen to optimize the bound, and also the following lemma.

Lemma 18 (Lemma A.1.5 in Alon and Spencer [10]).

A -A
e cosh(\) < /2. (5.4)
Lemma 19 (Alon et al. [3]). There exists an N’ such that for n > N', at least
%2"2 of the bipartite graphs with a given (labeled) bipartition Uy, Uy where |Uy| =

|Us| = n satisfy both of the following conditions.
(191) The minimum degree is at least n/3.

(192) For every subset X of Uy UUsy with size n/3 < |X| < n, there are more than

n?/18 edges between X and (U; U Uz)\ X.

Proof (Lemma 19). We let G be a random bipartite graph with a given, labeled
bipartition Uy, Us chosen in the following way. Each possible edge (u,v) € Uy x Uy
is placed independently and uniformly with probability 1/2. There are n? possible
edges, and so each of the on’ possible such bipartite graphs is generated with
equal probability. The probability of G satisfying (19.1) and (19.2) above is (by
definition)

|{H | H is such a graph that satisfies (19.1) and (19.2)}|
on?
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We want a lower-bound on the number of such graphs, or equivalently a lower-
bound on Pr[G satisfies (19.1) and (19.2)]-2"" that is greater than %2“2. It suffices
therefore to show that this probability is at least 1/2. Using the union bound,

Pr[G satisfies (19.1) and (19.2)] >
1 — Pr[G does not satisfy (19.1)] — Pr[G does not satisfy (19.2)] .

We will show in Claims 1 and 2 that this is at least 1 — o(1) > 1/2, where the
inequality holds for sufficiently large N’. We will let U = U; U U, be the set of all

vertices.

Claim 1. Pr[G does not satisfy (19.1)] = o(1).

Proof (Claim 1). Let deg(v) be the degree of a vertex v. By the union bound,

Pr[G does not satisfy (19.1)] < Z Pr[deg(v) < n/3].

vel

Let N, be an “indicator” variable for the event that there is an edge F(u,v)

which is normalized to take the following values,

-1, if =E(u,v);

1, if E(u,v).

Then, deg(v) < n/3 iff

Y, := > Nuy < =13,
{uluety if vels, uet, if vetn}

72



5.1. UNTESTABLE PROPERTIES IN [¥*3, (0,1)]—

and so ) ., Prdeg(v) < n/3] = > ., Pr[Y, < —n/3]. We apply (5.3) and

velU

Lemma 18, and so

PI“[YU < _n/3] < E[e—AYU]e—)\n/S _ Cosh()\)e_)‘”/3 < 6)\2n/2—/\n/3'

Minimizing the bound by setting A = 1/3 gives
Pr[G does not satisfy (19.1)] < (2n)e™™/® = o(1),

as desired. [ Claim 1
Claim 2. Pr[G does not satisfy (19.2)] = o(1).

Proof (Claim 2). By the union bound,

Pr[G does not satisfy (19.2)] < Z Pr[G violates (19.2) with X].
{XIXCUn/3<|X[<n}

(5.6)
Let a == [ X NUy|, b:=|XNUs|,7i:=a+b=|X|. Asin (5.5), we let Ny,
be a normalized indicator for the event E(u,v). Let Yx 1= > ¢, e v e x) Nuo-

Then, G violates (19.2) with X iff Yy < —i(2n — i) +n?/9. Using again (5.3),

Z Pr[G violates (19.2) with X] =

{X|XCUn/3<|X|<n}

> Pr[Yx < —i(2n — i) +n?/9]

{X|XCUn/3<|X|<n}

Z E[e—/\YX]6)\(—1'(2n—i)+n2/9) _
{X[|XCUn/3<|X|<n}

Z H E[e_/\Nuv]e)\(—i(Qn—i)+n2/9) . (57)

{X[XCUn/3<|X|<n} {u,vlue X veU\X}

IN
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We can divide the product into four cases, [, ,jucx et x) Ele Nw] =

|1 I ¢

{uw|lueXnU;,weli \X } {u,wlue XNUz2,veU2\ X }
H €>\ + 6_)\ H 6)\ + €_>\
2
{uw|lueXNUy,welz\ X} {uw|lueXNUsz,velU \ X }

Recalling Lemma 18 and combining with (5.7), Pr[G does not satisfy (19.2)] <

2 . . n2
Z eA(a(nfa)+b(nfb))+/\7(a(”*b)er(”*“))Jr)‘(7Z(2n71)+7) . (58)

{XCUIn/3<|X|<n}

There are at most (")(.".) choices of X with size ¢ when a = |X N U;| and

b=1i—a=|XNU, and so after simplifying, (5.8) is at most

52 3 (1), Yot
a 1—a

i=[n/3] a=0

Using the simple bound (Z) < (%)k, we get that (5.9) is at most

n i
Z Z€i+aln(n/a)+(i—a) ln(n/(i—a))—l—)\(2ai+n2/9—2a2—in)—‘r%(2a2+in—2ai) ) (510)

i=[n/3] a=0

Let us consider 2ai + n*/9 — 2a® — in. If a > 5n/6, then

2 2 25
2@2’—1—%—2a2—in§2in+%—ﬁn2—m
< —inQ =-0(n?).
=718

If a < 5n/6, then the maximum of 2ai + n?/9 — 2a® — in occurs at a = i/2.
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Therefore,
n? n? 2 2 n?
20i +— —2a° —in<i’+ ————in=—+— —in
9 - 9 2 2 9
n? n? n? n?
<—4 ———=——=-0(n?,
1 9 3 6 ()

because the maximum occurs at the boundary ¢ = n/3. Applying these bounds,

(5.10) is at most

Z Zei+aln(n/a)+(7j—a) ln(n/(i—a))+/\<—n2/6)+¥(2a2+in—2ai). (511)
i=[n/3] a=0

Choosing the non-optimal A = 1/4/n and looking only at asymptotics, we see from

(5.11) that Pr[G does not satisfy (19.2)] <

Z ZeO(n)+O(nlnn)f®(n3/2)+0(n) _ O(n2)€f@(n3/2) = o(1).

i=[n/3] a=0

O Claim 2
The two claims combine to give the lemma. [JLemma 19

We are now ready to complete the proof of Lemma 16. We let ¢’ be the ¢ of
Lemma 17, and choose a sufficiently large s = 2n > max(N,2N’) where N and N’
are from Lemmata 17 and 19 respectively. There are at most E := 2(%) graphs
on D vertices and each appears at most s” times as an induced subgraph in a
graph on s vertices. An “appearance count” for a graph is an 2(2)—tuple giving, for
each of the possible graphs on D vertices, the number of appearances as an induced

(SD)E — 2DElogs

subgraph. There are therefore at most many distinct appearance

counts (tuples). By Lemma 19, there are at least %2”2 bipartite graphs satisfying
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the conditions of that lemma, and

12712 _ 252/471 _ 252/2071252/5 > 2DElog5232/57

where the inequality holds for sufficiently large s.

There are at most 2PF1°%¢ distinct appearance counts and so there must be some
appearance count shared by more than 25/5 of the above graphs. By Lemma 17,
there must be two such graphs (satisfying the conditions of Lemma 19 and with
the same appearance count) that are e-far from each other. This completes the

proof of Lemma 16.

5.1.2 Completing the Proof of Theorem 8

It is worth noting that the above is for undirected, loop-free graphs. However,
bipartite graphs never have loops and “undirected” in our setting results in paired
edges. It is easy to show that if two structures agree on the counts for all size D
induced subgraphs, they agree on the counts for all induced subgraphs of size at

most D. This is done by applying the following lemma inductively.

Lemma 20. Let H and H' be two graphs, both of size s, and let 2 < D < s. If
for every graph T of size D, county(T') = county (T, then for every graph T' of

size D — 1, county (T") = county (1").

Proof (Lemma 20). Assume H and H' satisfy the initial conditions of Lemma 20,
but that there exists a T” of size D — 1 such that county(7”) # county:(T"). Let

C ={T | #(T) = D and T contains 7" as an induced subgraph}.
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Note that ), county (1) county(7”) = county (77)(s — D +1) and likewise for
> rec county (1) countp(77). We assumed that H and H' satisfy county (1) =
county (T') for T' € C, but county(T") # county/ (T"), giving a contradiction and

the Lemma follows. [J Lemma 20
Lemma 21. Property P is not testable.

Proof (Lemma 21). Assume that P is testable. Then, there exists an e-tester for

e:=min{e'/8,1/144},

where ¢’ is the constant from Lemma 16 above. We can assume without loss of
generality that the tester queries all edges in a random sample of D = D(e)
vertices.

Consider the graph G which contains two copies of H = H(D) from Lemma 16,
where one of the copies is marked by loops on each vertex and there are no edges
between the copies. This graph has property P, and so the tester must accept
it with probability at least 2/3. Next, consider the graph G’ which contains one
copy of H marked by loops and one copy of H', again where there are no edges
between the two (induced) subgraphs. Graph G’ is such that dist(G’, P) > ¢ (cf.
Lemma 22 above) and so it must be rejected with probability at least 2/3. Both G
and G’ consist of two bipartite graphs, each of which has a bipartition into two
classes of size t, and so #(G) = #(G') = 4t.

However, G and G’ both contain exactly the same number of each induced
subgraph with D vertices. This is because both have loops on exactly half of

the vertices and the two halves are not connected by any edges. Some of the D
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vertices must be in the first copy of H and the others in the second H (resp. H’).
By Lemma 20 above, H and H’ contain the same number of each induced subgraph
with size at most D. The tester therefore obtains any fixed sample with the same
probability in G and G’ and is unable to distinguish between them. Hence, it is
unable to accept G with probability 2/3 and also reject G' with probability 2/3.

This completes the proof, taking into account Lemma 22 below. [JLemma 21

Recall that testing is easiest under the dist definition, and so Lemma 21 also

implies P is not testable under other definitions.

Lemma 22. The graph G’ is such that dist(G', P) > ¢.

Proof (Lemma 22). Suppose that dist(G’, P) < e. Then, there is an M € P such
that dist(G’, M) < . Let M; be the set of vertices with loops in M and let M,
be the set of vertices without loops. We will refer to the subgraph induced by the
vertices with loops in G’ as H and to that induced by those without loops as H'.
Without loss of generality, assume that [MyNH| > |MyNH'|. Then, |M;NH| > t.
We let a; be the set M;\H and ap be My\H'. Note that |a;| = |asg| and |ay]| <t
because |M; N H| > t.

Informally, M is formed by moving vertices a; from H’ to H and vertices am
from H to H’, and then possibly making other changes. There are three cases,

which we will consider in order.

1. |041’ =0.

3. 0< |OZ1| < t/?)
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If |op] = 0, then we can construct M from G’ without exchanging vertices
between H and H’, and in particular, construct H’ from H (ignoring loops), by
making less than £(4¢)? modifications. However, dist(H, H') > ¢ by Lemma 16
above and so this must require at least €’(2¢)? modifications. By definition, ¢ < ¢’/4
so €(4t)? < €/(2t)%. The first case is therefore not possible.

Recall that |aq| < t. If |ay| > t/3, then by Condition 2 of Lemma 16 there exists
at least t2/18 undirected edges between oy and H'\a; and between as and H\aw.
All of these edges must be removed to satisfy P because each would connect a
vertex with a loop to a vertex without a loop. Therefore,

4% /18
. ! >
dist(G', M) > (0t

= 1/72.

But, € < 1/72 and so the second case is not possible.

Therefore, it must be that 0 < |a;| < t/3. Here, we will show that it must be
the case that a; and ay are relatively far apart. If they are not far apart, then it is
possible to modify them instead of swapping them. This essentially results in the
first case considered above. Condition 3 of Lemma 16 requires that each vertex
has relatively high degree. These edges can be either internal to «; (resp. ag) or
connecting oy (az) with H'\«a; (H\w). If a1 and «ay are relatively far apart, then
we will see that this forces too many edges “outside” of a; (resp. az), resulting in
a similar situation to the second case considered above.

We have assumed that dist(G’, M) < e and that we can construct M from G’
by making less than e(4t)? modifications if we move a; to H and as to H'. This

entails the following modifications.
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1. Removing all edges connecting ay to H'\a;.
2. Removing all edges connecting s to H\as.
3. Adding any required edges between «; and H\s.
4. Adding any required edges between ay and H'\ay.

5. Changing oy, as, H\as and H'\ay to their final forms.

We can assume that the total number of modifications is less than e(4¢)%. Tt
must be that dist(ay, as)|ay|?/(4t)? 4+ > &' /4. If this does not hold, then we could
first modify oy to make it identical to ap and then make H’ identical to M,. Next,
M, is identical to M, which we could make identical to H. This would require
less than &’(2t)? modifications, which would violate Lemma 16. Therefore,

16(e’/4 — e)t?

dist(ay, o) > P

(5.12)

If both a; and as are complete graphs then they cannot be far apart. Given
that all vertices in «y (g is analogous) have degree at least ¢/3, then there must
be at least

| (t/3 — o] + 1) + 2

edges connecting oy to H'\ a1, where 7 is the number of edges internal to «; that
must be omitted to satisfy (5.12). The simple lower bound on r, the number
of edges needed for two graphs with at most r edges to be dist(ay, ay)-far, that
follows from dist(ay,ay) < 2r/|a;|? is sufficient. Finally, combining this with
Inequality (5.12) yields

r > 8(e'/4—e)t?. (5.13)
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The number of edges connecting oy to H'\«ay is therefore, by (5.13), at least
loa|(t/3 — |an| + 1)+ 16(¢' /4 — e)t* > 16('/4 — e)t>.

All of these edges must be removed to move oy (resp. aw), and so

. 16(e'/4 — e)t? g’
dist(G/ M) > —e/2et e
ist(G', M) > (112 1 ¢

We have defined ¢ < ¢’/8 and so dist(G’, M) > ¢, a contradiction.

The cases are exhausted and so dist(G’, P) > ¢ as desired. O Lemma 22

5.2 The Kahr-Moore-Wang Class with Equality

In Section 5.1, we saw an untestable first-order property that is an encoding of
graph isomorphism similar to the untestable property of Alon et al. [3]. However,
expressing graph isomorphism seems to require us to use four quantifiers, as we’d
like to say that some edge is present if some other (in general, disjoint) edge is
present. In this section we prove the untestability of a prefix with length three,
using a variant of graph isomorphism that is closely related to Boolean function
isomorphism.

The main result of this section is Theorem 9.

Theorem 9. The prefiz class [V3V, (0,1)]= is not testable.
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5.2.1 From Four to Three Quantifiers

We begin by introducing the idea that allows us to remove one quantifier from the
prefix while maintaining the hardness of our property for testing. Recall that graph
isomorphism is generally hard for testing (see, e.g., Fischer and Matsliah [21]). In
fact, restricting the properties to checking an explicitly given isomorphism between

undirected, bipartite graphs (see Figure 5.1(a)) maintains hardness for testing.

) A graph with P, ) A graph with P, (c) A graph with Py

Figure 5.1. Properties B, P, and Py

Sharing one of the partitions (see Figure 5.1(b)) would seem to remove the need
for four quantifiers. The resulting property is perhaps closer to a variant of function
isomorphism, e.g., for functions f,g: [n] — {0,1}" where bit ¢ of f(j) is 1 if there
is an edge from 75 in the leftmost partition to ¢ in the middle partition and likewise
for g(j) and the right partition. This property is not first-order expressible, but
there is a somewhat tedious first-order encoding that is similar (see Figure 5.1(c)
and the formula in Subsection 5.2.2 below).

This connection with function isomorphism allows us to leverage recent work
on the testability of (Boolean) function isomorphism and use recent ideas and

techniques from Alon and Blais [2] to prove Lemma 23.
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5.2.2 Proof of Theorem 9

We begin by outlining the proof. First, we define Py, a property expressible
in the class [V3V, (0, 1)]= which, as described above, is in some sense a somewhat
tedious but first-order expressible variant of checking (explicit) isomorphism of
undirected bipartite graphs in tripartite graphs. We then define a variant P, in
which the isomorphism is not explicitly given and we must test whether there exists
some suitable isomorphism. Although this increases the complexity of deciding the
problem from checking an isomorphism to finding one, it does not change hardness
for testing. We will show that P, and P; are indistinguishable and so P is testable
iff Py is testable. Finally, we prove directly that P, is untestable, even with o(y/n)

queries, using an argument based on a recent proof by Alon and Blais [2].

Proof (Theorem 9). We begin by defining Py. Formally, it is the set of graphs sat-

isfying the following conjunction of four clauses (see Figure 5.1(c) for an example).

VedyVz : {(0E(z,x) AN=E(z,2) Nx # z) — E(z, 2))

A (E(z,2) = (E(z,y) AN =E(y, y) N(-E(z,2) A E(z,2)) =y = 2]))
A (mE(z,2) = (E(y,2) A E(y,y) AN(E(2,2) N E(z, 7)) = y = z]))
A (E(z,2) NE(z,2)) = [2E(y,y) A E(x,y) A (E(2, 2) < E(y,2))]) }

A graph satisfies this formula if the following conditions are all satisfied.

1. The nodes without loops form a complete subgraph.

2. For every node x with a loop, there is exactly one y without a loop such that

there is an edge from x to y.
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3. For every node y without a loop, there is exactly one x with a loop such that

there is an edge from x to y.

4. For all nodes z,z with loops, and y the unique node without a loop such

that E(z,y), it holds that E(z, z) iff E(y, z).

Property P, below is similar to Py, except that the isomorphism is not explicitly

given.
Definition 26. A graph G = (V, E) has P, if it satisfies the following conditions.

1. There is a partition' Vi, Vo C V such that |Vi| = |Va|, there are loops

(E(z,x)) on all x € Vi and no loops (—E(x,x)) for all x € V5.
2. The nodes without loops form a complete subgraph.
3. There are no edges from a node with a loop to a node without a loop.

4. There exists a bijection b: Vi — V4 such that if x, z have loops, then E(z,z)

iff E(b(x), z).
It is not difficult to show that properties Py and P» are indistinguishable.

Claim 3. Properties Py and P, are indistinguishable.

Proof (Claim 3). Let € > 0 be arbitrary and let N. = ¢!, Assume that G has
property P and that #(G) > N.. We will show that mrdist(G, Py) < e.

Graph G has P, and so there is a bijection satisfying Condition 4 of Definition 26.
We therefore add the edges E(i,b(i)) making the isomorphism (from V; to V3)

explicit. The resulting graph G has Py.

V1, Va partition V if ViNnVa =0 and ViUV, = V.
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We have made exactly n/2 modifications, all to non-loops, and n — 1 > N, so
mrdist(G, Py) < mrdist(G,Gy) =1/2(n — 1) < e.

The converse is analogous; given a G that has Py, simply remove the n/2 edges
from loops to non-loops after using them to construct a suitable bijection b.

J Claim 3

Properties Py and P, are indistinguishable and so (by Lemma 7), it suffices to
show that P, is is untestable. Lemma 23 below is stronger than necessary, and
actually implies a Q(y/n) lower bound for testing Py per the discussion following

Lemma 7. [0 Theorem 9
Lemma 23. Fiz 0 < e < 1/2. Any e-tester for Py must perform Q(y/n) queries.

Proof (Lemma 23). The proof is via Yao’s Principle (cf. Principle 1), and so we
define two distributions, Dno and Dyes and show that all deterministic testers have
an error-rate greater than 1/3 for property P» when the input is chosen randomly
from Dpo with probability 1/2 and from Dyes with probability 1/2.

In the following, we consider a distribution over graphs of sufficiently large
size 2n, and an arbitrary fixed partition of the vertices into V; and V5 such that
|Vi| = |Va| = n (for example, let the vertices be the integers V' := [2n], V) := [n]
and V5 := V\1).

We begin with Dpg, defined as the following distribution.
1. Place a loop on each vertex in V; and place no loops in V5.

2. Place all edges (except loops) in V5 x V5.
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3. Place each possible edge (except loops) in V; x V] and V5 x V] uniformly and

independently with probability 1/2.

That is, Dno is the uniform distribution of graphs (with this particular partition)
satisfying the first three conditions of P.

Next, we define Dyeg as the following.

1. Choose uniformly a random bijection 7: Vi — V5.

2. Place a loop on each vertex in Vi and place no loops in V5.

3. Place all edges (except loops) in V4 x V5.

4. For each possible edge (i,7 # i) € Vi x Vi, uniformly and independently
place both (i,7) and (m(7), ) with probability 1/2 (otherwise place neither).

It is easy to see that Dyes generates only positive instances. Next, we show that

Dno generates negative instances with high probability.

Lemma 24. Fiz 0 < e < 1/2 and let n be sufficiently large. Then,

Pr [dist(G,P,) < ¢] = o(1).

Proof (Lemma 24). Dno is the uniform distribution over graphs of size 2n with a
particular partition satisfying the first three conditions of P,. Let G. be the set
of graphs G’ of size 2n satisfying these conditions and such that dist(G', P,) < e
(regardless of partition).

Counting the number of such graphs shows

[e2n?]

2
|G€‘ S (2n) 2n(n_1)n' (2n ) S <2n> 2”(”-1)n!2H(e)2n2 7
n Z i n
=0
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where H(e) := —cloge — (1 — €)log(l — ¢) is the binary entropy function (cf.
Lemma 16.19 in Flum and Grohe [23] for the bound on the summation).
Distribution Dpg produces each of gn(n—1)gn? graphs with equal probability, so

2
Pr [dist(G,Py) <] < 1%l < (")H!QH(@W Jor?

47n) 2H(6)2n2

/Tn2n?

Q

= o(1).

The approximation is asymptotically tight, which suffices. [1Lemma 24

We have shown that Dyes generates only positive instances and that (with high
probability) Dno generates instances that are e-far from P,. Next, we show that

(again, with high probability) the two distributions look the same to testers making

only o(y/n) queries.

The proof is similar to a proof by Alon and Blais [2]. We begin by defining two
random processes, Pno and Pyes, which answer queries from testers and generate
instances according to Dno and Dyes, respectively.

Process Ppo is defined in the following way.
1. Choose uniformly a random bijection 7: V; — V5.
2. Intercept all queries from the tester and respond as follows.

(a) To queries E(i,7) with i € V}: respond 1.
(b) To queries E(i,i) with ¢ € V5: respond 0.
(c¢) To queries E(i,j) with ¢ € V; and j € Va: respond 0.

(d) To queries E(i,j) with i # j € V5: respond 1.
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(e) To queries E(i,7) with ¢ # j € Vi: quit if we have queried E(7 (i), ),

otherwise respond 1 or 0 randomly with probability 1/2 in each case.

(f) To queries E(i,j) with i € V5 and j € V;: quit if we have queried
E(n~1(i), ), otherwise respond 1 or 0 randomly with probability 1/2

in each case.

3. When the process has quit or the tester has finished its queries, complete
the generated instance in the following way. First, fix the edges that were
queried according to our answer. Next, place loops on each vertex in Vi, no
loops in V3, all non-loop edges in V5 and no edges from V; to V5. For each
remaining possible edge, place it (uniformly, independently) with probability

1/2, ignoring .

We define Pyes in the same way, except for the final step. When Pyeg quits or the
tester finishes, it fixes the edges that were queried according to its answers, and
also fixes the corresponding edges (when relevant) according to w. More precisely,
for each fixed E(i,j) with ¢« # j € Vi, we also fix E(m(i), ) and for fixed E(i, )
with ¢ € Vi, j € V4, we also fix E(r~1(i), j), in both cases the same as our response
to E(i,7) (not randomly). The remaining edges are placed as in Ppo.

Note that Pno generates instances according to Dno and Pyes generates in-
stances according to Dyes. In addition, Pyes and Pno behave identically until
they quit or answer all queries. In particular, if a tester does not cause the process
to quit, the distribution of responses of its queries is identical for the two processes.
We show that, with high probability, a tester that makes o(y/n) queries does not

cause either process to quit.

88



5.8. UNTESTABLE CLASSES WITHOUT EQUALITY

Lemma 25. Let T be a deterministic tester which makes o(\/n) queries, and let

T interact with Pyes or Ppo. In both cases,

Pr [T causes the process to quit] = o(1).

Proof (Lemma 25). The condition causing the process to quit is identical in Pyeg
and Ppo. The probability that any pair of queries E(7,7) and E(7', ;') cause the

process to quit is at most

Pr[i' = m(i) or i = 7(')] < - =1/n.

The tester makes at most o(y/n) queries and so
Pr [T causes the process to quit] < o(v/n)*0O(1/n) = o(1).

O Lemma 25

Any deterministic tester 7' which makes o(y/n) queries can only distinguish
between Dyeg and Dno with probability o(1), but it must accept Dyes with prob-
ability 2/3, and reject Dpo with probability 2/3 — o(1). It is impossible for T" to

satisfy both conditions, and the lemma follows from Principle 1. [1Lemma 23

5.3 Untestable Classes without Equality

We now consider classes without equality. Of course, any prefix class that is

testable with equality remains testable without equality (because we are not forced
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to use equality). However, we now show that there are some untestable properties

that are expressible in first-order logic even without equality.

Theorem 10. There are properties in V3V, (0,1)] that are not Tp,.-testable, even

given o(y/n) queries.

Note that Theorem 10 is restricted to 7,,-testability. It is trivial to modify
the proof for 7T,-testability of [V3V, (1,1)]. It remains open whether this class is

T-testable, however we suspect that [V3V, (0, 1)] is not T-testable.

Proof (Theorem 10). The proof is similar to the proof of Theorem 9. We will begin
by defining a property P that is expressible in our class. We will then define a
property P which is indistinguishable from Py, and use Yao’s Principle to show
that P is not 7,,,-testable.

A graph has property Py if it satisfies the following conditions.

1. For every x with a loop, there is an outgoing edge to at least one y without

a loop.

2. For every x without a loop, there is an incoming edge from at least one y

without a loop.

3. There are no edges between vertices without loops.

4. For every x with a loop, there is an edge to at least one y without a loop
such that for all z with loops, the following holds. There is a directed edge

from y to z iff there are an odd number? of directed edges between x and z.

2There is an odd number of edges between x and z if there is a directed edge from z to z or
from z to x, but not both. Note that a loop is counted as an even number of edges.
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5. For every x without a loop, there is an incoming edge from at least one y
with a loop such that for all z with loops, the following holds. There is
a directed edge from x to z iff there are an odd number of directed edges

between y and z.

More formally, Py is the set of graphs that satisfy the following formula.

Vedyvz: {(E(z,r) = (-E(y,y) A E(z,y)))

A (mE(z,z) = (E(y,y) A E(y, ©)))

A (mE(z,x) N—E(z,2)) = ~E(x, 2))

A ((E(z,2) N E(z,2)) = (E(z,2) @ E(2,7)) © E(y,2)))

A (0E(z,2) NE(2,2)) = (E(y, 2) @ E(z,y)) ¢ E(,2))) }

Next, we define a property P that we will show to be indistinguishable from P.

A graph has property P if it satisfies the following conditions.

1. There is a partition of the vertices into (non-empty) V3, V5.

2. All vertices in V4 have loops and no vertices in V5 have loops.

3. There are no edges in V5 x V5.

4. There exist functions f: Vi — V5 and ¢g: Vo — V; satisfying the following.
For all z, z € Vi, there is an edge from f(x) to z iff there are an odd number
of directed edges between x and z. For all x € V, and z € Vi, there is an
edge from z to z iff there are an odd number of directed edges between g(x)

and z.
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It is not difficult to show that P and P; are indistinguishable.

Lemma 26. Properties P and P; are indistinguishable.

Proof (Lemma 26). Let G be graph with property P; and let ¢ > 0 be arbitrary.
Then, G also has property P, that is mrdist(G, P) = 0. In the other direction, if
G has property P, then we can satisfy property P by adding at most O(n) (non-
loop) edges from z to f(z) and g~ *(y) to y. Thus, mrdist(G, P;) < O(n)/O(n?) =

o(1) < € for sufficiently large graphs. [0 Lemma 26

Indistinguishability preserves testability (cf. Lemma 7) and so it suffices to show
that P is untestable. Lemma 27 below is stronger than necessary and actually
implies a (y/n) lower bound for testing Py per the discussion following Lemma 7

in Section 3.3. O Theorem 10

Lemma 27. There is an 0 < ¢ < 1/2 such that any Tp,-style e-tester for P must

perform Q(y/n) queries.

Proof (Lemma 27). The proof is via Yao’s Principle (cf. Principle 1) and so we
must define a distribution of inputs and show that all deterministic e-testers have
an error rate greater than 1/3 for P on inputs from the distribution. For our
distribution, we will draw from a distribution Dpo with probability 1/2 and from
a distribution Dyes with probability 1/2.

In the following, we consider distributions over graphs with sufficiently large
vertex set [2n| and an arbitrary fixed partition of the vertices into V3 and V;, such
that |V3| = V2| = n.

We begin with Dpg, defined as the following distribution.
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1. Place loops on all vertices in V] and no loops in V5.
2. For each ordered pair in Vj x V4, place a directed edge with probability 1/2.

3. For each unordered pair (7,5 # i) € V; x Vi, with probability 1/2 place no
edge, and with probability 1/2 place a single directed edge, from i to j if

1 < j and from j to 7 if j <.

4. For each ordered pair in V5 x V7, with probability 1/2 place the directed edge

and with probability 1/2 do not.

Note that Dpg is the uniform distribution of graphs that satisfy the following

conditions.
1. The vertex set is [2n] and the vertices with loops follow the given partition.

2. There are no undirected edges between vertices with loops (when a loop is

not considered an undirected edge).
3. There are no edges between vertices without loops.
4. All directed edges (i, 7) between vertices with loops satisfy ¢ < j.
Next, we define Dyes.
1. Place loops on all vertices in V; and no loops in V5.
2. For each ordered pair in V; x V4, place a directed edge with probability 1/2.

3. Choose uniformly a random bijection 7: V; — V5.
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4. For each unordered pair in (i,j # i) € V; x V4, with probability 1/2 do the
following. Place directed edges (7(7), ) and (7(j),7), and then place either
(i,7) (if i < j) or (4,7) (if j < i). Otherwise, do not place any edges right

now.

Distribution Dyes generates only positive instances for P. Now, we show that

with high probability, Dno generates instances that are e-far.

Lemma 28. Let € > 0 be sufficiently small and n be sufficiently large. Then,

GNPJ)Urno mrdist(G, P) <¢] =o(1).

Proof (Lemma 28). Distribution Dpo is the uniform distribution over graphs of

size 2n with a fixed partition V7, V5 satisfying the following.
1. All vertices in V; have loops and no vertices in V5 have loops.
2. There are no undirected edges between vertices with loops.
3. There are no edges between vertices without loops.
4. All directed edges (x,y) between vertices with loops satisfy = < y.

We want a small upper-bound on the probability of a graph being drawn from
Dno that is not e-far from P. Dpg is the uniform distribution over a certain class

of graphs, and so this probability is

’{G ’ G~ Dno,mrdist(G,P) < 8}‘
{G [ G ~ Dno}| '

The number of distinct graphs produced by Dyg is 9(5)92n? — 92.5n-n/2
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Let G, be the set of graphs with vertices [2n] that have property P and are

not e-far from all graphs in Dpg. Then,

|G2n| ZL457L2J ( ) )

92.5n%—n/2

Pr [mrdist(G, P) <¢] <

G~Dno

(5.14)

Any graph G that is not e-far from all graphs in Dpo must have loops on
n—en < j <n—+en vertices. Therefore, |Ga,| <

20\ (s 2n
> < , )4(%)2“2"—3‘);'2"—1 < (2en + 1)(

92(" ") +nen)? 4 (nten) log (n-tem)
j n

j=n—en

(5.15)
Using the (asymptotically tight) (2:) ~ 4" /\/mn, we see that (5.15) is approxi-

mately

(2€Tl + 1) 22n+(n+an)2+(n+£n)(n+£n—1)+(n+en) log(n+en) ]

VT
Combining this with (5.14) and using ZLEM ( ?2) < 2HEMW where H(e) =
—cloge — (1 — &) log(1l — ¢) is the binary entropy function (cf. Lemma 16.19 in

Flum and Grohe [23]), we get Prg.py, [mrdist(G, P) < ¢] <

2en +1 27n2/2+4H(5)n2+3/2n+2(52+z—:)n2+sn+(n+en) log (nten) _ 0(1) 7

Jan

because the —n?/2 in the exponent dominates when ¢ is sufficiently small.

O Lemma 28

We have shown that Dyes generates only positive instances and, with high prob-
ability, Dno generates e-far instances. Next, we show that, with high probability,

the two distributions look identical to testers making only o(y/n) queries. The
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proof is similar to a proof by Alon and Blais [2].
We begin by defining two random processes, Pno and Pyes, which answer queries
from testers and generate instances according to Dno and Dyes, respectively.

Process Ppo is defined in the following way.

1. Choose uniformly a random bijection 7: Vi — V5.
2. Intercept all queries from the tester and respond as follows.

(a) To queries E(i,4) with ¢ € V4, respond 1.

(b) To queries E(i,i) with ¢ € V5, respond 0.

(¢) To queries E(i,j) with i € V4,5 € V3, respond 0.

(d) To queries E(i,j) with ¢ € V4,5 € V,, randomly respond 1 or 0 with
probability 1/2 in each case.

(e) To queries E(i,j) with i > j € V}, respond 0.

(f) To queries E(i,j) with ¢ < j € Vi, quit if we have queried E(7(i),j) or
E(m(j),7). Otherwise randomly respond 1 or 0 with probability 1/2 in

each case.

(g) To queries E(i,7) withi € Vs, j € Vi, quit if we have queried E(7~1(3), 5)
or E(j, 7 %(i)). Otherwise randomly respond 1 or 0 with probability

1/2 in each case.

3. When the process has quit, or the tester has finished its queries, complete
the generated instance in the following way. First, fix the edges that were
queried according to our answers. Next, place loops on all vertices in V;, no

loops in V5 and no edges internal to V5. Place each edge in V; x V5 uniformly
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and independently with probability 1/2. For each remaining possible edge
(1,7) € Vi x V1, place the edge uniformly and independently with probability
1/2 if i < j and do not place the edge if i > j. For each remaining possible
edge in V5 x V7, place the edge uniformly and independently with probability

1/2 (ignoring ).

We define Pyes in the same way, except for the final step. When Pyegs quits or
the tester finishes, it fixes the edges that were queried according to its answers, and
also fixes the corresponding edges (when relevant) according to m. More precisely,
for each fixed E(i,j) with i # j € Vi, we also fix E(n(i),j) and E(j,7(7)), and for
fixed F(i,j) with i € V4, # 7 1(i) € Vi, we also fix E(7~1(i), j) and E(j,7(i)),
in both cases according to our previous decision. The remaining edges are placed
as in Ppo.

Note that Pno generates instances according to Dpno and Pyes generates in-
stances according to Dno. In addition, Pyes and Pno behave identically until they
quit or answer all queries. In particular, if a tester does not cause the process to
quit, the distribution of responses to queries is identical for the two processes. We
show that, with high probability, a tester that makes o(y/n) queries does not cause

either process to quit.

Lemma 29. Let T be a deterministic tester which makes o(y/n) queries, and let

T interact with Pyes or Pno. In both cases,

Pr[T causes the process to quit] = o(1).

Proof (Lemma 29). The condition causing the process to quit is identical in Pyeg
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and Ppo. The probability that any fixed pair of queries E(i, j) and E(i', j') cause

the process to quit is at most

The tester makes at most o(y/n) queries and so

Pr[T causes the process to quit] < o(yv/n)?0(1/n) = o(1).

O Lemma 28

Any deterministic tester 7" which makes o(y/n) queries can only distinguish
between Dyes and Dpo with probability o(1), but it must accept Dyes with prob-
ability at least 2/3 and reject Dpno with probability at least 2/3 — o(1). It is
impossible for T to satisfy both conditions, so the lemma follows from Principle 1.

O Lemma 27

5.4 Summary

In this chapter, we proved that several classes of first-order properties of directed
graphs are not testable. We used a different variant of graph isomorphism in each
case. We began with the prefix V33 in Section 5.1. This result first appeared in [40],
and we thank an anonymous referee from LATA for improving it significantly. This
result will also appear in [42].

In Section 5.2, we proved the untestability of V3V by using a variant of graph iso-

morphism related to Boolean function isomorphism. The connection with Boolean
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function isomorphism allows us to leverage recent ideas from Alon and Blais [2].
This result first appeared in [41].

Finally, we considered classes without equality in Section 5.3. There, we showed
that, even without equality, VIV can express untestable properties of directed
graphs. However, this proof is currently limited to 7,,.-style testing and it remains
open whether this class is 7,-testable. Our suspicion is that it is untestable in all
of our models. This result appears here for the first time.

We're grateful to Neil Immerman for pointing out that removing equality in our
untestable properties does not really change the “spirit” of why they’re untestable.
Section 5.3 formalizes this for one of our classes; we suspect that similar arguments
will also allow us to remove equality from the classes in Section 5.1. We're also
grateful to Hiro Ito for pointing out an omission in a previous version of the proof

of Lemma 23.
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Chapter 6

Conclusions

In this thesis, we focused on the testability of prefix-vocabulary classes of first-order
logic, extending work that was initiated by Alon et al. [3|. They first considered
the idea of testing syntactic subclasses of first-order logic, and showed that all
properties of undirected, loop-free graphs expressible in first-order sentences with
quantifier pattern 3*V* are testable, while there exists an untestable property
expressible with quantifier pattern vV*3*.

Their proof of the latter result implies upper bounds of twelve, five and seventeen
for the minimum number of universal, existential and total quantifiers, respectively,
sufficient to express an untestable property. One of our goals was to optimize these
bounds and find the minimum number of universal and existential quantifiers,
as well as quantifiers in total, sufficient to express an untestable property. Our
results imply that these minima are two universal, one existential and three total
quantifiers, respectively. In addition, we remove the restriction to undirected,
loop-free graphs and focus on relational structures.

Our main results are as follows. First, we proved that all properties express-
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ible in Ackermann’s class with equality ([3*V3*, all]-) are testable. Then, we
extended the positive result of Alon et al. [3] from undirected, loop-free graphs
to relational structures by using a result from Austin and Tao [11]. This answers
a question of Fischer [20] on the testability of hypergraph properties expressible
with quantifier pattern 3*V*, although much of the work for this case is by Austin
and Tao [11]. Next, we simplified the untestable property of Alon et al. [3] and
showed that there are untestable properties of directed graphs expressible with
quantifier prefixes V33. Finally, we used a variant of graph isomorphism related
to Boolean function isomorphism to prove that there are untestable properties of
directed graphs expressible with prefix V3V (for 7, testability, this remains true
without equality).

The current classification of prefix-vocabulary classes for testability is the fol-

lowing.
e Testable classes

1. Monadic first-order logic: [all , (w)]=.
2. Ackermann’s class with equality: [3*V3*, all]-.

3. Ramsey’s class: [3*V*, all ]-.

e Untestable classes

1. [v*3,(0,1)]_.
2. [vav, (0,1)]_.
3. [Vav, (0, 1)]%.

"We only prove this for 7,,, testability, although we suspect that it also holds for our other
models.
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It is interesting to compare this classification for testability with known (com-
plete) classifications for other properties. For example, the current classification
for testability is consistent with the classifications for the finite model property
(see, e.g., Chapter 6 of Borger et al. [15]), for docility? (see Kolaitis and Vardi [46])
and for 0-1 laws for fragments of existential second-order logic (see Kolaitis and
Vardi [46]). These classifications may be helpful in providing guidance in the
classification for testability.

This similarity between classifications may indicate a deeper connection between
these seemingly distinct properties. We would like to know which (if any) of the
traditional classifications coincides with the classification for testability, and hope
to understand the connections between testability and other properties of prefix-
vocabulary classes.

As concrete open problems, we are especially interested in the testability of
[v33,(0,1)] (without equality) and variants of the Godel class (i.e., classes whose
prefix contain at least V23). Determining the testability of these classes may suffice
to complete the classification. We are also interested in the special case of predicate
logic with equality.

There are many possible variations of the classification for testability. For ex-
ample, one could be more interested in classes which are constructively testable,
i.e., where it is possible to compute an e-tester given € and a formula from the
class. However, in the present paper we are fortunate that many of the possi-
ble classifications coincide. Namely, all of our positive results are for constructive

(and therefore uniform) testability in the most-restricted model (7,,,.) that we con-

2A class is said to be docile (or decidable for finite satisfiability) if given an arbitrary formula
from the class, one can decide if there exists a finite model of the property.
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sider, while all of the negative results hold even for non-uniform testability in the
least-restricted model (7).

As is common in the literature, we have focused on testable properties, i.e., those
which can be approximated with a number of queries (or time) depending on ¢ but
not on n. Given the deep connection between dense graph property testing and ap-
plications of strong versions of Szemerédi’s regularity lemma (see Alon et al. [4]), it
is not surprising that there are testable properties with enormous query complexity
(e.g., towers of 1/e with height growing in 1/¢). Even relatively simple properties

such as triangle-freeness?

are testable, but not with query complexity polynomial
in 1/e*. However, in practice we are perhaps more interested in properties that
can be tested with a number of queries polynomial in 1/e.

Our construction for Ramsey’s class (cf. Section 4.2) results in a rather large
query complexity. However, this class contains the problems of triangle-freeness
and R-freeness (for finite sets R of finite structures). Significantly improving the
query complexity of these problems is considered to be a difficult open problem,

and so significantly improving the query complexity for Ramsey’s class (in general)

is likely to be challenging.

3A graph is triangle-free if it contains no 3-cliques.
4See Alon and Shapira [6] for the lower-bound. The best known upper-bound, a tower of 1/¢
of height logarithmic in 1/¢ is due to Fox [24].
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