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SummaryIn property testing, we desire to distinguish between obje
ts that have a given propertyand obje
ts that are far from the property by examining only a small, randomly sele
tedportion of the obje
ts. Property testing arose in the study of formal veri�
ation, howevermu
h of the re
ent work has been fo
used on testing graph properties.In this thesis we introdu
e a generalization of property testing whi
h we 
all rela-tional property testing. Be
ause property testers examine only a very small portion oftheir �inputs,� there are potential appli
ations to e�
iently testing properties of mas-sive stru
tures. Relational databases provide perhaps the most obvious example of su
hmassive stru
tures, and our framework is a natural way to 
hara
terize this problem.We introdu
e a number of variations of our generalization and prove the relationshipsbetween them.The se
ond major topi
 of this thesis is the 
lassi�
ation problem for testability. Us-ing the general framework developed in previous 
hapters, we 
onsider the testability ofvarious synta
ti
 fragments of �rst-order logi
. This problem is inspired by the 
lassi-
al problem for de
idability. We 
ompare the 
urrent 
lassi�
ation for testability withearly results in the 
lassi�
ation for testability, and then prove an additional 
lass to betestable.
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Chapter 1Introdu
tionProperty testing is an appli
ation of indu
tion. Given a large obje
t, for example agraph or database, we wish to state some 
on
lusion about the entire stru
ture afterexamining only a small, randomly sele
ted sample. Lovász [31℄ has des
ribed it as the�third rein
arnation� of this approa
h, after statisti
s and ma
hine learning.Property testers, whi
h we formally de�ne in Chapter 2, are probabilisti
 approxima-tion algorithms that examine only a small part of their input. Our goal is always todistinguish inputs that have some desired property from inputs that are far from havingit. We are espe
ially interested in 
lassi�
ation, i.e., 
onsidering the testability of large
lasses of properties.There is an enormous amount of re
ent work in property testing. In the followingse
tion we introdu
e the history of the �eld, fo
using parti
ularly on results that in�uen
eour approa
h. Then, in Se
tion 1.2 we summarize the results and stru
ture of this thesis.1.1 History of Property TestingWe begin with a brief history and overview of property testing. There are also anumber of surveys of property testing, see for example Fis
her [15℄ or Ron [39℄.Property testing is a form of approximation where we trade a

ura
y for e�
ien
y.Probabilisti
 ma
hines appear to have been �rst formalized by de Leeuw et al. [30℄, whoshowed that su
h ma
hines 
annot 
ompute deterministi
ally un
omputable propertiesunder reasonable assumptions. However, they expli
itly mention the possibility thatprobabilisti
 ma
hines 
ould be more e�
ient than deterministi
 ma
hines. An earlyexample of su
h a result is the matrix multipli
ation 
he
ker of Freivalds [17℄.Property testing itself is generally 
onsidered to have arisen from program veri�
ation(see Blum et al. [10℄ and Rubinfeld and Sudan [40℄). Here we have some program P (x)that purports to 
ompute a fun
tion f(x) and we wish to qui
kly verify that P is 
orre
twith high probability. Rubinfeld and Sudan [40℄ de�ne the distan
e between two fun
tionswith the same domain and arity to be the fra
tion of the domain that they assign di�erentoutputs. They then de�ne a tester for a set of fun
tions to be a program that a

epts2



1.2. THESIS OVERVIEW 3
P if P is a program for some f in the set and reje
ts P with high probability if P is farfrom being a program for all f in the set.We 
an 
onsider a graph to be represented by a binary fun
tion e(x, y) that is 1 ifthere is an edge from x to y and 0 otherwise, whi
h is essentially an adja
en
y matrix.Then, any set of su
h fun
tions is a graph property, allowing us to 
onsider testable anduntestable graph properties. This approa
h was �rst 
onsidered by Goldrei
h et al. [20℄,where they show the existen
e of testable NP-
omplete properties among many otherresults. However, if we are interested in properties of bounded-degree graphs, the adja-
en
y matrix en
oding is wasteful. A related approa
h using in
iden
e lists to representbounded-degree graphs has been studied by Goldrei
h and Ron [19℄. Parnas and Ron [36℄generalized this approa
h and attempted to move away from the fun
tional representationof stru
tures.It is possible to 
onsider properties of other stru
tures, su
h as strings. Alon et al. [4℄showed that although all regular languages are testable, there exist untestable 
ontext-free languages (see Theorem 4 below). Cho
kler and Kupferman [13℄ extended the pos-itive result to the ω-regular languages. However, mu
h of the re
ent work has beenfo
used on graph property testing. Alon and Shapira [6℄ have written a survey of someof the re
ent results in graph testing.If we 
onsider graph property testing, Alon et al. [2℄ took the �rst step towards alogi
al 
hara
terization of the testable properties. They showed that all graph propertiesexpressible by �rst-order senten
es of the form �∃∀� are testable and that there existsa property expressible in the form �∀∃� that is not testable. This leads naturally tothe 
lassi�
ation problem for testability, whi
h we 
onsider in Chapter 4. Their positiveresult was obtained by showing that all su
h properties are essentially instan
es of a
olorability problem, all of whi
h they then showed to be testable. Fis
her [16℄ showedvarious generalizations of this kind of 
olorability problem to also be testable.Later, Alon and Shapira [5℄ gave a (near) 
hara
terization of the graph propertiestestable with one-sided error by algorithms unaware of the input size, a result that wasgeneralized to hypergraphs by Rödl and S
ha
ht [38℄. Alon et al. [3℄ obtained an exa
t
ombinatorial 
hara
terization of the graph properties testable with a 
onstant numberof queries.1.2 Thesis OverviewIn this thesis we parti
ularly fo
us on two issues in property testing. First, mu
h of there
ent work in testing has been fo
used on graph properties. In 
ontrast, we seek a moregeneral framework, whi
h we 
all relational property testing. We introdu
e de�nitionsand notation in Chapter 2 and then show a number of basi
 results in Chapter 3.There are several possible variations of our framework. We prove the relationshipsbetween several su
h variations in Se
tion 3.7. It is also possible to 
onsider appli
ationsof property testing. In parti
ular, we 
ould be interested in e�
iently testing properties3



1.2. THESIS OVERVIEW 4of massive stru
tures su
h as relational databases, a problem whi
h is 
hara
terized byour framework. Properties of databases are generally de�ned in formal query languagessu
h as SQL and so it is natural to 
onsider the testability of su
h languages.The se
ond major topi
 in this thesis is the 
lassi�
ation problem for testability, whi
hwe 
onsider in Chapter 4. The obje
tive here is to provide a 
lassi�
ation of exa
tlywhi
h 
lasses of �rst-order logi
 are entirely testable and whi
h 
lasses are not, whi
h we
onsider in the framework of relational property testing developed in earlier 
hapters. Weprovide an overview of the 
urrently known results for this 
lassi�
ation and 
omparethem with the 
lassi
al results in the 
lassi�
ation for de
idability. We also show thetestability of A
kermann's 
lass with equality, providing an additional parallel to the
lassi
al 
ase.
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Chapter 2PreliminariesThe notations and de�nitions that we require are divided into several topi
s. We 
on-sider property testing in a very general setting instead of restri
ting ourselves to someparti
ular type of stru
ture su
h as graphs.In order to dis
uss properties of graphs or of strings, it is ne
essary to �rst de�nethese types of stru
tures. We therefore de�ne fundamental notions su
h as vo
abularies(types of stru
tures) and stru
tures in Se
tion 2.1. This provides a su�
ient basis toformalize our de�nitions of property testing, whi
h we do in Se
tion 2.2. This thesisis parti
ularly fo
used on questions of formal logi
 in property testing, and so we givede�nitions related to logi
 in Se
tion 2.3 and those used for dis
ussing the 
lassi�
ationproblem in Se
tion 2.4.Before pro
eeding further, we re
all fundamental de�nitions and introdu
e notation forfamiliar obje
ts su
h as natural numbers, sets and strings. Our de�nitions are standardand readers familiar with this material 
an safely skip to Se
tion 2.1.The natural numbers are denoted by N and are the set of non-negative integers. Wedenote the set of real numbers by R, although these are generally used for probabilitiesand so we usually use only real numbers p ∈ [0, 1]. We use bold 
hara
ters to denoteve
tors, for example x ∈ R

3. Ve
tors are row ve
tors unless otherwise noted, we denotethe transpose of a ve
tor by x
T . If x = (x1, . . . , xa) is a ve
tor, we 
all xi the i-th
omponent of x.The empty set is denoted by ∅. If A and B are sets, then the union of A and B is

A ∪ B := {x | x ∈ A or x ∈ B}, the interse
tion of A and B is A ∩ B := {x | x ∈
A and x ∈ B}, and the set di�eren
e of A and B is A\B := {x | x ∈ A and x 6∈ B}.We generalize the union and interse
tion in the usual way, ⋃i≥0Ai := A0 ∪A1 ∪ . . . and
⋂

i≥0Ai := A0 ∩A1 ∩ . . . respe
tively.Set A is a subset of set B, written A ⊆ B if A\B = ∅. Set A is a proper subset of set
B, written A ⊂ B if A ⊆ B and B\A 6= ∅. The 
ardinality of a set A is the number ofelements in the set, written |A|.The produ
t of sets A and B is the set of ordered pairs, A × B := {(a, b) | a ∈
A and b ∈ B}. The set of n-tuples of set A, written An is de�ned indu
tively as follows.5



2.1. BASIC DEFINITIONS 6First, A1 = A. Then, An+1 = An × A. We will always omit the extra parentheses,and so (1, 2, 3) denotes ((1, 2), 3). The number of elements in the tuple is the arity n.A predi
ate P with arity n of set A is any subset of An. If x ∈ An, we will generallyabbreviate the proposition x ∈ P with P (x).An alphabet Σ is a set of symbols, and a string w over Σ is some sequen
e of thesymbols in Σ. The empty string is denoted by λ. For example, {0, 1} is the alphabetof binary strings and 0100 is an example of su
h a string. We number the positions ina string w from left to right with 0, 1, . . . , n − 1 where n is the length of the string. Of
ourse, the empty string λ has length 0. As usual, Σ∗ is the free monoid of Σ and anysubset L ⊆ Σ∗ of it is a language.Let w be a string over the alphabet Σ. The 
on
atenation of strings u and v is uv,while the produ
t of two sets of strings L1 and L2 is L1L2 := {uv | u ∈ L1 and v ∈ L2}.The reversal of w is written ←
w. Position i of ←w 
orresponds to position n − 1 − i of w.Formally, ←λ = λ and ←

aw =
←
wa for a ∈ Σ.We mention a number of well-known 
lasses of languages, for example the 
lasses of reg-ular and 
ontext-free languages. Hop
roft and Ullman [26℄ is a well-known introdu
tionto these 
lasses.It is natural to represent a binary string w ∈ {0, 1}∗ as a pair {U,S} where U is the�nite set of bit positions 0, . . . , n− 11 and S ⊆ A is a monadi
 predi
ate. We will de�ne

S(i) to mean that �bit position i of w is 1.�Graphs provide another natural example and allow for representation as a pair, (V, E).Here V is the set of verti
es and the edge set E ⊆ V 2, a set of ordered pairs of V . The�names� of the verti
es are not interesting to us, and we will identify them as 0, . . . , n−1where n is the number of verti
es. It is therefore natural to represent a graph as a pair
{V, E} where E is a binary predi
ate over V .We will formalize these notions more exa
tly in the following se
tion. In parti
ular,one of our goals is a generalized notion of property testing instead of restri
ting ourselvesto �xed kinds of stru
tures su
h as graphs and binary strings. The de�nitions in thefollowing se
tion are therefore ne
essarily abstra
tions of the ideas above.2.1 Basi
 De�nitionsInstead of restri
ting our attention to, for example, graphs, we fo
us on property testingin a general setting. We begin by de�ning vo
abularies, whi
h will also be the basis formost of our logi
al de�nitions. A predi
ate symbol is simply a synta
ti
 
hara
ter whi
his used to refer to predi
ates. Likewise, the arities in the following de�nition are simplypositive integers that are later interpreted as arities.De�nition 1. A vo
abulary τ is a tuple of distin
t predi
ate symbols Ri together withtheir arities ai,

τ := (Ra1

1 , . . . , R
as
s ).1The universe is the empty set if w is the empty string. 6



2.1. BASIC DEFINITIONS 7When we prove general theorems for all vo
abularies, we will always use vo
abularies τas in De�nition 1. The predi
ate symbols in these theorems will therefore always benamed Ri for 1 ≤ i ≤ s and have arities ai. Two examples of vo
abularies are τG := {E2},the vo
abulary of dire
ted graphs and τS := {S1}, the vo
abulary of binary strings.In order to de�ne stru
tures we must 
onsider universes, whi
h are sets. Our universesare always �nite and we generally refer to the 
ardinality of a universe with n.De�nition 2. An (algebrai
) stru
ture A of type τ is an (s+ 1)-tuple
A := (U,RA

1 , . . . ,RA
s )
onsisting of a �nite universe U and where ea
h RA

i ⊆ Uai is a predi
ate 
orrespondingto the predi
ate symbol Ri.In the following, we omit �(algebrai
)� and refer to su
h stru
tures simply as stru
tures.We also omit the vo
abulary when it is understood. If the universe U is the empty set,then n = 0 and the stru
ture is the unique empty stru
ture of type τ . Su
h stru
turesare not very interesting in terms of testing but it is worth noting their existen
e.For 
onvenien
e we will always identify the elements of U with the non-negative integers
{0, . . . , n − 1} and use n = #(A) for the size of the universe of a stru
ture A. As anotational 
onvenien
e, we will use Un := {0, 1, . . . , n− 1} to refer to �the� universe of nelements. We use 
alligraphi
 
hara
ters to denote the predi
ates de�ned by a stru
ture,however our logi
al de�nitions will provide a more 
onvenient way (using the predi
atesymbols) to state propositions regarding the predi
ates.If we 
onsider a binary string, the universe U is the set of bit positions, whi
h we willidentify as {0, . . . , n− 1} from left to right. For i ∈ U , we interpret the meaning of i ∈ Sas �bit i of the string is 1.� Likewise, for a graph G, the universe is the set of verti
es,whi
h we again identify as {0, . . . , n− 1}. For x, y ∈ U , we interpret (x, y) ∈ E as �thereis an edge from x to y in the graph.� Our graphs are therefore dire
ted and possibly
ontain loops.We de�ne STRUCn(τ) to be the set of all stru
tures with vo
abulary τ and universesize n. We then de�ne STRUC (τ) :=

⋃

0≤n STRUCn(τ) to be the set of all stru
turesof type τ .A property P of stru
tures of type τ is a set of stru
tures of type τ , and so P ⊆STRUC (τ). We do not 
onsider properties of stru
tures of mixed types, although itwould be possible to do so. For all A ∈ P , we say that stru
ture A has property P .That is, in order to avoid unwieldy language, having a property is always de�ned asmembership in the set of stru
tures de�ning the property. To re�e
t the 
onventionalterminology from formal language theory, we use language instead of �property� to referto sets of strings.An example of a property is that of being a binary palindrome. A binary string is apalindrome if it is equivalent to its reversal. The language of su
h binary strings 
an bede�ned as
LP := {w | w ∈ STRUC (τS) and | ∀i ∈ U : i ∈ S i� (#(w) − 1 − i) ∈ S}. 7



2.2. PROPERTY TESTING DEFINITIONS 8We generally use L, P and Q to denote properties and A and B to refer to stru
tures.However, we refer to strings as u,v and w to re�e
t more 
ommon notation.2.2 Property Testing De�nitionsIn property testing we wish to distinguish, with high probability, between inputs thathave some desired property and inputs that are far from having the property. We beginby de�ning a distan
e measure between stru
tures. The symbol ⊕ denotes ex
lusive-or.We re
all that vo
abulary τ = {Ra1

1 , . . . , R
as
s } and that the universe of a stru
ture isdenoted by U (
f. De�nition 1).De�nition 3. Let A,B ∈ STRUC (τ) be stru
tures su
h that #(A) = #(B) = n. Thedistan
e between stru
tures A and B isdist(A,B) :=

∑

1≤i≤s |{x | x ∈ Uai and RA
i (x) ⊕RB

i (x)}|
∑s

i=1 n
ai

.That is, the distan
e is de�ned as the number of tuples that are assigned di�erent truthvalues for the same predi
ate symbol in A and B, divided by the total number of tuples.It is the fra
tion of assignments on whi
h the two stru
tures disagree. For stru
turesthat are binary strings, the above de�nition is equivalent to their edit distan
e.In the 
ase of graphs, De�nition 3 is equivalent to the �adja
en
y matrix� model intro-du
ed by Goldrei
h et al. [20℄. This approa
h is parti
ularly suited to dense graphs, andan alternative approa
h for bounded degree graphs whi
h are represented using boundedin
iden
e lists has been developed by Goldrei
h and Ron [19℄.De�nition 4. Let P be a property of stru
tures with vo
abulary τ and A be su
h astru
ture with a universe of size n. Then, A is said to be ε-far from P if every stru
ture
B with universe of size n and vo
abulary τ that has P satis�es dist(A,B) ≥ ε.Stru
ture A is far from having a property if it is far from all stru
tures that have theproperty and are the same size as A. Our goal is to di�erentiate between stru
tures thathave a desired property and those that are far from having the property. As usual, wemust have this property in mind before 
onstru
ting algorithms for it. We are espe
iallyinterested in extremely e�
ient probabilisti
 approximation algorithms that examineonly a very small portion of the stru
ture.Instead of dire
tly providing these algorithms with the stru
tures as input, we providethem with a

ess to an ora
le. We will assume that the algorithm is for testing property
P of type τ , and that we wish to run this on the �input� A ∈ STRUC (τ). The algorithmis allowed to query the ora
le for desired bits of the input. We formalize the queries asbeing of the form Ri(x), where Ri is a predi
ate symbol in the vo
abulary τ determinedby the property and x ∈ N

ai is some tuple with the appropriate arity. The ora
le thenreturns �1� if the tuple is in the predi
ate RA
i and �0� if it is not. 8



2.2. PROPERTY TESTING DEFINITIONS 9On
e the stru
ture A is �xed, it is of some �xed universe size n. A truly random queryis overwhelmingly likely to be of a tuple x 6∈ Un. It is therefore essential to providethe algorithm with some means of making �meaningful� queries. In our model we allowan additional, spe
ial query: The algorithm may ask the ora
le for n, the size of theuniverse.We dis
uss multiple variations of the above after formalizing our de�nition in thefollowing way. In parti
ular, the spe
ial query for the universe is not allowed in theso-
alled �oblivious� model. There, it is 
ommon for the algorithm to give the ora
le anatural number m, in response to whi
h the ora
le returns a uniformly random indu
edsubstru
ture of A with size m or an error if no su
h substru
ture exists.De�nition 5. An ε-tester for property P is a randomized algorithm that is given anora
le whi
h answers queries for the universe size and truth values of relations on desiredtuples in a stru
ture A. The ε-tester must a

ept A with probability at least 2/3 if A has
P and must reje
t A with probability at least 2/3 if A is ε-far from P .The 
hoi
e of 2/3 in De�nition 5 is both traditional and arbitrary. Any probabilitystri
tly greater than 1/2 
an be 
hosen and the resulting testers iterated a 
onstantnumber of times and the majority taken to a
hieve any desired a

ura
y stri
tly lessthan one, see e.g., Hromkovi£ [27℄. The tester is not designed a

ording to any parti
ularstru
ture A and so di�erent �inputs� 
an be tested using di�erent ora
les. However, thetester may be designed using the approximation parameter ε, whi
h we dis
uss shortly.Our de�nition of testers allows them to know the size of the input, have two-sided errorand make adaptive queries based on the results of previous queries. Testers that are notgiven the size of their input are known as oblivious testers. These testers generally makequeries by requesting a random sample of the input whi
h is of a 
ertain size. Su
h asample is returned if it exists, otherwise the query fails. It is easy to 
onstru
t propertiesthat are testable by our de�nition but not by oblivious testers; for example, the propertythat the size of the universe is odd. In fa
t, several of the testers in this thesis willexamine the size of the universe.Many of those testers will examine the size of the universe only to determine if it issu�
iently large, where su�
iently large is de�ned as greater than some fun
tion of ε. Itis possible to 
onstru
t an oblivious tester in su
h 
ases, by having the tester request asample that is larger than this fun
tion. The input is su�
iently large i� su
h a sampleis available.Alon and Shapira [7℄ have provided an exa
t 
hara
terization of the graph propertiestestable by oblivious testers with one-sided error. Goldrei
h and Trevisan [21℄ haveshown that every graph property testable with q adaptive queries 
an be tested with
O(q2) non-adaptive queries and Gonen and Ron [22℄ have shown that this gap exists.We have mentioned above the notion of testable properties, and also implied the exis-ten
e of untestable properties. It is therefore ne
essary to de�ne testability, whi
h we doas follows. 9



2.3. LOGICAL DEFINITIONS 10De�nition 6. Property P is 
alled testable if for every ε > 0 there exists an ε-testerthat makes a number of queries whi
h 
an be upper-bounded by a fun
tion depending onlyon ε.It is interesting to note we allow di�erent ε-testers for ea
h ε > 0 and natural to askwhy a single algorithm does not su�
e. The situation is similar to that familiar in 
ir
uit
omplexity (
f. Straubing [45℄), where we have uniform and non-uniform 
ases.De�nition 6 is non-uniform in the sense that the ε-testers may not be 
onstru
tiblegiven ε. It is very natural to require the ε-testers for P to be 
omputable given ε,an additional 
ondition (equivalent to requiring the ε-testers to be a single algorithm)that results in uniform testability. We [28℄ have shown that there exist unde
idableproperties that are testable i� we use a non-uniform de�nition of testability while Alonand Shapira [8℄ have also shown the same separation between uniform and non-uniformtestability using a de
idable property. We dis
uss the role of uniformity in Se
tion 3.6.Alon and Shapira [8℄ also emphasize the importan
e of the fun
tion in De�nition 6being only an upper bound on the number of queries. This is be
ause query 
omplexitiessu
h as 1/ε + (−1)n are a

eptable, albeit problemati
 for oblivious testers.2.3 Logi
al De�nitionsThe de�nitions in this se
tion are used espe
ially in formulating and dis
ussing 
lassi�-
ation problems in Chapter 4. Our logi
 is a pure predi
ate logi
 with equality that doesnot 
ontain fun
tion symbols. There are no ordering symbols su
h as ≤ nor are therearithmeti
 relations su
h as PLUS or BIT. Enderton [14℄ provides a more 
omprehen-sive introdu
tion to logi
 and Börger et al. [11℄ is an ex
ellent referen
e for 
lassi�
ationproblems.We begin by de�ning the underlying language. There exist 
ountably in�nite variablesymbols, whi
h we generally name with (possibly subs
ripted) x, y and z. We use lower
ase letters to distinguish these variable symbols from predi
ate symbols and let V ARbe the set of variable symbols.The equality symbol (=) is spe
ial. Although = is a predi
ate, we do not allow stru
-tures to rede�ne it and insist that it is always interpreted as true equality. We do notallow fun
tion symbols or 
onstant symbols (nullary fun
tion symbols).Given a vo
abulary τ as de�ned in De�nition 1, the �rst-order logi
 of τ is de�ned asfollows. Our logi
 does not 
ontain 
onstant symbols, and so the atomi
 terms are thevariable symbols, x. Our language does not 
ontain fun
tion symbols, and so the termsare exa
tly the atomi
 terms.The atomi
 formulas are x = y for terms x and y and Ri(x1, . . . , xai
) where the xj areterms and Ri is a predi
ate symbol of τ .The formulas are de�ned indu
tively. If ϕ and ψ are formulas, then (ϕ ∨ ψ) and (¬ϕ)are formulas. If x is a variable, then (∃x : ϕ) and (∀x : ϕ) are also formulas. A well-formed formula is a formula in whi
h no variable o

urs free. The �rst-order logi
 of τ10



2.3. LOGICAL DEFINITIONS 11is exa
tly the set of well-formed formulas. We have no further use for formulas with freevariables and will now refer to well-formed formulas simply as formulas.Additional 
onne
tives in
luding ∧, → and ↔ are allowed but are formally 
onsideredabbreviations. The parentheses required by the de�nition are omitted where the intendedmeaning is 
lear.We say that a stru
ture A of type τ and universe Un models (or satis�es) a formula ϕ,written A |= ϕ, if ϕ is true when interpreted in the 
ontext of A. We de�ne this moreformally in the following way.An interpretation is a fun
tion from the variable symbols to the universe,
I : V AR 7→ Un.In addition, the fun
tion f maps the predi
ate symbols of τ to their 
orrespondingpredi
ates in A, that is, f(Ri) = RA
i . Re
alling that vo
abularies and stru
tures aretuples, the fun
tion f maps the i-th element of τ to the (i+ 1)-th element of A.As a notational 
onvenien
e, if I is a fun
tion, we will write I[x\\a] to mean

I[x\\a](y) =







I(y), if y 6= x;

a, if y = x.That is, I[x\\a](y) is the fun
tion I(y) ex
ept that the value I(x) has been repla
edwith a.The de�nition of truth is indu
tive and follows our de�nition of formulas. We onlywrite A |= ϕ for well-formed formulas ϕ and so the initial interpretation is irrelevant,but formulas whi
h are not well-formed may appear during the indu
tive steps. We saythat A |= ϕ if there is an interpretation I su
h that (A, I, f) |= ϕ. Indu
tively,1. (A, I, f) |= (x = y) if I(x) = I(y). Note = is always interpreted as equality on Un;2. (A, I, f) |= Ri(x1, . . . , xai
) if the tuple (I(x1), . . . , I(xai

)) ∈ f(Ri);3. (A, I, f) |= (ψ ∨ γ) if it is true that (A, I, f) |= ψ or (A, I, f) |= γ;4. (A, I, f) |= (¬ψ) if (A, I, f) |= ψ is not true,5. (A, I, f) |= (∃x : ψ) if there exists an a ∈ Un su
h that (A, I[x\\a], f) |= ψ;6. (A, I, f) |= (∀x : ψ) if for every a ∈ Un, it is true that (A, I[x\\a], f) |= ψ.This de�nition of truth is generally attributed to Tarski [47℄ (see [48℄ for an Englishtranslation).We say that formula ϕ de�nes property P := {A | A |= ϕ} and so A |= ϕ is equivalentto saying that A has property P . On one hand, the expressive power of our languageis quite weak. First-order logi
 with ordering (≤) and arithmeti
 relations PLUS andTIMES, or equivalently BIT, is a 
hara
terization of DLOGTIME-uniform AC0, see e.g.Barrington et al. [9℄. It therefore 
annot express the property PARITY, whi
h is true11



2.4. CLASSIFICATION DEFINITIONS 12only for binary strings 
ontaining an odd number of 1s, see Furst et al. [18℄. Our languagedoes not 
ontain ordering or arithmeti
 relations and so it is even weaker.On the other hand, it is ri
h enough to express both testable and untestable properties.In some sense (see indistinguishability in Se
tion 3.4) it is more powerful in the 
ontextof testing than 
lassi
ally. It is useful that our language is the same as the pure predi
atelogi
 
onsidered in the traditional 
lassi�
ation problem, allowing us to make several
omparisons in Subse
tion 4.1.2. Finally, properties that are 
losed under isomorphismsare most natural in property testing and many possible additions to our language wouldfor
e us to fo
us on properties that are not 
losed under isomorphisms.We use lower-
ase Greek letters, espe
ially ϕ, ψ and γ, for �rst-order formulas and
x, y and z for �rst-order variables. We refer to members of the universes of stru
tureswith a, b and u when it is ne
essary to distinguish between variables and the underlyingmembers of the universe that they are bound to.2.4 Classi�
ation De�nitionsRe
all that every �rst-order formula has an equivalent formula in prenex normal form.That is, for any ϕ there exists a logi
ally equivalent ϕ′ that is of the form

ϕ′ = π1x1 . . . πaxa : ψ,where ψ is quanti�er-free and the πi are either ∀ or ∃. For example, the �rst-orderformula ∃x : (S(x) ∧ ∃x : (¬S(x))) is equivalent to ∃x∃y : (S(x) ∧ ¬S(y)).This example 
an be expressed with two existential quanti�ers (∃2), a single monadi
predi
ate and does not require equality. There are a number of 
ommon ways to 
las-sify �rst-order formulas, in
luding the number of distin
t variables and the number ofquanti�ers. However, the most traditional methods have been to 
lassify formulas inprenex normal form based on the pattern of quanti�ers and the vo
abulary τ de�ningthe language. In parti
ular, there are a number of interesting relationships between thetestability of properties and the patterns of quanti�ers that 
an be used to express them.Our de�nitions for 
lassi�
ation are very similar to those used by Börger et al. [11℄,however one notable di�eren
e is that we restri
t ourselves to pure predi
ate logi
s ratherthan also 
onsidering logi
s with fun
tion symbols. The similar notation allows us toeasily 
ompare what is 
urrently known regarding the 
lassi�
ation for testability withthe traditional 
lassi�
ation for de
idability, whi
h we do in Se
tion 4.1.2.De�nition 7. A pre�x vo
abulary 
lass is spe
i�ed as
[Π, p]e.Here, Π is a string over the four-
hara
ter alphabet {∃,∀,∃∗,∀∗}, p is either the spe
ialphrase `all' or a sequen
e over N and the �rst in�nite ordinal ω, and e is either `=' or λ.12



2.4. CLASSIFICATION DEFINITIONS 13Note that we have only de�ned a synta
ti
 obje
t; it is essentially a triple that also
ontains two bra
kets. In general, p is an in�nite sequen
e although we will 
onsidernormal forms shortly. We will use these triples to de�ne 
lasses of �rst-order formulas,and so we now de�ne their meaning.The �rst-order senten
e
ϕ := π1x1π2x2 . . . πrxr : ψin prenex normal form, with quanti�ers πi and quanti�er-free ψ, is a member of the pre�xvo
abulary 
lass given by [Π, (p1, p2, . . .)]e, where pi ∈ N ∪ {ω} i�1. The string π1π2 . . . πr is 
ontained in the language spe
i�ed by Π when Π is inter-preted as a regular expression2.2. If p is not all, at most pi distin
t predi
ate symbols of arity i ≥ 1 appear in ψ.3. Equality (=) appears in ψ only if e is `='.That is, Π des
ribes the pattern of quanti�ers for senten
es in the 
lass, p gives themaximum number of predi
ate symbols of ea
h arity and e determines whether the equal-ity symbol is permitted. It is traditional to in
lude an additional sequen
e f des
ribingthe permitted fun
tion symbols, but we do not allow fun
tion symbols and so omit f .Our senten
es are always �nite in length. If a pre�x 
lass has pi = ω, then formulasmay 
ontain any �nite number of i-ary relation symbols. If p = all, then formulas in the
lass may 
ontain any �nite number of relation symbols of any �nite arities.We mentioned above that p is, in general, an in�nite sequen
e. However if we 
on-sider graphs as an example, it is tiresome to write the in�nitely many trailing zeros in

(0, 1, 0, . . .). As a 
onvention, we therefore suppress trailing zeros in p, and so (0, 1)
orresponds to the 
ase of graphs.If there are not in�nitely many trailing zeros in p, then the sum pi + pi+1 + · · · isin�nite for all i. In this 
ase, we 
an use some of these higher arity predi
ate symbols to�simulate� lower arity symbols, for example using E(x, x) to simulate a monadi
 predi
ate
S(x). This implies that all sequen
es p have an equivalent sequen
e p′ su
h that p′ iseither a �nite sequen
e (omitting trailing zeros) or the spe
ial phrase all. This is part ofthe de�nition of a standard pre�x 
lass, see Börger et al. [11℄.We are interested in the testability of pre�x 
lasses and so we say that a pre�x 
lass istestable if every formula in the 
lass expresses a testable property in the 
ontext of everyvo
abulary in whi
h it is possible to evaluate the formula. However, it is su�
ient to
onsider only the minimal vo
abulary needed to evaluate the formula. We formalize thisin the following simple lemma, where an extension of a vo
abulary τ is any vo
abularyformed by adding a new (distin
t) predi
ate symbol to those in τ .2We slightly modify the usual semanti
s of regular expressions so that ∀ (resp. ∃) mat
hes the emptystring λ as well as ∀ (resp. ∃). This is be
ause we wish to 
onsider 
losed pre�x vo
abulary 
lasses, seeSe
tion 2.3.3 of Börger et al. [11℄. 13



2.4. CLASSIFICATION DEFINITIONS 14Lemma 1. Let ϕ be a formula in the �rst-order logi
 of vo
abulary τ and τ ′ be anyextension of τ . If ϕ de�nes a property that is testable in the 
ontext of τ , then theproperty of type τ ′ de�ned by ϕ is also testable.Proof. Assume ϕ de�nes property P of type τ when interpreted as a formula of type τand property P ′ of type τ ′ when interpreted as a formula of type τ ′. Additionally assumethat the �new� predi
ate symbol in τ ′ is N whi
h has arity a.Let T τ
ε be a ε-tester for P . We will show that this is also a ε-tester for P ′. Let A be astru
ture with type τ ′ and assume A ∈ P ′. Removing the N predi
ate, the 
orresponding

A′ ∈ STRUC (τ) has property P and so the tester will a

ept with probability at least
2/3, as desired.Assume that dist(A,P ′) ≥ ε and again let A′ be the stru
ture of type τ formed byremoving the N predi
ate from A. By the de�nition of distan
e,dist(A′, P ) = min

B∈P

∑

1≤i≤s |{x | x ∈ Uai and RA
i (x) ⊕RB

i (x)}|
∑s

i=1 n
ai

≥dist(A,P ′) = min
B∈P

∑

1≤i≤s |{x | x ∈ Uai and RA
i (x) ⊕RB

i (x)}|
na +

∑s
i=1 n

ai
≥ ε.The tester will therefore reje
t su
h A with probability at least 2/3 as desired.Testable properties therefore remain testable when the vo
abulary is extended and soa property is testable in every relevant vo
abulary if and only if it is testable in theminimal relevant vo
abulary. A pre�x 
lass is untestable if it is not testable, that is, if itin
ludes some property that is untestable.

14



15
Chapter 3Basi
 Results
3.1 Testable PropertiesPerhaps the most basi
 result in property testing is the existen
e of the obje
ts beingstudied, testable properties. The testability of a property depends only on the propertyitself and not on whi
h of the various equivalent de�nitions (formulas) expresses it. Itis therefore easy to see that trivial properties su
h as always true and always false aretestable, but it is worthwhile to prove an example expli
itly. We begin by 
onsideringpalindromes of even length. It is easy to extend this to all palindromes, however it isuseful to maintain uniformity with later results (
f. Theorem 4) from the literature.Theorem 1. The property of being an even-length palindrome, LP = {u←u} over thealphabet {0, 1}, is testable with query 
omplexity O(1/ε).Proof. The following algorithm is an ε-tester for the property.1. Query the ora
le for the number of 
hara
ters, n. Reje
t if n is odd.2. Choose 2/ε integers uniformly at random from [0, n/2 − 1].3. For ea
h of these integers i, query the ora
le for S(i) and S(n− 1 − i).4. Reje
t if any of these pairs di�er, otherwise a

ept.To show that this is an ε-tester for even-length palindromes, we are required to showthat it a

epts palindromes with probability greater than 2/3, and reje
ts when the ora
leuses a string w where dist(w,LP ) ≥ ε, again with probability greater than 2/3. The �rstpart is easy; if the input is a palindrome, the bits we 
ompare will be equal by de�nitionand so we will a

ept with zero error.Next, assume that dist(w,LP ) ≥ ε. Therefore, there are at least εn bits in w that mustbe modi�ed to rea
h a palindrome. For ea
h of the random bit pairs that we examine,the probability that we have failed to �nd one of these bits of eviden
e is at most (1−ε).The total error probability is then at most (1− ε)2/ε, whi
h is uniformly upper-boundedby e

−2ε/ε = e
−2 ≈ 0.135 for all ε in (0, 1], where e is the Euler number. The testertherefore reje
ts su
h inputs with probability at least 1 − e

−2 > 2/3, as desired. 15



3.2. UNTESTABLE PROPERTIES 16The language of palindromes (with even length) is a well-known example of a 
ontext-free language that is not regular. The property of being an empty graph is also testable,and the proof is nearly identi
al. However, we will use both results a number of times,and so we show both expli
itly.Theorem 2. The property of being an empty graph,
PE := {G | G ∈ STRUC (τG) and G has no edges},is testable.Proof. The following is an ε-tester for the property.1. Query the ora
le for the number of verti
es, n.2. Choose 2/ε pairs of verti
es (x, y) uniformly at random.3. For ea
h of these pairs, query the ora
le for E(x, y).4. Reje
t if we see any edges, otherwise a

ept.Of 
ourse, we will not see any edges if the input is empty and so we will a

ept withzero error. For G su
h that dist(G,PE) ≥ ε, graph G 
ontains at least εn2 edges. Forea
h of the random pairs that we query, the probability that we have failed to �nd anedge is at at most (1 − ε). As above, the total error probability is at most (1 − ε)2/εwhi
h is stri
tly less than 1/3 for all ε ∈ (0, 1]. Therefore, we will �nd an edge and reje
tsu
h G with probability at least 2/3, as desired.3.2 Untestable PropertiesIn Se
tion 3.1, we proved that the language of (even-length) palindromes is testable byproviding a 
orre
t tester that makes O(1/ε) queries. Here we wish to show that thereexists an untestable property, i.e., a property whi
h 
annot be tested with o(n) queries.The example and proof that we use is due to Alon et al. [4℄.The spe
i�
 example given here allows a number of interesting 
orollaries, for example,that the testable properties are not 
losed under 
omplement (Corollary 3). We beginby reviewing and proving the tool that we will use to prove non-testability.3.2.1 Yao's Prin
ipleThe proof relies on a variation (Prin
iple 1) of Yao's prin
iple, a tool for proving lowerbounds in the 
ontext of randomized algorithms. Yao's prin
iple is an interpretationby Yao [49℄ of von Neumann's [34℄ minimax theorem for randomized 
omputation. Weprove only the dire
tion of the minimax theorem that is required for our purposes; for asurvey of minimax theorems and their proofs see Simons [42℄.We begin by providing the de�nitions required to state Prin
iple 1. 16



3.2. UNTESTABLE PROPERTIES 17De�nition 8. A deterministi
 tester is a binary tree where ea
h internal node is labeledwith a non-negative integer, ea
h leaf is labeled �a

ept� or �reje
t,� and the two edgesfrom a node are labeled 0 and 1.Given an input, we exe
ute the tester as follows. Beginning at the root, we interpretthe labels on internal nodes as the bit position of the input that will be queried. If theresult of the query is 0, we follow the 0 edge and otherwise the 1 edge. When we rea
h aleaf we output the de
ision on the label. Note that it is equivalent to label the internalnodes with atomi
 formulas su
h as E(0, 1) as these are equivalent to spe
i�
 bits of theinput, the positions of whi
h 
an be easily 
omputed.De�nition 9. The 
omplexity of a deterministi
 tester is the number of internal nodes,in
luding the root unless it is a leaf, on the longest path from the root to a leaf.The 
omplexity of a deterministi
 tester is then the maximum number of queries thatit makes. Our interest is limited to testers of �nite 
omplexity, i.e., those that outputa de
ision in �nite time. Without loss of generality, we 
an restri
t our attention tobalan
ed binary trees, by making extra, useless queries on the shorter paths in order to�pad� their lengths.Prin
iple 1 (Yao's Prin
iple). Let τ be a vo
abulary. If there exists an ε ∈ (0, 1) and adistribution over STRUCn(τ) su
h that all deterministi
 testers with 
omplexity c havean error-rate greater than 1/3 for property P , then P is not testable with 
omplexity c.The de�nition of �testable� is of 
ourse our usual one involving random testers. Ingeneral, our goal will be to show that it is impossible to test P using randomized testerswhose 
omplexity does not depend on the input size. That is, for su�
iently large n andsome in
reasing fun
tion c := c(n) of n, we wish to �nd a distribution of inputs su
hthat all deterministi
 testers with 
omplexity c have error-rates greater than 1/3.For testability, we are 
on
erned only with the error-rate on inputs that either have ourdesired property or are ε-far from having the property. Therefore, we de�ne the error-rateof a tester to be non-zero only on su
h examples. Be
ause of this, it su�
es to restri
t ourattention to distributions that give zero probability to the remaining �possible� inputs(those that do not have the property in question, but are also not ε-far from it).We begin by proving the following dire
tion of the minimax theorem. We say that ave
tor x ∈ R
|x| is a probability ve
tor if ea
h of its 
omponents is a non-negative realnumber and the sum of its 
omponents is 1. For n > 0, we let P

n be the set of probabilityve
tors with n 
omponents,
P

n :=

{

x | x = (x1, . . . , xn) ∈ R
n, xi ≥ 0 for all 1 ≤ i ≤ n, and n

∑

i=1

xi = 1

}

.It is well-known that equality holds in the following, however we restri
t ourselves tostating and proving only the dire
tion required for Prin
iple 1, as mentioned above. 17



3.2. UNTESTABLE PROPERTIES 18Theorem 3 (Minimax Theorem). Let M be an a × b matrix of non-negative reals and
X = P

a and Y = P
b be the sets of all probability ve
tors with a and b 
omponents,respe
tively. Then,

max
y∈Y

min
x∈X

xMy
T ≤ min

x∈X
max
y∈Y

xMy
T . (3.1)Proof. Let y

∗ be any of the arg max on the left in (3.1),
y
∗ := arg max

y∈Y
min
x∈X

xMy
T ,and x

∗ be any of the arg min on the left in (3.1),
x
∗ := arg min

x∈X
xMy

∗T .Then, for any probability ve
tor x ∈ X, by the de�nition of minimum,
xMy

∗T ≥ x
∗My

∗T . (3.2)Let x
+ and y

+ be any of the arg min and arg max on the right of (3.1), that is
x

+ := arg min
x∈X

max
y∈Y

xMy
T and y

+ := arg max
y∈Y

x
+My

T .Then, by the de�nition of maximum, x
+My

+T ≥ x
+My

∗T . Therefore, by (3.2),
min
x∈X

max
y∈Y

xMy
T = x

+My
+T ≥ x

+My
∗T ≥ x

∗My
∗T = max

y∈Y
min
x∈X

xMy
T .Given Theorem 3, it is easy to show Prin
iple 1. In (3.1), we 
all x on the left and yon the right �inner ve
tors.� This is be
ause we 
an think of them as being 
hosen afterthe �outer ve
tors� (y on the left and x on the right) are �xed. For the �inner� ve
tors, itsu�
es to 
onsider unit ve
tors ei, where 
omponent i is 1 and all other elements are 0.This is be
ause on
e the outer ve
tor is �xed, denoting the i-th 
omponent of a ve
tor zby [z]i,

min
x∈X

xMy
T = eargmini[MyT ]iMy

Tand likewise for the maximum on the right of (3.1). This proves the following simple
orollary of Theorem 3.Corollary 1. Let M be an a× b matrix of non-negative reals and X = P
a and Y = P

bbe the sets of all probability ve
tors with a and b 
omponents, respe
tively. Then,
max
y∈Y

min
ei∈X

eiMy
T ≤ min

x∈X
max
ej∈Y

xMe
T
j . (3.3)

18



3.2. UNTESTABLE PROPERTIES 19Proof (Prin
iple 1). Prin
iple 1 is an interpretation of (3.3) in the 
ontext of testing. Welet a be the number of deterministi
 testers with 
omplexity c whose queries are evaluablein stru
tures of type τ that have n elements. We assume that there is an enumeration ofthese testers. Then, a randomized tester with 
omplexity c for stru
tures of n elementsis given by a probability ve
tor x ∈ X, where [x]i is interpreted as the probability thatthe randomized tester behaves like the i-th deterministi
 tester. A unit ve
tor ei ∈ Xspe
i�es the i-th deterministi
 tester.Likewise, we assume there is an enumeration of stru
tures of type τ that have nelements and let b be the number of su
h stru
tures. Then, a probability ve
tor y ∈ Yis a distribution over these stru
tures and a unit ve
tor ej spe
i�es the j-th stru
ture.For matrix M , we let Mij be 1 if the i-th deterministi
 tester is in
orre
t on the j-thinput and this input either has the desired property or is ε-far from it. Otherwise, we let
Mij be 0.We now have have an a×b matrixM and a meaning for a and b 
omponent probabilityve
tors and so we 
an interpret the meaning of Corollary 1. On the left, eiMy

T isthe average-error of the i-th deterministi
 tester on a stru
ture 
hosen a

ording todistribution y. Likewise, on the right, xMe
T
j is the error-rate of the randomized testerspe
i�ed by x on the j-th stru
ture.Therefore, the left side of (3.3) is the average-error of the �best� deterministi
 tester onthe �worst� distribution of inputs, when we de�ne �best� as the lowest average-error. Ifwe �nd some distribution y

+ of inputs su
h that all deterministi
 testers have an error-rate greater than 1/3, then 1/3 is a lower bound on the left side, and therefore the rightside, of (3.3).The right side of (3.3) is the error-rate of the �best� randomized tester on the �worst�input stru
ture, when �best� is de�ned as the best worst-
ase. If the �best� randomizedtester with 
omplexity c has an error-rate greater than 1/3 on an input, we 
an 
on
ludethat the property in question is not testable with 
omplexity c.3.2.2 An Untestable PropertyWe will now prove that there exists an untestable property. The spe
i�
 example thatwe use is L := {u←uv←v}, where the underlying alphabet is {0, 1}. This is 
learly a 
ontext-free language and so Theorem 4 will also imply that there exist untestable 
ontext-freelanguages. The proof here is due to Alon et al. [4℄.In Theorem 1, we showed that LP = {u←u} is testable. We might hope to use thistester twi
e in an attempt to test L = {u←uv←v}, possibly iterating and taking the majorityde
ision in order to in
rease the su

ess probability above 2/3. However, this assumesthat we know the �divider� between u←u and v←v in advan
e, whi
h is not true. Our attemptto use the tester from Theorem 1 is therefore unsu

essful, as we would be for
ed to sear
hfor the divider by using the previous tester a linear number of times and make too manyqueries. In the following theorem, we will show that it is not possible to test L using19



3.2. UNTESTABLE PROPERTIES 20any algorithm that makes o(√(n)) queries. This is our �rst example of a property thatis untestable.Theorem 4 (Alon et al. [4℄). The language L = {u←uv←v}, where u and v are strings over
{0, 1} is not testable with 
omplexity o(√n).Proof. The proof is an appli
ation of Prin
iple 1, and so we begin by de�ning a distribu-tion D of strings. Our goal is to show that D is su
h that all deterministi
 testers thatmake c = o(

√
n) queries have error rates greater than 1/3 for L. Prin
iple 1 will thenimply that L is not testable with o(√n) queries, as desired. In the proof we will assumethat n is su�
iently large, although it is of 
ourse always �nite. This will 
onvenientlyallow us to assume that n is divisible by 6 (if it is not, use the �rst multiple of 6 that islarger than n), avoiding the use of �oors.Distribution D draws from a distribution D+ of strings in L or from a distribution

D− of strings that are ε-far from L with probability 1/2 in ea
h 
ase. Distribution D−sele
ts a w ∈ {0, 1}n uniformly at random from the set of w su
h that dist(w,L) ≥ ε.Distribution D+ �rst sele
ts a positive integer k ∈ {1, . . . , n/3}, and then sele
ts strings
u ∈ {0, 1}k and v ∈ {0, 1}(n−2k)/2 , uniformly at random in ea
h 
ase. The result is astring w = u

←
uv
←
v ∈ L ∩ {0, 1}n. We 
an think of D+ as sele
ting a pair (k,w) and some

w 
an be 
hosen with multiple values of k.We now 
onsider an arbitrary deterministi
 tester A with 
omplexity c = o(
√
n).As mentioned above, we 
an 
onsider A to be a balan
ed binary tree and it thereforehas 2c leaves. We let T0 be the set of leaves labeled �reje
t� and T1 be the set ofleaves labeled �a

ept.� Additionally, we asso
iate to ea
h leaf t a sequen
e of c pairs

Qt := ((pt
1, r

t
1), . . . , (p

t
c, r

t
c)) 
orresponding to the bit positions queried (pt

i ∈ [0, n − 1])and the results (rt
i ∈ {0, 1}) on the path from the root of A to t. Furthermore, we de�ne

q(Q,w) for w ∈ {0, 1}n to be true if w agrees with Q, or more formally, if bit pi in wis ri for all 1 ≤ i ≤ c, and false otherwise.We also de�ne E+(Q) (resp. E−(Q)) to be the set of strings with length n that agreewith Q and are positive (ε-far) instan
es for L. More formally,
E+(Q) := {w | w ∈ L ∩ {0, 1}n and q(Q,w) is true} and

E−(Q) := {w | w ∈ {0, 1}n,dist(w,L) ≥ ε and q(Q,w) is true} .If we 
onsider some �xed a

epting leaf t, then E−(Qt) is the set of strings that Amakes an error on when ending in t and similarly for a reje
ting leaf t and E+(Qt). Wede�ne the probability of a set to be the sum of the probabilities of the members of theset, and therefore the total error of A is
∑

t∈T0

Pr
D

(E+(Qt)) +
∑

t∈T1

Pr
D

(E−(Qt)).We will show the following two lemmata for any sequen
e Q of o(√n) elements. 20



3.2. UNTESTABLE PROPERTIES 21Lemma 2. PrD(E+(Q)) = (1/2 − o(1))2−|Q|.Lemma 3. PrD(E−(Q)) = (1/2 − o(1))2−|Q|.Every leaf of A must be labeled with exa
tly one de
ision, and so |T0| + |T1| = 2|Q|.Using the two lemmata, the total error of A is then
|T0|(1/2 − o(1))2−|Q| + |T1|(1/2 − o(1))2−|Q| =

|T0| + |T1|
2|Q|

(1/2 − o(1)) = (1/2 − o(1)).The o(1) term approa
hes zero as n grows and so the error is greater than 1/3 for su�-
iently large n. Therefore, by Prin
iple 1, language L 
annot be tested with 
omplexity
o(
√
n) and is therefore untestable.We must now show the two lemmata used by the theorem. We will use the (loose)upper bound |L ∩ {0, 1}n| ≤ 2n/2n/2, whi
h follows from the observation that we �rst
hoose the string uv and then 
hoose the length of u to determine a w ∈ L. In addition,if the length of u is �xed at k, there are exa
tly 2n/2 
orresponding w, whi
h will beuseful given the de�nition of distribution P .Lemma 2. If |Q| = o(

√
n), then PrD(E+(Q)) = (1/2 − o(1))2−|Q|.Proof. First, for any w ∈ {0, 1}n ∩ L, by the de�nition of D,

Pr
D

(w) = 1/2 Pr
D+

(w) =

∑n/3
k=1 |{u | ∃v : w = u

←
uv
←
v, |u| = k}|

2n/2 2n
3

.Next, it follows from the de�nition of E+(Q) that PrD(E+(Q)) = 1
2 PrD+(E+(Q)) =

(

1

2n/22n/3

) n/3
∑

k=1

|{w | ∃u, v : w = u
←
uv
←
v, |u| = k and q(Q,w)}| .If the sequen
e Q 
ontains a pair of queries that are symmetri
 about k or n/2 + k,then the pair queries the same bit in u and ←u or in v and ←v. If the results of these queriesmust be di�erent, then it is impossible for su
h a w to exist. However, Q 
ontains (|Q|

2

)pairs, and so there is no su
h pair of queries for at least n/3 − 2
(|Q|

2

) 
hoi
es of k. Forea
h of these k,
|{w | ∃u, v : w = u

←
uv
←
v, |u| = k and q(Q,w)}| = 2n/2−|Q|.Therefore, as an upper bound,

Pr
D

(E+(Q)) ≤
(

1

2n/22n/3

)

(

2n/2−|Q|
)

(

n/3 − 2

(|Q|
2

))

=

(

1/2 − 2
(|Q|

2

)

n/3

)

2−|Q|,whi
h is (1/2 − o(1))2−|Q| for |Q| = o(
√
n), as desired. 21



3.3. CLOSURE PROPERTIES 22Lemma 3. If |Q| = o(
√
n), then PrD(E−(Q)) = (1/2 − o(1))2−|Q|.Proof. We noted above that the number of strings in L with length n is at most 2n/2n/2and so the number of strings of length n that are not ε-far from L satis�es

|{w | dist(w,L) ≤ ε, |w| = n}| ≤
(

2n/2n/2
)

εn
∑

i=0

(

n

i

)

.This is upper-bounded by 2n/2+2εn log 1/ε. Re
all that E−(Q) is the set of w ∈ {0, 1}nsu
h that dist(w,L) ≥ ε and w agrees with Q. Then, the size of E−(Q) must satisfy
∣

∣E−(Q)
∣

∣ ≥ 2n−|Q| − 2n/2+2ε log 1/εn.Then, by the de�nition of distribution D,
Pr
D

(E−(Q)) = 1/2PrD−(E−(Q)) ≥ |E−(Q)|
2n

.For ε < 1/16, this is
(1/2 − 2−Θ(n)+|Q|)2−|Q| = (1/2 − o(1))2−|Q|,where the last equality holds for |Q| = o(n). Our assumption is stri
ter, |Q| = o(

√
n).Theorem 4 allows a number of interesting 
orollaries. In parti
ular, now that wehave seen that both testable and untestable properties exist, in the next se
tion we willexamine 
losure properties of the set of testable properties.3.3 Closure PropertiesThe language in Theorem 4 is the set of strings that are the 
on
atenation of two even-length palindromes. That is, it is the produ
t LPLP , where LP is the language of binarypalindromes with even length proven testable in Theorem 1. We therefore immediatelyget the following 
orollary.Corollary 2. The testable properties are not 
losed under produ
t.In addition, the de�nition of testability is asymmetri
 in the sense that it requires usto a

ept all positive instan
es with high probability while requiring us to reje
t, againwith high probability, only those negative instan
es that are also far from having theproperty.Corollary 3. The testable properties are not 
losed under 
omplement.Proof. We use the 
omplement of the language L from Theorem 4, L := {w | w 6∈ L}.We begin by showing that for su�
iently large n, there is no w ∈ {0, 1}n su
h thatdist(w,L) ≥ ε. 22



3.3. CLOSURE PROPERTIES 23Lemma 4. Given ε > 0, there is no w ∈ {0, 1}n su
h that dist(w,L) ≥ ε for n > 1/ε.Proof. Let w ∈ {0, 1}n be arbitrary. There are two 
ases. If w ∈ L, then dist(w,L) =

0 < ε. Therefore, assume that w ∈ L and n > 0. It is trivial to see that all strings in
L have an even number of 1s and an even number of 0s. We 
hange the �rst 
hara
terof w to its opposite, and 
all the resulting string w′. The number of 1s in w was even,and therefore the number of 1s in w′ is odd (we have either removed one or added one).Therefore, w′ 
annot be in L and so it is by de�nition in L. We have only modi�ed onebit, and so dist(w,L) = 1/n < ε, where the inequality holds for n > 1/ε. Lemma 4A tester for L 
an therefore simply verify that the input string is su�
iently long, i.e.,that n > 1/ε, and then a

ept. Membership for inputs that are not su�
iently long 
anbe 
omputed exa
tly after querying all n ≤ 1/ε bits. This tester 
learly a

epts w ∈ Lwith no error. When ε > 0 is �xed, if dist(w,L) ≥ ε, then n ≤ 1/ε, by Lemma 4. Thetester therefore queries every bit and reje
ts without error. The tester makes at most
1/ε queries, whi
h does not depend on n, and therefore L is testable.However, by the de�nition of 
omplement, L = L, whi
h is not testable by Theorem 4and so the testable properties are not 
losed under 
omplement.The above results are both negative. However, if we 
onsider 
losure under union, weobtain the following.Theorem 5. The testable properties are 
losed under �nite unions.Proof. Re
all that for all α, β ∈ (0, 1/2), if we have a tester whi
h is 
orre
t with proba-bility at least 1/2+α, we 
an 
onstru
t a tester whi
h is 
orre
t with probability at least
1/2 + β by running the �rst tester a 
onstant number of times and taking the majorityoutput (see, e.g., Se
tion 11.2 in Papadimitriou [35℄). The number of iterations for �xedreals α and β does not depend on n and so the number of queries in the new tester is a
onstant multiple of the original number of queries.Let P1 and P2 be two testable properties. Then, for every ε > 0, there exist testers T ε

1(T ε
2 ) a

epting inputs S that have property P1 (resp. P2) and reje
ting inputs S wheredist(S,P1) ≥ ε (resp. dist(S,P2) ≥ ε). The dis
ussion above allows us to assume thatthe testers are 
orre
t in ea
h 
ase with probability at least √2/3. It is then simple to
onstru
t the following tester T ε for P1 ∪ P2, for input I.1. Run T ε

1 on I. If T ε
1 a

epts, halt and a

ept.2. Next, run T ε

2 on I and output its de
ision.Clearly, T ε a

epts inputs I that have property P1 or P2 with probability greaterthan 2/3. An input I that is ε-far from the property P1 ∪ P2 is ε-far from both P1 andfrom P2. This is be
ause, if I is ε-far from P1 ∪ P2, then there is no I ′ ∈ P1 ∪ P2 su
hthat dist(I, I ′) ≤ ε. By the de�nition of union this implies that there is no I ′ ∈ P1 su
hthat dist(I, I ′) ≤ ε, and likewise for P2. 23



3.4. INDISTINGUISHABILITY 24We therefore reje
t inputs whi
h are ε-far from P1 ∪ P2 with probability at least
√

2/3
2

= 2/3 and so T ε is an ε-tester for P1 ∪ P2, as desired.3.4 IndistinguishabilityWhen proving the testable properties are not 
losed under 
omplement (Corollary 3),we showed that all su�
iently long strings were �
lose� to the language L we were 
on-sidering. That is, for all ε there is an upper bound on the length of strings w su
h thatdist(w,L) ≥ ε (Lemma 4).This was our �rst example of a 
on
ept 
alled indistinguishability, whi
h was de�nedfor graph properties by Alon et al. [2℄. Roughly speaking, if we have two languages(properties) L1 and L2 su
h that all elements of L1 are 
lose to L2 and all elementsof L2 are 
lose to L1, then we say the two languages (properties) are indistinguishable.Be
ause property testers only examine a very small portion of their inputs, the probabilitythat these testers will �nd eviden
e that a w ∈ L1 is not a
tually in L2 is small. Thiswill allow us to show the most important result regarding indistinguishability, that itpreserves testability (Theorem 6).Unfortunately, formally de�ning �
lose enough� is not trivial in our generalized setting.Alon et al. [2℄ de�ned it for loop-free graphs, but we do not have the luxury of su
hrestri
tions. Two stru
tures are �
lose enough� if there is no di�eren
e that 
an distinguishthem with high probability, and so simply using our de�nition of distan
e may not su�
e.To see this, we 
onsider a vo
abulary with two relations, H of high arity and L of lowarity. The low arity relation 
ontributes an asymptoti
ally insigni�
ant amount to thedistan
e of De�nition 3 be
ause the number of possible high arity tuples dominates anydi�eren
e in L assignments. Consider two large stru
tures A and B with this vo
abulary,where A and B have identi
al H assignments and opposite L assignments. For ε > 0,if these stru
tures are su�
iently large, then dist(A,B) < ε. However, although thesestru
tures are very 
lose, a tester 
ould distinguish between them by examining only asmall number (one) of the L assignments.We 
an use loops in graphs in a similar way, a graph possibly 
ontaining loops isequivalent to an loop-free graph with a monadi
 
olor relation. We therefore begin byde�ning a subtype of a relation.De�nition 10. Let R be a relation with arity a. Then, a subtype of R is a set of atmost a elements, ea
h of whi
h is a set 
ontaining integers from {1, . . . , a}. Ea
h of theseintegers must appear in exa
tly one of the elements of the subtype.For example, {{1}, {2}} is a subtype of the edge predi
ate E for graphs. This 
orre-sponds to the set of pairs of E for whi
h the element in position 1 of the pair o

ursonly in position 1 and the element in position 2 o

urs only in position 2. That is, thissubtype is the set of edges that are not loops. The subtype {{1, 2}} then 
orresponds tothe set of edges that are loops. This 
an be more formally de�ned as follows. 24



3.4. INDISTINGUISHABILITY 25De�nition 11. Let R be a relation with arity a and S be a subtype of R,
S =

{

{t11, . . . , t1b1}, . . . , {t
|S|
1 , . . . , t

|S|
b|S|

}
}

.A tuple (x1, . . . , xa) belongs to S if for all ti1, it is the 
ase that xti
1

= xtij
for all j and,if xu = xv for some u, v then u and v are both 
ontained in the same element of S.It is harmless but useless for the same i to appear multiple times in the same elementof a subtype. We now de�ne the S−distan
e between stru
tures, where S is a subtypeof relation Ri.De�nition 12. Let A,B ∈ STRUCn(τ) be stru
tures with universe U and vo
abulary τ ,and let S be a subtype of relation Ri ∈ τ . Then, the S-distan
e between A and B is

S-dist(A,B) :=
|{x | x ∈ Uai ,x belongs to S and RA

i (x) ⊕RB
i (x)}|

n|S|
.The S-distan
e is the fra
tion of tuples belonging to S that are given di�erent assign-ments by Ri in A and B. We de�ne the Ri-distan
e to be the maximum S-distan
e forsubtypes S of Ri. If the maximum Ri-distan
e between two stru
tures is very small, allof the subtypes of all the relations are very similar, and there is no spe
ial query thathas a high probability of �nding a di�eren
e.Let SUB(R) be the set of subtypes of relation R. Then, the maximum Ri-distan
e isthe following.De�nition 13. Let A,B ∈ STRUCn(τ) be stru
tures with universe U and vo
abulary τ .Then, the maximum Ri-distan
e between A and B is

max
1≤i≤s

Ri-dist := max
1≤i≤s

max
S∈SUB(Ri)

S-dist(A,B).When de�ning indistinguishability, we use the maximum Ri-distan
e. Note thatdist(A,B) ≤ maxiRi-dist(A,B), whi
h we show as part of Theorem 9 in Se
tion 3.7.The Ri-distan
e is equal to the usual distan
e for vo
abularies with exa
tly one predi-
ate symbol if it has one subtype, su
h as loop-free graphs or binary strings.We generalize our de�nition of Ri-distan
e in the following way, where P is a property.De�nition 14. Let A ∈ STRUCn(τ) be a stru
ture and P be a property of type τ . Then,the Ri-distan
e between A and P is
Ri-dist(A,P ) := min

{B∈P |#(B)=n}
Ri-dist(A,B).If the minimum is taken over an empty set, we de�ne the distan
e to be in�nite.Properties that are 
losed under isomorphisms are most natural in property testing,and we now de�ne this idea.De�nition 15. Let A,B ∈ STRUCn(τ) be stru
tures with vo
abulary τ . We 
all Aisomorphi
 to B if there is a mapping φ : {0, . . . , n− 1} 7→ {0, . . . , n− 1} su
h that 25



3.4. INDISTINGUISHABILITY 261. The mapping φ is bije
tive;2. For all Ri ∈ τ and all (x1, . . . , xai
), it is true that RA

i (x1, . . . , xai
) if and only if

RB
i (φ(x1), . . . , φ(xai

)).The mapping φ is 
alled an isomorphism. We de�ne properties to be 
losed underisomorphisms in the following way.De�nition 16. Let P be a property of type τ . We say that P is 
losed under isomor-phisms if for all n ∈ N and all A,B ∈ STRUCn(τ), if A and B are isomorphi
 then
A ∈ P if and only if B ∈ P .We note that given the la
k of ordering, all properties that 
an be expressed by formulasin our logi
 are 
losed under isomorphisms, although we do not use this assertion here.We are now �nally ready to de�ne indistinguishability. In the 
ase of loop-free graphs itis equivalent to the de�nition given by Alon et al. [2℄.De�nition 17. Two properties P and Q of stru
tures with vo
abulary τ are said to beindistinguishable if they are 
losed under isomorphisms and for every ε > 0 there existsan Nε su
h that for any stru
ture A with vo
abulary τ and universe of size n ≥ Nε, if Ahas P then maxiRi-dist(A,Q) ≤ ε and if A has Q then maxiRi-dist(A,P ) ≤ ε.It is worthwhile to note that indistinguishability is an equivalen
e relation. It is 
learlysymmetri
 and re�exive, and transitivity is also simple to show. Assume that P isindistinguishable from P2, whi
h is in turn indistinguishable from P3. For su�
ientlylarge A, if A has P1 then there is a B that has P2 su
h that maxiRi-dist(A,B) ≤ ε/2 andlikewise for B and a C that has P3. Then, maxiRi-dist(A,P3) ≤ maxiRi-dist(A,C) ≤ ε,as desired.The importan
e of indistinguishability is expressed by the following theorem, whi
hwas shown by Alon et al. [2℄ for the 
ase of graphs. Their proof works nearly verbatimin our setting.Theorem 6. If P and Q are indistinguishable, then P is testable if and only if Q istestable.Proof. We assume without loss of generality that P is testable and provide an ε-testerfor Q. By assumption, P is testable and so there exists an ε/2-tester T ε/2 for P thatmakes at most c(ε/2) queries. The tester a

epts stru
tures A that have P and reje
tsthose that are ε/2-far with probability at least 2/3 in both 
ases.LetN be su
h that for stru
tures A of size n ≥ N , if A hasQ then maxiRi-dist(A,P ) ≤
min

(

ε/2, 2
81c

). The 2/(81c) appears be
ause we would like to use a tri
k similar to thatin Theorem 1, and this will 
an
el ni
ely be
ause 81 = 3 · 27.We will test input A for Q in the following way.1. If #(A) ≤ N , query all of A and output an exa
t de
ision. 26



3.5. TESTABLE PROPERTIES THAT ARE HARD TO DECIDE 272. Otherwise, run T ε/2 three times on A, using random permutations of the labels of
A ea
h time. Output the majority de
ision.The restri
tion that the properties are 
losed under isomorphisms allows us to use therandom permutations in Step 2. This tester makes at most 3c := 3c(ε/2) queries and hasa su

ess probability of at least 2/3. Assume that n = #(A) is su�
iently large. If A is

ε-far from Q, it is also ε/2-far from P . Therefore, T ε/2 will reje
t A with probability atleast 2/3 and our tester 
orre
tly reje
ts with probability at least 20/27 > 2/3.Now, assume that A has Q. Then, there exists an A′ that has P su
h that A and A′di�er in no more than a 2
81c fra
tion of the possible assignments, for every subtype andevery relation. The probability that any parti
ular query will see one of these assignmentsis at most 2

81c and so the probability that any of the 3c queries will see one of these bitsis at most 1 −
(

1 − 2
81c

)3c ≤ e
−2/27 ≤ 2/27. The probability of su

ess is then at least

20/27 − 2/27 = 2/3 and so Q is testable, as desired.Indistinguishability is an equivalen
e relation on properties that preserves testability.It therefore partitions the set of properties into equivalen
e 
lasses su
h that ea
h 
lass
ontains only testable properties or only untestable properties. However, in the general
ase only non-uniform testability is preserved, as we will see in Se
tion 3.6. Alon et al. [2℄used indistinguishability as a tool for proving 
lasses of properties to be testable, as wewill, but it is likely to be of more general interest.3.5 Testable Properties that are Hard to De
ideWe have already seen that there exist 
ontext-free languages that are testable (The-orem 1) and also some that are not testable (Theorem 4). However, the relationshipof the testable properties with the traditional 
omplexity hierar
hy is worthy of moreinvestigation. Goldrei
h et al. [20℄ have shown that there exist testable NP-
ompleteproperties. Assuming P 6= NP, this means that there exists properties for whi
h it isvery easy to de
ide if the input nearly satis�es the property but quite hard to de
ide theproblem exa
tly. Here we will show that this gap is mu
h larger: There exist propertiesfor whi
h it is very easy to de
ide if the input nearly satis�es the property but extremelydi�
ult to de
ide exa
tly.In this se
tion we show the existen
e of testable properties that are arbitrarily hard tode
ide exa
tly. The testable properties therefore extend arbitrarily high in the traditionalhierar
hy, but, by Theorem 4, do not 
ontain even the 
ontext-free languages.We de�ne �arbitrarily hard� properties as meaning, for every 
omputable f(n), 
on-taining properties that are not de
idable in DTIME(f(n))1.It su�
es to 
onsider loop-free graph properties, where the maximum Ri-distan
e isequal to the usual distan
e. The same result 
an also be shown for other vo
abularies.1The 
hoi
e of DTIME here is arbitrary and other 
omplexity measures su
h as DSPACE result inequivalent de�nitions. 27



3.6. UNIFORMITY CONDITIONS 28Theorem 7. There are arbitrarily-hard testable properties.Proof. Let P be an arbitrarily-hard property. We de�ne a property Q su
h that Predu
es to Q. Let p(x) be the 
hara
teristi
 fun
tion for P on some reasonable en
odingof the input. We de�ne Q to be true for graph G of size n i� the number of edges in Gis equal to p(n).We 
an obviously redu
e P to Q by, on input x, 
omputing the en
oding x and out-putting a graph on x verti
es with exa
tly one edge. We 
an therefore 
onstru
t arbi-trarily hard properties Q.It is worth noting that this redu
tion in
reases the input length by an exponentialfa
tor. Be
ause we are only interested in arbitrarily hard properties and by the timehierar
hy theorem (see Hartmanis and Stearns [25℄), we 
an simply 
hoose P su
h thatit is not 
omputable in DTIME(2f(n)) to 
onstru
t a property Q that is not 
omputablein DTIME(f(n)).Property Q is indistinguishable from the property of being the empty graph, whi
h weshowed to be testable in Theorem 2. If a graph G has property Q, it is either empty orit has one edge, and so the maximum Ri-distan
e is at most 1/n2. The 
onverse is thesame, an empty graph either has Q or the distan
e is at most 1/n2. Obviously, 1/n2 < εfor n >√1/ε and so the properties are indistinguishable.We showed in Theorem 2 that being the empty graph is testable, and therefore, byTheorem 6, so is Q.3.6 Uniformity ConditionsWe en
oded the 
hara
teristi
 fun
tion for an arbitrary property while proving The-orem 7. There was no parti
ular requirement for the property to be de
idable. Theexisten
e of unde
idable properties that are testable warrants additional 
onsideration.We noted that our de�nition of testability (De�nition 6) is non-uniform in the sensethat it does not require the various ε-testers to be 
omputable given ε. It is reasonableto expe
t a situation similar to that of 
ir
uit 
omplexity 
lasses su
h as AC0, wherethe non-uniform versions 
ontain unde
idable properties and the uniform versions do not(see, for example, Straubing [45℄). We will see that this is the 
ase, thereby showing thatthe non-uniformly testable properties stri
tly 
ontain the uniformly testable properties.Alon and Shapira [8℄ have shown the same separation by using a de
idable graph property.That probabilisti
 ma
hines do not 
ompute properties that are deterministi
ally un-
omputable was �rst shown by de Leeuw et al. [30℄. We have de�ned ε-testers to berandomized algorithms, and so we assume that the probability of a given 
hoi
e beingmade by an ε-tester is a 
omputable real number. Ma
hines that make 
hoi
es withnon
omputable probabilities have additional power, see, e.g., de Leeuw [30℄.We again 
onsider loop-free graph properties and so the maximum Ri-distan
e is theusual distan
e. 28



3.6. UNIFORMITY CONDITIONS 29Theorem 8. There exist unde
idable properties that are (non-uniformly) testable.Proof. We de�ne a graph property P that is not de
idable but is testable. As shown inHop
roft and Ullman [26℄, there is an enumeration of all and only Turing ma
hines. Let
Mi refer to the i-th ma
hine in this enumeration. A graph G with size n has property
P i� either G is empty and Mi does not halt on the empty string, or G has exa
tly oneedge and Mi does halt on the empty string.First, P is 
learly unde
idable. Given i, the problem of de
iding whether ma
hine Mihalts on the empty string is a 
anoni
al RE-
omplete property, and it is simple to redu
ethis to P . On input i, output a graph with i verti
es and exa
tly one edge.
P is indistinguishable from the empty graph in exa
tly the same way as in the proofto Theorem 7 and so it is testable.The non-uniformness of these testers 
an be seen by observing that for n <√1/ε weare required to de
ide, 
orre
tly with high probability, whether ma
hine Mi halts on theempty string. On
e ε is �xed, there are only a �nite number of ma
hines for whi
h wemust de
ide this question, and so their behavior 
an be given in a �nite list. However,in the 
ase of uniform testability, we must be able to 
onstru
t these �nite lists for everyvalue of ε, whi
h would 
ontradi
t the unde
idability of P .We show this more formally in the following. All uniform testers are probabilisti
ma
hines and, by 
hoosing ε > 0 as a fun
tion of n, we 
an remove the �approximation�in �probabilisti
 approximation algorithm.� Of 
ourse we then make a number of queriesthat depends on the input size.Proposition 1. All uniformly testable properties 
an be de
ided by a probabilisti
 Turingma
hine with su

ess probability at least 2/3.Proof. Assume property P of stru
tures with vo
abulary τ is testable. On input A withuniverse size n, 
hoose ε su
h that ε < 1/

∑

i n
ai , for example, ε = 1

1+
P

i nai
. Run the

ε-test on A and output the result. The tester must di�erentiate between inputs having
P and inputs being ε-far from having P . For A, a stru
ture with universe size n, it musttherefore distinguish between those that have the property and those that do not, withprobability 2/3, as desired.Corollary 4. All uniformly testable properties are de
idable.Proof. Convert the probabilisti
 ma
hine of Proposition 1 using the following generi

onstru
tion.All probabilisti
 ma
hines 
an be modi�ed su
h that their randomness is taken froma spe
ial binary �random tape� that is randomly �xed when the ma
hine is started, inwhi
h ea
h digit is 0 or 1 with equal probability.All halting probabilisti
 ma
hines must eventually halt, regardless of the random
hoi
es made. We 
an then simulate the ma
hine over all initial segments of in
reas-ing lengths, keeping tra
k of �a

epting,� �reje
ting� and �still running� states. On
e any29



3.7. ALTERNATE DEFINITIONS OF DISTANCE 30given segment has halted, all random strings beginning with that initial segment mustalso halt. Therefore, the per
entage of halting paths is in
reasing, and we shall eventuallyrea
h a length su
h that at least 7/10 of the paths have halted. Our error probabilityis at most 1/3, stri
tly less than half of 7/10 and so we 
an output the de
ision of themajority of the halting paths.Theorem 8 and Corollary 4 immediately yield the following separation. A di�erentproof using a de
idable property has been given by Alon and Shapira [8℄.Corollary 5. There exist properties that are non-uniformly testable but not uniformlytestable.3.7 Alternate De�nitions of Distan
eDe�nition 3 de�nes the distan
e between stru
tures to be the fra
tion of assignments onwhi
h they disagree. As we saw in Se
tion 3.4, this means that any possible di�eren
e inthe assignments of low-arity relations is dominated by the number of high-arity tuples. Insome sense this is a natural de�nition, as the number of low-arity tuples is asymptoti
allyinsigni�
ant and so two stru
tures are 
lose if most of their assignments agree.However, there are situations where this de�nition may not be ideal. Vertex-
oloredgraphs are graphs in whi
h ea
h vertex is assigned one of some (usually 
onstant) num-ber of 
olors. We say that the 
oloring is admissible if for all (x, y) ∈ E, verti
es
x and y have di�erent 
olors. If we 
onsider 3-
olored graphs with the vo
abulary
τC := {E2, R1, G1, B1} we might be interested in testing whether the given 
oloringis admissible or not. If we use our usual de�nition of 
oloring, this is equivalent totesting whether the graph is 3-
olorable and ignores (for su�
iently large graphs) theexisting 
oloring. If we wish to test whether the given 
oloring is nearly admissible, weneed a slightly di�erent model.In this se
tion we present a number of alternate de�nitions for the distan
e betweenstru
tures. In testing we wish to distinguish stru
tures that have a desired property andthose that are far from the property, and so modifying the de�nition of distan
e 
hangesthe task of testing. We will also show the relationships between the sets of testableproperties that arise from ea
h of our de�nitions. As in De�nition 3, the symbol ⊕denotes ex
lusive-or.De�nition 18. Let A,B ∈ STRUC (τ) be stru
tures su
h that #(A) = #(B) = n. Ther-distan
e between stru
tures A and B isrdist(A,B) := max

1≤i≤s

|{x | x ∈ Uai and RA
i (x) ⊕RB

i (x)}|
nai

.That is, the r-distan
e is the maximum over the relations Ri of the fra
tion of Ri-assignments di�ering between A and B. While De�nition 3 gave equal weight to ea
htuple, regardless of its arity, this de�nition gives equal weight to ea
h relation. Tuples30



3.7. ALTERNATE DEFINITIONS OF DISTANCE 31with lower arity 
an then be 
onsidered to have greater weight than those with higherarity. We will also 
onsider the maxiRi-distan
e (whi
h we will shorten to mrdist(A,B)),whi
h was de�ned using subtypes in Se
tion 3.4 (
f. De�nition 13).We begin by showing the following simple relationship between these distan
es.Theorem 9. Let τ be a vo
abulary and A,B ∈ STRUC (τ) be stru
tures su
h that
#(A) = #(B). Then, dist(A,B) ≤ rdist(A,B) ≤ mrdist(A,B).Proof. We begin by showing dist(A,B) ≤ rdist(A,B). Essentially, if dist(A,B) = ε thenan ε-fra
tion of the total assignments di�ers. If we then partition the total assignments,there must exist a partition su
h that at least an ε-fra
tion of the assignments di�ers inthat partition.Let dist(A,B) = ε and let αi be the fra
tion of Ri-assignments that di�ers betweenthe stru
tures, i.e.,

αi :=
|{x | x ∈ Uai and RA

i (x) ⊕RB
i (x)}|

nai
.Then, rdist(A,B) = maxi αi and we 
an write dist(A,B) in terms of the αi:dist(A,B) =

∑

i αin
ai

∑

i n
ai

= ε.This implies that ∑i αin
ai = ε

∑

i n
ai . We do not know the values ai, but if equalityholds there must be at least one αi satisfying αi ≥ ε. This implies that dist(A,B) ≤rdist(A,B), as desired.Next, we show that rdist(A,B) ≤ mrdist(A,B). The proof is nearly identi
al to theabove. If rdist(A,B) = ε then there is an Ri su
h that an ε-fra
tion of the Ri-assignmentsdi�ers between the stru
tures. If we partition the Ri-assignments into the subtypes of Ri(whi
h are disjoint), then there must be some partition su
h that at least an ε-fra
tionof the assignments in that partition di�er. As above we let rdist(A,B) = ε. Let Ri bea relation su
h that the Ri-distan
e between A and B is ε and let αj be the fra
tion ofassignments in subtype Sj of Ri that di�er between the stru
tures. Using the notationof Se
tion 3.4, i := arg maxk Rk-dist(A,B) and αj = Sj-dist(A,B) for subtypes Sj of Ri.Then, mrdist(A,B) = maxj αj andrdist(A,B) =

∑

j αj|Sj |
∑

j |Sj|
= ε.By exa
tly the same argument as above, there must exist an αj ≥ ε and so rdist(A,B) ≤mrdist(A,B).There exist vo
abularies su
h as τS = {S1} where equality is attained in ea
h of theabove inequalities and also vo
abularies where equality is not attained. 31



3.7. ALTERNATE DEFINITIONS OF DISTANCE 32Theorem 9 immediately admits the following ni
e 
orollary, where we let T be the setof testable properties with our usual de�nitions, Tr be the set of testable properties usingthe rdist de�nition for distan
e and Tmr be the set of testable properties using the mrdistde�nition for distan
e.Corollary 6. Tmr ⊆ Tr ⊆ T .Proof. Assume we have a Tmr ε-tester for property P . Then, it distinguishes with prob-ability at least 2/3 between stru
tures with P and stru
tures A su
h that mrdist ≥ ε.We will show that this is also a Tr ε-tester for P . Let A denote the input stru
ture. If Ahas property P then our tester a

epts with probability at least 2/3, as desired. We sawabove that rdist(A,B) ≤ mrdist(A,B) and so if rdist(A,B) ≥ ε then mrdist(A,B) ≥ εand the tester reje
ts with probability at least 2/3, as desired.The proof of Tr ⊆ T is analogous to the above.In fa
t, we 
an show both of these in
lusions are stri
t and so it is stri
tly easier totest using De�nition 3 than the others. Of 
ourse, it is possible for equality to hold ifwe restri
t ourselves to a �xed vo
abulary. We have noted above that the de�nitionsare all equivalent in the 
ase of binary strings. In the 
ase of graphs or other stru
tureswith exa
tly one predi
ate symbol whi
h is not monadi
, rdist(G,G′) = dist(G,G′) andso testing these properties with the dist de�nition is equivalent to testing with the rdistde�nition for distan
e. The proof of Theorem 10 will show that testing su
h propertieswith the mrdist de�nition for distan
e is not equivalent.Theorem 10. Tmr ⊂ Tr ⊂ T .Proof. The in
lusions are shown in Corollary 6 and so it su�
es to show the separations.We begin by showing that T\Tr is not empty. To do this we 
onsider the vo
abulary
τC := {E2, S1} whi
h we 
an interpret as the vo
abulary of (not ne
essarily admissible)one-
olored graphs.We will show that P1 ∈ T\Tr, where P1 is the set of stru
tures A with vo
abulary τCsu
h that the S assignments en
ode the language L = {u←uv←v} from Theorem 4. Thatis, A has P1 if there is some 0 ≤ k ≤ n/2 su
h that for all 0 ≤ i < k, S(i) is true i�
S(2k − 1 − i) is true and for all 0 ≤ j < (n − 2k)/2, S(2k + j) is true i� S(n − 1 − j)is true. The property is de
ided only by the low-arity relation S; the E relation existsonly to provide �padding� so that the property is testable using the dist de�nition fordistan
e.We begin by showing that P1 is testable using De�nition 3. An input stru
ture Awith a universe of odd size 
annot have P1. With our de�nitions, a tester 
an begin by
he
king the parity of n and then reje
t if it is odd. We 
an therefore assume in thefollowing that the size of the universe is even. It is also possible to de�ne P slightlydi�erently to avoid this problem, for example requiring the S assignments to be of theform u

←
uv
←
v or 1u

←
uv
←
v. However, it is simpler for us to be 
onsistent with Theorem 4.Lemma 5. Property P1 is testable under the dist de�nition for distan
e. 32



3.7. ALTERNATE DEFINITIONS OF DISTANCE 33Proof. The proof is similar to that of Corollary 3. We again begin by showing that forsu�
iently large n, there is no stru
ture A with universe size n su
h that dist(A,P1) ≥ ε.For any (even) n, there exist possible w ∈ {0, 1}n that are of the form u
←
uv
←
v, su
has 1n. Given A we 
reate A′ by 
hanging all S(i) assignments to be true. This involvesat most n modi�
ations and so dist(A,P1) ≤ dist(A,A′) = O(n)/Θ(n2) < ε, where the�nal inequality holds for su�
iently large n. Let N(ε) be the smallest value of n forwhi
h the inequality holds. Then, the following is an ε-tester for P1, where the input hasuniverse size n.1. If n < N(ε), query all assignments and output whether the input has P1.2. Otherwise, a

ept.If the input A has P1, we will a

ept with zero error. If dist(A,P1) ≥ ε, then n < N(ε)by the above. In this 
ase we query all assignments and will reje
t with zero error.Lemma 5It remains to show that P1 is not testable when using the rdist de�nition for distan
e.We do this by showing that if it were testable under the rdist de�nition, we would beable to 
onstru
t testers for {u←uv←v}, 
ontradi
ting Theorem 4.Lemma 6. Property P1 is not testable under the rdist de�nition for distan
e.Proof. Assume that P1 is testable under the rdist de�nition for distan
e. Then, thereexist ε-testers T ε using this de�nition for all ε > 0. We will show that the following is an

ε-tester using De�nition 3 for the language L of Theorem 4. We denote the input with
w and note that w is a binary string with vo
abulary τS = {S1}.1. Run T ε and inter
ept all queries.2. When a query is made for S(i), return the value of S(i) in w.3. When a query is made for E(i, j), return 0.4. Output the de
ision of T ε.That is, given a string w, we simulate T ε on the stru
ture A ∈ STRUC (τC) thathas the same universe size as w, agrees with w on the S assignments and where all Eassignments are false.Assume that w ∈ L and let n be the size of the universe. Then, any A ∈ STRUC (τC)with universe size n that satis�es ∀i : Sw(i) ↔ SA(i) has property P1. That is, if w and
A agree on the S assignments, w ∈ L implies A ∈ P1. In this 
ase, T ε will a

ept Awith probability at least 2/3. Therefore, our tester will also a

ept w with probabilityat least 2/3, as desired. 33



3.7. ALTERNATE DEFINITIONS OF DISTANCE 34Now, assume that dist(w,L) ≥ ε. In this 
ase, rdist(A,P1) = dist(w,L) ≥ ε and so T εwill reje
t A with probability at least 2/3. Our tester will therefore reje
t su
h w withprobability at least 2/3 as desired.We have 
onstru
ted ε-testers for the language L shown to be untestable in Theorem 4,and therefore P1 must be untestable under the rdist de�nition of distan
e. Lemma 6Lemmata 5 and 6, together with Corollary 6 show Tr ⊂ T . We now show the separation
Tmr ⊂ Tr. The proof is similar: We 
onstru
t a property where there is su�
ient�padding� to make Tr testing simple but Tmr testing would 
ontradi
t Theorem 4.We use the following property P2 of graphs (τG = {E2}). A graph G has P2 if the�loops� E(i, i) en
ode the language {u←uv←v} from Theorem 4. That is, P2 is determinedonly by the linear number of loops and the remaining E assignments 
an be arbitrary.More formally, a graph G with universe size n has P2 if there exists some 0 ≤ k ≤ n/2su
h that for all 0 ≤ i < k, E(i, i) is true i� E(2k − 1 − i, 2k − 1 − i) is true and for all
0 ≤ j < (n− 2k)/2, E(2k + j, 2k + j) is true i� E(n− 1 − j, n − 1 − j) is true.As before, we �rst show that P2 is testable using the rdist de�nition for distan
e. Thetester 
an again begin by 
he
king the parity of the universe, and so we assume that nis even.Lemma 7. Property P2 is testable under the rdist de�nition for distan
e.Proof. As before, we begin by showing that for su�
iently large n, there is no graph Gwith universe size n su
h that rdist(G,P2) ≥ ε.Re
all that for all (even) n there exist possible w ∈ {0, 1}n that are of the form
u
←
uv
←
v, for example 1n. Given G we 
reate G′ by 
hanging all E(i, i) assignments to betrue. This involves at most n modi�
ations. There is only one relation symbol, and sordist(G,P2) = dist(G,P2) ≤ dist(G,G′). There are n2 possible E assignments, and sothis is O(n)/n2 < ε where the inequality holds for su�
iently large n. Letting N(ε) bethe smallest value of n for whi
h the inequality holds, we 
an easily 
onstru
t a tester asin Lemma 5 by repla
ing �P1� with �P2�. Lemma 7It remains to show that P2 is not testable under the mrdist de�nition for distan
e.The proof is nearly identi
al to that of Lemma 6; given a Tmr style tester for P2, we
onstru
t testers using De�nition 3 for the language {u←uv←v} that was proven untestablein Theorem 4.Lemma 8. Property P2 is not testable under the mrdist de�nition for distan
e.Proof. Assume that P2 is testable under the rdist de�nition for distan
e. Then, thereexist ε-testers T ε using this de�nition for all ε > 0. We will show that the following isan ε-tester using De�nition 3 for the language L of Theorem 4. We denote the input by

w and note that it is a binary string with vo
abulary τS = {S1}.1. Run T ε and inter
ept all queries. 34



3.7. ALTERNATE DEFINITIONS OF DISTANCE 352. When a query is made for E(i, i), return the value of S(i) in w.3. When a query is made for E(i, j) and i 6= j, return 0.4. Output the de
ision of T ε.Given a string w, we simulate T ε on the graph G with �loops� in the graph 
orrespond-ing to bits of w and all other edges absent. Note that G has the same universe size as wand that G has P2 i� w ∈ L. Therefore, if w ∈ L, our tester will a

ept with probabilityat least 2/3, as desired.Now, assume that dist(w,L) ≥ ε. There are exa
tly two subtypes of a binary relation:the loops and the non-loops. The S-distan
e (see De�nition 12) for the subtype Sof non-loops is zero, and so mrdist(G,P2) = SL-dist(G,P2) where SL is the subtypeof loops ({{1, 2}}). This in turn is equal to dist(w,L) by the de�nition of G and somrdist(G,P2) ≥ ε. The tester T ε will then reje
t G with probability at least 2/3, and soour tester will reje
t w with probability at least 2/3. Lemma 8Lemmata 7 and 8, together with Corollary 6 yield the desired Tmr ⊂ Tr. We havealready shown Tr ⊂ T and so the proof is 
omplete. Theorem 10

35
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Chapter 4The Classi�
ation Problem forTestabilityIn this se
tion we 
onsider the 
lassi�
ation problem of �rst-order logi
 for testability.That is, our goal is to rea
h a 
omplete 
lassi�
ation of the pre�x 
lasses of �rst-orderlogi
 into testable 
lasses (those that 
ontain only testable properties) and untestable
lasses (those that 
ontain an untestable property). This program is inspired by thetraditional 
lassi�
ation problem, that of de
idable and unde
idable 
lasses, and also byresults in property testing related to the testability of 
ertain logi
al 
lasses su
h as thoseby Alon et al. [2℄.We begin by brie�y des
ribing the traditional 
lassi�
ation problem, and in parti
ularfo
us on the results that allow us to draw parallels to re
ent results in property testing.Next, we introdu
e the previous results that begin a 
lassi�
ation for testability. Finally,we prove an additional 
lass, traditionally known as A
kermann's 
lass with equality, tobe a testable 
lass and brie�y mention a few open problems.4.1 History of the Classi�
ation ProblemHere we outline some of the history of the traditional 
lassi�
ation problem, fo
usingespe
ially on results where we 
an draw an expli
it 
omparison with testability results.Börger et al. [11℄ provide the 
omplete 
lassi�
ation and its history, as well as proofs andan overview of related topi
s.The 
lassi
al de
ision problem was 
onsidered the 
entral problem of logi
 in the 20th
entury. In this problem, we are given a senten
e of �rst-order logi
 and wish to de
idewhether or not it is satis�able (or, roughly equivalently, valid). Although Chur
h andTuring showed the problem to be unde
idable in general, Löwenheim [32℄ had shownin 1915 that the monadi
 
ase is de
idable. There was therefore an enormous e�ort tounderstand exa
tly whi
h 
lasses of formulas are de
idable and whi
h 
lasses are not.The traditional 
lassi�
ation problem is now 
onsidered to be essentially resolved and a
omplete 
lassi�
ation has been obtained. By 
omplete we mean that for any pre�x 
lass36



4.1. HISTORY OF THE CLASSIFICATION PROBLEM 37of �rst-order logi
, either the 
lass is 
ontained in a 
lass that is 
lassi�ed as de
idableor it 
ontains a 
lass that is 
lassi�ed as unde
idable. That su
h a 
omplete and �nite
lassi�
ation exists seems to be quite fortunate.4.1.1 Gurevi
h's Classi�ability TheoremThat a 
omplete and �nite 
lassi�
ation of the pre�x vo
abulary 
lasses of �rst-order logi
 exists is explained by Gurevi
h's Classi�ability Theorem (see Se
tion 2.3of Börger et al. [11℄). Fortunately, this phenomenon is not restri
ted to de
idabilityand the theorem gives su�
ient 
riteria for su
h a 
lassi�
ation to exist. A 
ompletestatement and proof 
an be found in Börger et al. [11℄ while Gurevi
h [24℄ gives a ni
eintrodu
tion to the theorem and its history.We 
an summarize Gurevi
h's Classi�ability Theorem in the following way. Let Drefer to the set of pre�x vo
abulary 
lasses that have the property in question (in our
ase, D is the set of testable pre�x vo
abulary 
lasses) and U refer to its negation (theuntestable pre�x vo
abulary 
lasses). Then, if D is 
losed downward and under �niteunions, there exists a �nite set M of the minimal 
losed 
lasses of U su
h that U is theupwards 
losure of M and all members of M are standard1.The testable 
lasses are 
losed downwards and we have shown (Theorem 5) that theyare 
losed under �nite unions. Therefore, there exists a �nite set M of standard 
lassessu
h that every pre�x vo
abulary 
lass that 
ontains an untestable property also 
ontainsone of the 
lasses in M . Written in a table, M is a �nite way to give a 
omplete
lassi�
ation of the pre�x vo
abulary 
lasses for testability.Our goal of eventually �nding a 
omplete 
hara
terization of the testable pre�x 
lassesis then obtainable: there exists a �nite table providing su
h a 
lassi�
ation. In thefollowing se
tion we state some of the 
lassi
al results for the 
lassi�
ation for de
idabilityand 
ompare them with what is known regarding the 
lassi�
ation for testability. It isworth noting that we do not ne
essarily state the optimal 
lassi
al results, but insteadfo
us on those that 
losely parallel the known results for testability.4.1.2 Classi�
ation SimilaritiesMonadi
 �rst-order logi
2 was the �rst fragment of �rst-order logi
 to be proven de
id-able. We begin with this result, whi
h is due to Löwenheim [32℄. This subse
tion is anoverview of the similarities and does not 
ontain proofs. Later results in Subse
tion 4.3depend on the testability results for monadi
 �rst-order logi
, whi
h we review moreformally in Se
tion 4.2.Monadi
 logi
s are very well studied in the literature. Of parti
ular relevan
e to us arethe results 
onne
ting these logi
s to formal languages. Perhaps the most well-known is1Standard 
lasses are those with �ni
e� representations in our notation, see Börger et al. [11℄.2Monadi
 �rst-order logi
 is the set of formulas in whi
h all predi
ate symbols are monadi
. 37



4.1. HISTORY OF THE CLASSIFICATION PROBLEM 38Bü
hi's [12℄ result that monadi
 se
ond-order logi
 
hara
terizes the regular languages.We are fo
used on (a very restri
ted) �rst-order logi
, but we 
an at least 
on
lude thatall monadi
 �rst-order formulas express regular properties, given that monadi
 �rst-orderlogi
 is a subset of monadi
 se
ond-order logi
.More immediately relevant is the result by M
Naughton and Papert [33℄ that monadi
�rst-order logi
 
hara
terizes the star-free regular languages. Their de�nition of �rst-order logi
 in
ludes an ordering predi
ate ≤ as well as some additional arithmeti
 thatis not present in our logi
, and so the properties expressible in our �rst-order logi
 are astri
t subset of the star-free regular languages.In any 
ase, the star-free regular languages are a subset of the regular languages.Together with the result by Alon et al. [4℄, this immediately implies that all propertiesexpressible in monadi
 �rst-order logi
 are testable. Using an extension of our notationfrom Se
tion 2.4, we 
an say that [all, (ω)]= is testable. This is the 
lass proven de
idableby Löwenheim [32℄, providing the �rst similarity between the 
lassi�
ation for de
idabilityand that for testability.However, we 
an say more than this. As previously mentioned, Bü
hi [12℄ showedthat monadi
 se
ond-order logi
 
hara
terizes the regular languages. As Alon et al. [4℄themselves note, the 
ombination of their result and Bü
hi's implies that all monadi
se
ond-order formulas express testable properties. This is not part of the 
lassi�
ationproblem for �rst-order logi
, but it is worth making a 
omparison with Skolem's [43℄extension to se
ond-order logi
 of Löwenheim's result. That is, monadi
 se
ond-orderlogi
 is another example of a 
lass that is both testable and de
idable.If we return to �rst-order logi
, Skolem [44℄ showed a pre�x vo
abulary 
lass to be aredu
tion 
lass. As a result of developing Skolem Normal Form, he showed the 
lass offormulas where all universal quanti�ers pre
ede all existential quanti�ers, [∀∗∃∗, all] is aredu
tion 
lass. Although it was of 
ourse unknown at the time, this implies that the
lass is unde
idable. This 
lass is not a minimal unde
idable 
lass and Skolem's resultwas later improved.Alon et al. [2℄ 
onsidered testing graph properties and showed there exists an untestableproperty (an en
oding of graph isomorphism) that is expressible in [∀∗∃∗, (0, 1)]=. Thisis not identi
al to the unde
idable 
lass 
onsidered by Skolem [44℄, but it is 
lose enoughto be interesting. Among the several improvements of Skolem's result is, for example,Surányi's [46℄ result that [∀3∃, (0, ω)] is a redu
tion 
lass. The en
oding of graph isomor-phism shown to be untestable by Alon et al. [2℄ 
an be expressed as a formula with twelveuniversal quanti�ers and �ve existential quanti�ers3 while Theorem 12 below implies thatone universal quanti�er is not enough to express any untestable graph property. It wouldbe worthwhile to attempt to �nd the minimum number of quanti�ers needed to expresssu
h a property, and also to look at other en
odings of isomorphisms.Alon et al. [2℄ also showed a positive result: that [∃∗∀∗, (0, 1)]= is testable. The restri
-tion to graphs here is more unfortunate. The 
lass [∃∗∀∗, all]= for pure predi
ate logi
 is3That is, by a formula in [∀12
∃

5, (0, 1)]=. 38



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 39very well-known and generally 
alled Ramsey's 
lass. This is a maximal de
idable 
lasswhose de
idability was �rst shown by Ramsey [37℄. A generalization of the testabilityresult to arbitrary vo
abularies would be very desirable.4.2 Testability of Monadi
 First-Order Logi
In Subse
tion 4.1.2 we mentioned that we 
an 
ombine the result by M
Naughton andPapert [33℄ that monadi
 �rst-order logi
4 
hara
terizes the star-free regular languageswith that of Alon et al. [4℄ showing the regular languages are testable. This allows us to
on
lude that all properties expressible in monadi
 �rst-order logi
 are testable. However,we will use this result in our proof for the testability of A
kermann's 
lass with equalityin Se
tion 4.3, and so we 
onsider this 
ombination more formally.Our goal is to prove that monadi
 �rst-order logi
, as we have de�ned it, expressesonly testable properties. Our de�nition of �rst-order logi
 does not 
ontain ordering orsymbols for su

essor and prede
essor, unlike the de�nitions used by M
Naughton andPapert [33℄.The proof is stru
tured in the following way. First, in Subse
tion 4.2.2 we show that allproperties expressible by monadi
 �rst-order senten
es 
an be expressed in a 
ertain waywhi
h we 
an easily translate to a regular expression. Regular expressions 
hara
terizethe regular languages and so all of our properties are regular. This part of the proof isbased on that given by M
Naughton and Papert [33℄ although our version is simpli�eddue to the absen
e of the ordering and other symbols mentioned above.Next, Alon et al. [4℄ have shown that all regular languages are testable. The proofuses the 
hara
terization of regular languages as �nite automata. We omit the detailedproof here for spa
e 
onsiderations. Basi
 results 
on
erning the regular languages, su
has the equivalen
e of regular expressions and �nite automata, 
an be found in Hop
roftand Ullman [26℄.4.2.1 Basi
sOur proofs will use the vo
abulary τM := {R1
1, . . . , R

1
s}, and so there are s monadi
predi
ate symbols named Ri. As always, if the universe of su
h a stru
ture has size n, welabel it with the non-negative integers {0, 1, . . . , n − 1} and map these to the 
hara
terpositions of n-
hara
ter strings from left to right. That is, universe member 0 
orrespondsto the leftmost 
hara
ter position in the string and n− 1 to the rightmost.Regular languages are de�ned over alphabets, traditionally denoted by Σ. The alpha-bet 
orresponding to τM will have 2s symbols, whi
h we will name with binary strings oflength s in the obvious way, Σ := {00 · · · 00, . . . , 11 · · · 11}. These denote the possible as-signments Ri(x) for some �xed 
hara
ter position x. For example, the leftmost 
hara
ter4Their de�nition of monadi
 �rst-order logi
 allows ordering and other symbols that are not presentin ours. 39



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 40in a string is 00 · · · 00 i� Ri(0) is false for all 0 ≤ i ≤ s. Likewise, the rightmost 
hara
teris 00 · · · 01 i� Ri(n − 1) is false for all 0 ≤ i < s and Rs(n − 1) is true. Any reasonableen
oding will work provided that the 
hara
ter at position i 
an be determined using a
onstant number of queries. We will use c to denote 
hara
ters in Σ.The basi
 idea is to treat formulas ∃x : ψ with the regular expression Σ∗RΣ∗, where
R is a union over the 
hara
ters for whi
h ψ holds true. More 
ompli
ated formulas arehandled largely by using the 
losure properties of regular languages.4.2.2 Monadi
 First-Order Logi
 is RegularThe goal of this subse
tion is to show the following theorem. This is a weaker resultthan that shown by M
Naughton and Papert [33℄.Theorem 11. All properties expressible in monadi
 �rst-order logi
 are regular lan-guages.Proof. We are given a monadi
 �rst-order formula ϕ of type τM = {R1

1, . . . , R
1
s}. Withoutloss of generality, we 
an assume that ϕ is in prenex normal form and by renaming thevariables, that no variable is bound by more than one quanti�er. We rename the variablesto be x1, . . . , xa in order, so that ϕ is of the form

ϕ = π1x1π2x2 · · · πaxa : ψwhere ea
h πj is either ∃ or ∀ and ψ is quanti�er free.Regular expressions are inherently ordered in the sense that they are written from leftto right. However, we do not know if x1 < x2 in formulas su
h as ∃x1∃x2 : ψ. This willbe handled by breaking the formula into a disjun
tion of three formulas, ea
h enfor
ingan order. One formula will 
orrespond to x1 < x2, one to x1 > x2 and one to x1 = x2.We do this by using restri
ted quanti�ers.De�nition 19. Quanti�ers of the form ∃τ2
τ1x : ψ or ∀τ2

τ1x : ψ are restri
ted quanti-�ers. These quanti�ers are interpreted in the following way. The formula ∃τ2
τ1x : ψis equivalent to ∃x : ((τ1 ≤ x ≤ τ2) ∧ ψ) and the formula ∀τ2

τ1x : ψ is equivalent to
∀x : ((τ1 ≤ x ≤ τ2) → ψ).The range of the quanti�ed variable is restri
ted by τ1 and τ2. Note that these quan-ti�ers are not part of our de�nition of monadi
 �rst-order logi
. However, we will showthat all formulas in our logi
 
an be expressed in a spe
ial form using these quanti�ers.First, we repla
e all universal quanti�ers ∀xi : ψ with duals of existential quanti�ers
¬∃xi : ¬ψ. Next, we will 
onvert all quanti�ers to restri
ted quanti�ers and ensure thatthe 
urrent formula is always equivalent to the original.We begin with x1. There are no variables in the ordering yet and so we repla
e ∃x1 : ψwith ∃n−1

0 x1 : ψ, keeping any initial negation. Indu
tively, we 
onsider xi+1 and haveexisting orderings over the i variables that have already been handled. 40



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 41Let the 
urrent formula be ϕ = α(∃xi+1 : ψ), where α denotes the part of the formulapre
eding the quanti�er on xi+1. We repla
e γ := (∃xi+1 : ψ) with an equivalent dis-jun
tion (γ1 ∨ · · · ∨ γ2i+1) of at most 2i+ 1 formulas that 
orrespond to the possible neworderings, 
reating
ϕ′ = α(γ1 ∨ · · · ∨ γ2i+1),whi
h is logi
ally equivalent to ϕ.There are at most i 
ases where xi+1 is equal to one of the previous variables. Theseare handled by letting γj be the formula γ with the quanti�er ∃xi+1 removed and allo

urren
es of xi+1 repla
ed with xj , for 1 ≤ j ≤ i. Cases where more than two variablesare equal to ea
h other 
an be easily handled in several ways, for example by renamingvariables or �skipping� removed quanti�ers.By indu
tion, in ϕ there is a �xed ordering on the variables that have already beenhandled. For ea
h adja
ent pair (α, β) in this ordering we 
onstru
t a γj that is identi
alto the original formula γ ex
ept that ∃xi+1 is repla
ed with ∃β−1

α+1xi+1. In addition, wemust add formulas where xi+1 is the smallest variable as well as the largest. Theseformulas are 
onstru
ted by repla
ing the quanti�er with ∃α−1
0 xi+1 and ∃n−1

β+1xi+1, where
α is the minimum and β the maximum element in the ordering. This is at most anadditional i+ 1 formulas and the resulting ϕ′ is equivalent to the original formula.We 
ontinue applying the above pro
ess until all quanti�ers have been repla
ed byrestri
ted quanti�ers. At this point we have a (
onsiderably larger) formula su
h thatthere is always an ordering of the variables. It is now simple to determine whetherequality holds between two variables and so we 
an repla
e all instan
es of xi = xj withlogi
al truth, written ⊤, if i = j and with logi
al falsehood, written ⊥, otherwise. We
an then make the obvious simpli�
ations if desired. The resulting formula satis�es theprevious 
onditions and no longer 
ontains equality symbols, whi
h we have repla
edwith restri
ted quanti�ers and 
ase distin
tions.All predi
ate symbols are monadi
. We move all Ri(x) predi
ates to their minimum�depth,� by whi
h we mean that Ri(x) may o

ur in the s
ope of the quanti�er on xbut must not o

ur in the s
ope of any variable whose quanti�er o

urs in the s
ope ofthat on x. This is done using the following general pro
edure, whi
h is borrowed fromM
Naughton and Papert [33℄.Let Ri(xj) be a relation violating the 
ondition that o

urs in the formula. Assumethe formula ϕ is γ∃τ2

τ1xj : ψ. We repla
e this with
γ∃τ2

τ1xj : ((Ri(xj) ∧ ψ1) ∨ (¬Ri(xj) ∧ ψ2)) .Here, ψ1 is the result of repla
ing all o

urren
es of Ri(xj) in ψ with ⊤, and ψ2 is theresult of repla
ing these o

urren
es with ⊥.We also want to ensure that all quanti�ed formulas are at their minimum depth. Thisis be
ause we will use the quanti�er ∃τ2
τ1x : ψ to 
onstru
t a regular expression for thepart of the string 
orresponding to the interval [τ1, τ2], and quanti�ers that are not at41



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 42their minimum depth 
an �es
ape� this interval. We use essentially the same pro
ess thatwe used to move predi
ate symbols to their minimum depths.We will 
onsider the quanti�er ∃τ2
τ1x : ψ. By 
onstru
tion, there is only one 
ase whereboth τ1 and τ2 
ontain no quanti�ed variables. This is where τ1 = 0 and τ2 = n− 1, andit only o

urs at the outermost level. Without loss of generality, we will assume that yis the quanti�ed variable in τ1 = y + 1 and z is the quanti�ed variable in τ2. We willalso assume that the quanti�er on y is in the s
ope of the quanti�er on z. Cases where

τ1 = 0 or τ2 = n − 1 are similar although only one of these quanti�ed variables exists,and so the minimum depth is immediately within the s
ope of that variable.The formula ϕ is
α∃τ4

τ3 zβ∃τ6
τ5yγ(∃z−1

y+1x : ψ)ζ.We move (∃z−1
y+1x : ψ) to its minimum depth in the same way we moved predi
ate symbols,repla
ing ϕ with

ϕ′ := α∃τ4

τ3 zβ∃τ6
τ5y :

[(

(∃z−1
y+1x : ψ) ∧ (γ⊤ζ)

)

∨
(

¬(∃z−1
y+1x : ψ) ∧ (γ⊥ζ)

)]

.The quanti�er on x was the innermost quanti�er that did not satisfy the new 
ondi-tion, and so all quanti�ers within ψ are at their minimum depths. There quanti�ersimmediately within ψ are therefore of the form ∃z−1
x+1x1 or ∃x−1

y+1x2. This is be
ause our
onstru
tion has ensured that quanti�ers always range over the interval spanned by ad-ja
ent pairs in the ordering. In addition, all variables o

urring within ψ are either xor they are bound by quanti�ers that o

ur inside ψ. This is be
ause we have movedall predi
ates to their minimum depth. Indu
tively, ψ depends only on the interval
[y+ 1, z − 1] and so ϕ′ is logi
ally equivalent to ϕ. If the input is the empty string, then
∃z−1

y+1x : ψ is false by de�nition and the formula evaluates as it would have. We repeatthe pro
ess as ne
essary.Finally, we will ensure that in all quanti�
ations ϕ = ∃τ2
τ1x : ψ, the formula ψ is a 
on-jun
tion over atomi
 formulas, negated atomi
 formulas, quanti�ed formulas and negatedquanti�ed formulas. This is simple to do. We begin with the innermost quanti�
ationthat does not satisfy the 
ondition. If we treat quanti�ed formulas as units, we begin by
onverting ϕ into disjun
tive normal form,

ϕ1 = ∃τ2
τ1x : (ψ1 ∨ · · · ∨ ψc) ,where c is the number of 
lauses. This is equivalent to

ϕ′ =
(

∃τ2
τ1x : ψ1

)

∨ · · · ∨
(

∃τ2
τ1x : ψc

)

.Ea
h quanti�ed formula is a 
onjun
tion and the pro
ess is iterated as ne
essary.The result we will 
all a basi
 formula. These formulas satisfy the following 
onditions,whi
h will help us 
onstru
t regular expressions from them.1. All quanti�ers are existential. 42



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 432. All quanti�ed formulas have a �xed ordering of the variables and no two variablesare equal to ea
h other.3. Equality does not o

ur.4. All predi
ate symbols o

ur at �minimum� depth. Predi
ate symbols are the onlyway for a variable to appear in these formulas, and so all variables x o

ur only atminimum depth, omitting their appearan
e on the restri
ted quanti�ers.5. All quanti�ers are at their minimum depth.6. All quanti�ers are over 
onjun
tions of atomi
 symbols, negated atomi
 symbols,quanti�ed formulas and negated quanti�ed formulas.We will now show that a regular expression 
orresponds to ea
h of these formulas.Re
all that the regular expressions are 
losed under 
omplement, union and interse
tion.First, the formula ⊤ 
orresponds to the regular expression Σ∗ and ⊥ to ∅. The regularexpressions are 
losed under 
omplement, and so the regular expression for ¬φ is the
omplement of the expression for φ.Next, all quanti�ed formulas are of the form
φ = ∃τ2−1

τ1+1x : (α ∧ β ∧ γ),where α is a 
onjun
tion of monadi
 predi
ate symbols (and possibly ⊤ and ⊥) whoseatomi
 parts are x, β is a (possibly empty) 
onjun
tion of quanti�ed formulas rangingfrom τ1 + 1 to x − 1, and γ is a (possibly empty) 
onjun
tion of quanti�ed formulasranging from x+ 1 to τ2 − 1.There is a (possibly empty) set of 
hara
ters that 
orrespond to assignments of the
Ri(x) that model α. If the set is empty, then φ is equivalent to ⊥ and so the regularexpression ∅ 
orresponds to it. Otherwise, we let C be regular expression formed by theunion of these 
hara
ters.By indu
tion we have regular expressions for ea
h of the quanti�ed formulas appear-ing in β and γ. The regular expression L 
orresponding to β is formed by taking theinterse
tion of the regular expressions for ea
h of the quanti�ed formulas appearing init. The regular expressions are 
losed under interse
tion, and so L exists. Likewise,the regular expression R 
orresponding to γ is formed by taking the interse
tion of theregular expressions for ea
h of the quanti�ed formulas appearing in it.The regular expression 
orresponding to φ is then the 
on
atenation LCR. This 
or-responds to the part of the string from positions τ1 + 1 to τ2 − 1.Finally, disjun
tions may appear outside of quanti�ed formulas at the outermost level.These are disjun
tions of quanti�ed formulas ranging from 0 to n − 1 and so the reg-ular expression 
orresponding to the disjun
tion is the union of the expressions for theformulas.The regular languages are 
losed under interse
tion, union and 
omplement, and so wehave shown that monadi
 �rst-order logi
 
hara
terizes a subset of the regular languages.43



4.3. ACKERMANN'S CLASS WITH EQUALITY 444.3 A
kermann's Class with EqualityIn Se
tion 4.1 we reviewed a small portion of the history of the 
lassi�
ation problemfor de
idability. We found several similarities between the 
lassi�
ation for de
idabilityand the 
urrently known 
lassi�
ation for testability. In this se
tion we 
onsider anadditional 
lass, generally referred to as A
kermann's 
lass with equality, and show this
lass to be testable.In our notation (see Se
tion 2.4), we denote A
kermann's 
lass with equality 2.4)by [∃∗∀∃∗, all]=. It is the set of senten
es 
ontaining at most one universal quanti�er.Equality and any number of predi
ate symbols of any arities may o

ur, but we 
onsideronly pure predi
ate logi
 and so there are no fun
tion symbols.A
kermann's 
lass, without equality, was �rst shown to be de
idable and to have the�nite model property by A
kermann [1℄. If we also allow equality and one unary fun
tionsymbol, the resulting 
lass is Shelah's 
lass. The de
idability of this 
lass was proven byShelah [41℄, however it does not have the �nite model property.In Se
tion 4.1 we des
ribed similarities between the traditional 
lassi�
ation for de
id-ability and the 
urrently known 
lassi�
ation for testability. However, all of the de
idable
lasses mentioned there have the �nite model property and so all of the similarities wefound also hold between the 
lassi�
ation for the �nite model property and the 
lassi-�
ation for testability. One interesting open problem is therefore to determine whetherShelah's 
lass is testable. This would require a further generalization of our de�nitionsto allow fun
tion symbols.Returning to the history of A
kermann's 
lass with equality, Kolaitis and Vardi [29℄showed that the satis�ability problem for the A
kermann 
lass with equality is 
ompletefor NEXPTIME. They also showed that a 0-1 law holds for senten
es of existentialse
ond-order logi
 where the �rst-order part belongs to A
kermann's 
lass with equality.In the absen
e of equality, Grädel [23℄ showed that satis�ability for A
kermann's 
lassis de
idable in deterministi
 exponential time. The main result of Chapter 4 is thetestability of A
kermann's 
lass with equality, whi
h we show in the next se
tion.4.3.1 Testability of A
kermann's Class with EqualityWe would like to assume that the the formulas we 
onsider 
ontain at least one pred-i
ate symbol with arity at least two. Therefore, we must treat the remaining 
asesspe
ially, whi
h we do now. For formulas that 
ontain no predi
ate symbols, we 
ansimply 
ompute ϕ with at most one query. These are therefore trivially testable. First-order formulas that 
ontain only monadi
 predi
ate symbols 
hara
terize a subset of theregular languages and are therefore testable, see Se
tion 4.2. All remaining 
ases 
ontainat least one predi
ate symbol with arity at least two.The proof is similar to many of the proofs in Chapter 3. For an arbitrary formulain A
kermann's 
lass with equality, we show that either there are only �nitely many44



4.3. ACKERMANN'S CLASS WITH EQUALITY 45stru
tures that are ε-far from having the property de�ned by the formula, or there areonly �nitely many stru
tures that are models of the formula.Theorem 12. All properties expressible by a formula in [∃∗∀∃∗, all]= are testable.Proof. Let P be the property expressed by an arbitrary formula ϕ in [∃∗∀∃∗, all]=. Then,we 
an rename the variables in ϕ so that it takes the following form, where ψ is quanti�er-free,
ϕ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zb : ψ.We 
an further assume that P is a property of stru
tures with vo
abulary τ , and wetherefore have s relation symbols Ri of arity ai. We let m := maxi(ai) be the maximumarity. The stru
tures in the proof are all impli
itly of vo
abulary τ .Either property P holds for at most �nitely many stru
tures or it holds for in�nitelymany. We 
an trivially test any property that holds for at most �nitely many stru
turesby making the 
onstant number of queries required to determine if the input is exa
tlyone of the models. Therefore, it remains only to 
onsider the 
ase where ϕ has in�nitelymany models.We will show that in this 
ase, there are only �nitely many stru
tures A ∈ STRUC (τ)that satisfy dist(A,P ) ≥ ε (
f. Lemma 9). There is therefore a fun
tion N(ε) su
hthat for any A ∈ STRUC (τ), if #(A) > N(ε) then the stru
ture A is not ε-far from P .Therefore, the following is an ε-tester for P on input A with size #(A) = n.1. If n ≤ N(ε), query all assignments in A and de
ide exa
tly whether A has P .2. Otherwise, a

ept.It is worth noting that in the non-uniform 
ase, the N(ε) is simply a 
onstant. It doesdepend on the vo
abulary, but N(ε) is 
omputable and so P is also uniformly testable.The proof is 
omplete 
onditional on Lemma 9, whi
h we show next.Lemma 9. Let P be the property with vo
abulary τ expressed by
ϕ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zb : ψwhere ψ is quanti�er free. If ϕ has in�nitely many models, then there exists an N(ε) forevery ε > 0 satisfying the following. If A ∈ STRUC (τ) has universe size n > N(ε), thendist(A,P ) < ε.Proof. Let A ∈ STRUC (τ) be arbitrary and assume it is su�
iently large. We will showthat there exists an A′ su
h that A′ |= ϕ (and so A′ has P ) and dist(A,A′) < ε.We begin by showing in Lemma 10 that there must exist a model, A1, of ϕ su
h thatthe size of the universe of A1 satis�es a+ 1 ≤ #(A1) ≤ κ1, where

κ1 := a+ 3b
(

a+ 2
Ps

i=1

Pai
j=1 (ai

j )aai−j
)

. 45



4.3. ACKERMANN'S CLASS WITH EQUALITY 46The 
onstant κ1 is determined only by ϕ and does not depend on the input stru
ture.It is possible to prove tighter bounds on #(A1) but this su�
es for our purposes.Next, we will show in Lemma 11 that we 
an easily add additional elements to theuniverse of A1 and 
onstru
t larger models of ϕ by making only a small number ofmodi�
ations. We will then use an indu
tive argument to show that, for su�
ientlylarge input stru
tures A, we 
an 
onstru
t A′ |= ϕ where A and A′ have the sameuniverse size and dist(A,A′) < ε.We now prove the two ne
essary lemmata.Lemma 10. If ϕ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zbψ has in�nitely many models with vo
abu-lary τ , then it has a model A1 su
h that the 
ardinality of the universe in A1 satis�es
a+ 1 ≤ #(A1) ≤ κ1.Proof. It su�
es to 
onsider 
ases where ϕ has in�nitely many models with vo
abulary τ .Let B be the smallest5 model of ϕ su
h that #(B) ≥ a+ 1. We are guaranteed that Bexists be
ause there are in�nitely many models. The proof is by 
ontradi
tion; assume

#(B) > κ1. We will show that we 
an 
onstru
t a smaller6 model of ϕ, violating therequirement that B is the smallest. Therefore, the smallest model of ϕ larger than a+ 1must be of size at most κ1.We have 
hosen B su
h that it models ϕ, and therefore there exists a tuple of a elements
(u1, . . . , ua) su
h that ϕ is satis�ed when the existential quanti�ers bind these elementsto (x1, . . . , xa). If there are multiple possible 
hoi
es for the xi, we 
hoose one arbitrarily.We now 
onsider the xi and the substru
ture indu
ed by them to be �xed. We refer tothis substru
ture as Ax.There are at most κ2 := a+ 2

Ps
i=1

Pai
j=1 (ai

j )aai−j many distin
t stru
tures 
onstru
tedby adding an element labeled y to Ax when we in
lude the stru
tures where the label yis simply pla
ed on one of the xi. We let v ≤ κ2 be the number of su
h stru
tures thato

ur in B and assume there is an enumeration of them.We know that B models ϕ, and so for ea
h of these v stru
tures there exist b elements,whi
h we 
all w1, . . . , wb, su
h that when we label wi with zi, the stru
ture indu
ed by
(x1, . . . , xa, y, z1, . . . , zb) models ψ. We 
onstru
t Ai,j for 1 ≤ i ≤ 3 and 1 ≤ j ≤ v su
hthat Ai,j is a 
opy of the w1, . . . , wb used for the j-th stru
ture in our enumeration. Inea
h of these 
ases, we 
onne
t the Ai,j to Ax in the same way as in B, by modifyingassignments on tuples (Ax ∪Ai,j)

ak .For ea
h wh in Ai,j, we must 
onsider the 
ase where y is bound to wh. By 
onstru
tionthe substru
ture indu
ed by (x1, . . . , xa, y) o

urs in B. We assume that it is the k-thstru
ture in our enumeration. In this 
ase we will use the elements of Ai+1 mod 3,k to
onstru
t a stru
ture satisfying ψ. Therefore, we modify the assignments as neededto 
reate a stru
ture identi
al to that in B satisfying ψ and 
laim that the resultingstru
ture satis�es ϕ. Before this step we have not modi�ed any assignments �spanning�5If there are multiple �smallest� models, 
hoose one arbitrarily.6But still of size at least a + 1. 46
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Ax

A1,1

A1,2

A1,v

A3,1

A3,2

A3,v

A2,1

A2,2

A2,vFigure 4.3.1: Stru
ture A1the 
olumns of A1 (see Figure 4.3.1) and so there are no assignments that we modifymore than on
e.Counting the number of elements, we have at most a + 3bv ≤ a + 3bκ2 = κ1. If
#(A1) < a+ 1, we 
an �grow� it by adding additional 
olumns to A1 in Figure 4.3.1 to
onstru
t a new A1 satisfying the requirements of the Lemma. Lemma 10Our goal is to 
onstru
t an A′ that has property P by making only a small number of
hanges. We will make the substru
ture indu
ed by a 
onstant-sized part of A′ equivalentto the A1 shown to exist above. The size of A1 is upper-bounded by a 
onstant, andso this will require only 
onstantly many modi�
ations to assignments. However, wemust also deal with the other elements of A. We will use the following lemma for theseremaining elements.Lemma 11. Let ϕ = ∃x1 . . . ∃xa∀y∃z1 . . . ∃zbψ and assume there exists an A |= ϕ, su
hthat #(A) ≥ a+ 1. Then, for any stru
ture A′ 
ontaining A as an indu
ed substru
turewhere #(A′) = #(A)+1, we 
an 
onstru
t a model of ϕ by modifying a 
onstant numberof assignments.Proof. A′ 
ontains an indu
ed 
opy of A and one additional element, whi
h we will denoteby q. By assumption, A is a model of ϕ and therefore 
ontains an a-tuple (u1, . . . , ua)su
h that the formula is satis�ed when xi is bound to ui. In addition, the size of A is atleast a+ 1, and so it also 
ontains at least one additional element, whi
h we will 
all p.We will now make q equivalent to p.We begin by modifying the assignments ne
essary to make the stru
ture indu
edby (x1, . . . , xa, q) identi
al to that indu
ed by (x1, . . . , xa, p). This requires at most
∑s

i=1

∑ai

j=1

(ai

j

)

aai−j = O(1) modi�
ations. There must exist (v1, . . . , vb) in A su
h that
ψ is satis�ed when zi is bound to vi and y to p. We now modify the assignmentsne
essary to make the stru
ture indu
ed by (q, v1, . . . , vb) identi
al to that indu
ed47
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7. This requires at most an additional ∑s

i=1

∑ai

j=1

(ai

j

)

bai−j = O(1)modi�
ations. The resulting stru
ture has #(A) + 1 elements, models ϕ and was 
on-stru
ted from A′ by making only a 
onstant number of modi�
ations to assignments.Lemma 11Now, given a su�
iently large stru
ture A, we will 
onstru
t A′ by making only alinear8 number of modi�
ations, and ensure that A′ |= ϕ.We begin by sele
ting arbitrarily #(A1) elements and making the indu
ed substru
tureidenti
al to the A1 proven to exist in Lemma 10. The size of A1 is 
onstant and thereforethere are at most a 
onstant number of assignments to modify. The A1 from Lemma10 is of size at least a + 1 and so it satis�es the 
onditions of Lemma 11. We pro
eedindu
tively: sele
t an element q of A that has not yet been sele
ted. Using Lemma10, make the substru
ture indu
ed by the elements sele
ted so far a model of ϕ. Ea
hstep requires O(1) modi�
ations and we require Θ(n) steps. By indu
tion we 
an then
onstru
t A′ from A su
h that A′ |= ϕ by making at most O(n) modi�
ations to theassignments of relations in A.Then, by de�nition, dist(A,A′) =
O(n)

Θ(nm)
< ε.The maximum arity is at least two, and so the inequality holds for n su�
iently large.This 
ompletes the proof of Lemma 9 and therefore that of Theorem 12. Lemma 9

7The 
ase where vi = p 
an be handled either by assuming it does not o

ur or by repla
ing vi with
q in (q, v1, . . . , vb).8Linear in n = #(A). 48
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Chapter 5Con
lusionIn this thesis we have introdu
ed a generalization of property testing whi
h we 
allrelational property testing. We gave a number of basi
 results in Chapter 3. In parti
ular,in Se
tion 3.7 we 
onsidered a number of natural alternative de�nitions of distan
e andshowed the relationships between the resulting de�nitions of testability. The de�nitionsform a stri
t hierar
hy, and the �best� de�nition depends on the problem in question.Relational databases are perhaps the most obvious example of massive stru
tures whereit would be promising to 
onsider appli
ations of property testing. Relational propertytesting is a natural way to 
hara
terize this problem. In addition, properties of databasesare often given by queries written in formal languages su
h as SQL and so it is very naturalto 
onsider the testability of properties expressible in various synta
ti
 restri
tions offormal languages. Finally, a generalization of property testing su
h as ours is required ifwe wish to 
onsider this kind of 
lassi�
ation problem.The se
ond major topi
 of this thesis is the 
lassi�
ation problem for testability, whi
hwe 
onsidered in Chapter 4. This problem is inspired by the 
lassi
al problem for de-
idability. The major result of Chapter 4 is the testability of A
kermann's 
lass withequality, another example of a similarity between the 
lassi�
ation for testability and the
lassi
al one for de
idability.A
knowledgementsI am indebted to my advisor, Prof. Thomas Zeugmann, for his 
onstant en
ouragementand advi
e, whi
h has signi�
antly improved both my resear
h life and this thesis. Iam very grateful for the support of the Japanese government via a Monbukagakushos
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