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1
SummaryIn property testing, we desire to distinguish between objets that have a given propertyand objets that are far from the property by examining only a small, randomly seletedportion of the objets. Property testing arose in the study of formal veri�ation, howevermuh of the reent work has been foused on testing graph properties.In this thesis we introdue a generalization of property testing whih we all rela-tional property testing. Beause property testers examine only a very small portion oftheir �inputs,� there are potential appliations to e�iently testing properties of mas-sive strutures. Relational databases provide perhaps the most obvious example of suhmassive strutures, and our framework is a natural way to haraterize this problem.We introdue a number of variations of our generalization and prove the relationshipsbetween them.The seond major topi of this thesis is the lassi�ation problem for testability. Us-ing the general framework developed in previous hapters, we onsider the testability ofvarious syntati fragments of �rst-order logi. This problem is inspired by the lassi-al problem for deidability. We ompare the urrent lassi�ation for testability withearly results in the lassi�ation for testability, and then prove an additional lass to betestable.
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2
Chapter 1IntrodutionProperty testing is an appliation of indution. Given a large objet, for example agraph or database, we wish to state some onlusion about the entire struture afterexamining only a small, randomly seleted sample. Lovász [31℄ has desribed it as the�third reinarnation� of this approah, after statistis and mahine learning.Property testers, whih we formally de�ne in Chapter 2, are probabilisti approxima-tion algorithms that examine only a small part of their input. Our goal is always todistinguish inputs that have some desired property from inputs that are far from havingit. We are espeially interested in lassi�ation, i.e., onsidering the testability of largelasses of properties.There is an enormous amount of reent work in property testing. In the followingsetion we introdue the history of the �eld, fousing partiularly on results that in�ueneour approah. Then, in Setion 1.2 we summarize the results and struture of this thesis.1.1 History of Property TestingWe begin with a brief history and overview of property testing. There are also anumber of surveys of property testing, see for example Fisher [15℄ or Ron [39℄.Property testing is a form of approximation where we trade auray for e�ieny.Probabilisti mahines appear to have been �rst formalized by de Leeuw et al. [30℄, whoshowed that suh mahines annot ompute deterministially unomputable propertiesunder reasonable assumptions. However, they expliitly mention the possibility thatprobabilisti mahines ould be more e�ient than deterministi mahines. An earlyexample of suh a result is the matrix multipliation heker of Freivalds [17℄.Property testing itself is generally onsidered to have arisen from program veri�ation(see Blum et al. [10℄ and Rubinfeld and Sudan [40℄). Here we have some program P (x)that purports to ompute a funtion f(x) and we wish to quikly verify that P is orretwith high probability. Rubinfeld and Sudan [40℄ de�ne the distane between two funtionswith the same domain and arity to be the fration of the domain that they assign di�erentoutputs. They then de�ne a tester for a set of funtions to be a program that aepts2



1.2. THESIS OVERVIEW 3
P if P is a program for some f in the set and rejets P with high probability if P is farfrom being a program for all f in the set.We an onsider a graph to be represented by a binary funtion e(x, y) that is 1 ifthere is an edge from x to y and 0 otherwise, whih is essentially an adjaeny matrix.Then, any set of suh funtions is a graph property, allowing us to onsider testable anduntestable graph properties. This approah was �rst onsidered by Goldreih et al. [20℄,where they show the existene of testable NP-omplete properties among many otherresults. However, if we are interested in properties of bounded-degree graphs, the adja-eny matrix enoding is wasteful. A related approah using inidene lists to representbounded-degree graphs has been studied by Goldreih and Ron [19℄. Parnas and Ron [36℄generalized this approah and attempted to move away from the funtional representationof strutures.It is possible to onsider properties of other strutures, suh as strings. Alon et al. [4℄showed that although all regular languages are testable, there exist untestable ontext-free languages (see Theorem 4 below). Chokler and Kupferman [13℄ extended the pos-itive result to the ω-regular languages. However, muh of the reent work has beenfoused on graph property testing. Alon and Shapira [6℄ have written a survey of someof the reent results in graph testing.If we onsider graph property testing, Alon et al. [2℄ took the �rst step towards alogial haraterization of the testable properties. They showed that all graph propertiesexpressible by �rst-order sentenes of the form �∃∀� are testable and that there existsa property expressible in the form �∀∃� that is not testable. This leads naturally tothe lassi�ation problem for testability, whih we onsider in Chapter 4. Their positiveresult was obtained by showing that all suh properties are essentially instanes of aolorability problem, all of whih they then showed to be testable. Fisher [16℄ showedvarious generalizations of this kind of olorability problem to also be testable.Later, Alon and Shapira [5℄ gave a (near) haraterization of the graph propertiestestable with one-sided error by algorithms unaware of the input size, a result that wasgeneralized to hypergraphs by Rödl and Shaht [38℄. Alon et al. [3℄ obtained an exatombinatorial haraterization of the graph properties testable with a onstant numberof queries.1.2 Thesis OverviewIn this thesis we partiularly fous on two issues in property testing. First, muh of thereent work in testing has been foused on graph properties. In ontrast, we seek a moregeneral framework, whih we all relational property testing. We introdue de�nitionsand notation in Chapter 2 and then show a number of basi results in Chapter 3.There are several possible variations of our framework. We prove the relationshipsbetween several suh variations in Setion 3.7. It is also possible to onsider appliationsof property testing. In partiular, we ould be interested in e�iently testing properties3



1.2. THESIS OVERVIEW 4of massive strutures suh as relational databases, a problem whih is haraterized byour framework. Properties of databases are generally de�ned in formal query languagessuh as SQL and so it is natural to onsider the testability of suh languages.The seond major topi in this thesis is the lassi�ation problem for testability, whihwe onsider in Chapter 4. The objetive here is to provide a lassi�ation of exatlywhih lasses of �rst-order logi are entirely testable and whih lasses are not, whih weonsider in the framework of relational property testing developed in earlier hapters. Weprovide an overview of the urrently known results for this lassi�ation and omparethem with the lassial results in the lassi�ation for deidability. We also show thetestability of Akermann's lass with equality, providing an additional parallel to thelassial ase.
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Chapter 2PreliminariesThe notations and de�nitions that we require are divided into several topis. We on-sider property testing in a very general setting instead of restriting ourselves to somepartiular type of struture suh as graphs.In order to disuss properties of graphs or of strings, it is neessary to �rst de�nethese types of strutures. We therefore de�ne fundamental notions suh as voabularies(types of strutures) and strutures in Setion 2.1. This provides a su�ient basis toformalize our de�nitions of property testing, whih we do in Setion 2.2. This thesisis partiularly foused on questions of formal logi in property testing, and so we givede�nitions related to logi in Setion 2.3 and those used for disussing the lassi�ationproblem in Setion 2.4.Before proeeding further, we reall fundamental de�nitions and introdue notation forfamiliar objets suh as natural numbers, sets and strings. Our de�nitions are standardand readers familiar with this material an safely skip to Setion 2.1.The natural numbers are denoted by N and are the set of non-negative integers. Wedenote the set of real numbers by R, although these are generally used for probabilitiesand so we usually use only real numbers p ∈ [0, 1]. We use bold haraters to denotevetors, for example x ∈ R

3. Vetors are row vetors unless otherwise noted, we denotethe transpose of a vetor by x
T . If x = (x1, . . . , xa) is a vetor, we all xi the i-thomponent of x.The empty set is denoted by ∅. If A and B are sets, then the union of A and B is

A ∪ B := {x | x ∈ A or x ∈ B}, the intersetion of A and B is A ∩ B := {x | x ∈
A and x ∈ B}, and the set di�erene of A and B is A\B := {x | x ∈ A and x 6∈ B}.We generalize the union and intersetion in the usual way, ⋃i≥0Ai := A0 ∪A1 ∪ . . . and
⋂

i≥0Ai := A0 ∩A1 ∩ . . . respetively.Set A is a subset of set B, written A ⊆ B if A\B = ∅. Set A is a proper subset of set
B, written A ⊂ B if A ⊆ B and B\A 6= ∅. The ardinality of a set A is the number ofelements in the set, written |A|.The produt of sets A and B is the set of ordered pairs, A × B := {(a, b) | a ∈
A and b ∈ B}. The set of n-tuples of set A, written An is de�ned indutively as follows.5



2.1. BASIC DEFINITIONS 6First, A1 = A. Then, An+1 = An × A. We will always omit the extra parentheses,and so (1, 2, 3) denotes ((1, 2), 3). The number of elements in the tuple is the arity n.A prediate P with arity n of set A is any subset of An. If x ∈ An, we will generallyabbreviate the proposition x ∈ P with P (x).An alphabet Σ is a set of symbols, and a string w over Σ is some sequene of thesymbols in Σ. The empty string is denoted by λ. For example, {0, 1} is the alphabetof binary strings and 0100 is an example of suh a string. We number the positions ina string w from left to right with 0, 1, . . . , n − 1 where n is the length of the string. Ofourse, the empty string λ has length 0. As usual, Σ∗ is the free monoid of Σ and anysubset L ⊆ Σ∗ of it is a language.Let w be a string over the alphabet Σ. The onatenation of strings u and v is uv,while the produt of two sets of strings L1 and L2 is L1L2 := {uv | u ∈ L1 and v ∈ L2}.The reversal of w is written ←
w. Position i of ←w orresponds to position n − 1 − i of w.Formally, ←λ = λ and ←

aw =
←
wa for a ∈ Σ.We mention a number of well-known lasses of languages, for example the lasses of reg-ular and ontext-free languages. Hoproft and Ullman [26℄ is a well-known introdutionto these lasses.It is natural to represent a binary string w ∈ {0, 1}∗ as a pair {U,S} where U is the�nite set of bit positions 0, . . . , n− 11 and S ⊆ A is a monadi prediate. We will de�ne

S(i) to mean that �bit position i of w is 1.�Graphs provide another natural example and allow for representation as a pair, (V, E).Here V is the set of verties and the edge set E ⊆ V 2, a set of ordered pairs of V . The�names� of the verties are not interesting to us, and we will identify them as 0, . . . , n−1where n is the number of verties. It is therefore natural to represent a graph as a pair
{V, E} where E is a binary prediate over V .We will formalize these notions more exatly in the following setion. In partiular,one of our goals is a generalized notion of property testing instead of restriting ourselvesto �xed kinds of strutures suh as graphs and binary strings. The de�nitions in thefollowing setion are therefore neessarily abstrations of the ideas above.2.1 Basi De�nitionsInstead of restriting our attention to, for example, graphs, we fous on property testingin a general setting. We begin by de�ning voabularies, whih will also be the basis formost of our logial de�nitions. A prediate symbol is simply a syntati harater whihis used to refer to prediates. Likewise, the arities in the following de�nition are simplypositive integers that are later interpreted as arities.De�nition 1. A voabulary τ is a tuple of distint prediate symbols Ri together withtheir arities ai,

τ := (Ra1

1 , . . . , R
as
s ).1The universe is the empty set if w is the empty string. 6



2.1. BASIC DEFINITIONS 7When we prove general theorems for all voabularies, we will always use voabularies τas in De�nition 1. The prediate symbols in these theorems will therefore always benamed Ri for 1 ≤ i ≤ s and have arities ai. Two examples of voabularies are τG := {E2},the voabulary of direted graphs and τS := {S1}, the voabulary of binary strings.In order to de�ne strutures we must onsider universes, whih are sets. Our universesare always �nite and we generally refer to the ardinality of a universe with n.De�nition 2. An (algebrai) struture A of type τ is an (s+ 1)-tuple
A := (U,RA

1 , . . . ,RA
s )onsisting of a �nite universe U and where eah RA

i ⊆ Uai is a prediate orrespondingto the prediate symbol Ri.In the following, we omit �(algebrai)� and refer to suh strutures simply as strutures.We also omit the voabulary when it is understood. If the universe U is the empty set,then n = 0 and the struture is the unique empty struture of type τ . Suh struturesare not very interesting in terms of testing but it is worth noting their existene.For onveniene we will always identify the elements of U with the non-negative integers
{0, . . . , n − 1} and use n = #(A) for the size of the universe of a struture A. As anotational onveniene, we will use Un := {0, 1, . . . , n− 1} to refer to �the� universe of nelements. We use alligraphi haraters to denote the prediates de�ned by a struture,however our logial de�nitions will provide a more onvenient way (using the prediatesymbols) to state propositions regarding the prediates.If we onsider a binary string, the universe U is the set of bit positions, whih we willidentify as {0, . . . , n− 1} from left to right. For i ∈ U , we interpret the meaning of i ∈ Sas �bit i of the string is 1.� Likewise, for a graph G, the universe is the set of verties,whih we again identify as {0, . . . , n− 1}. For x, y ∈ U , we interpret (x, y) ∈ E as �thereis an edge from x to y in the graph.� Our graphs are therefore direted and possiblyontain loops.We de�ne STRUCn(τ) to be the set of all strutures with voabulary τ and universesize n. We then de�ne STRUC (τ) :=

⋃

0≤n STRUCn(τ) to be the set of all struturesof type τ .A property P of strutures of type τ is a set of strutures of type τ , and so P ⊆STRUC (τ). We do not onsider properties of strutures of mixed types, although itwould be possible to do so. For all A ∈ P , we say that struture A has property P .That is, in order to avoid unwieldy language, having a property is always de�ned asmembership in the set of strutures de�ning the property. To re�et the onventionalterminology from formal language theory, we use language instead of �property� to referto sets of strings.An example of a property is that of being a binary palindrome. A binary string is apalindrome if it is equivalent to its reversal. The language of suh binary strings an bede�ned as
LP := {w | w ∈ STRUC (τS) and | ∀i ∈ U : i ∈ S i� (#(w) − 1 − i) ∈ S}. 7



2.2. PROPERTY TESTING DEFINITIONS 8We generally use L, P and Q to denote properties and A and B to refer to strutures.However, we refer to strings as u,v and w to re�et more ommon notation.2.2 Property Testing De�nitionsIn property testing we wish to distinguish, with high probability, between inputs thathave some desired property and inputs that are far from having the property. We beginby de�ning a distane measure between strutures. The symbol ⊕ denotes exlusive-or.We reall that voabulary τ = {Ra1

1 , . . . , R
as
s } and that the universe of a struture isdenoted by U (f. De�nition 1).De�nition 3. Let A,B ∈ STRUC (τ) be strutures suh that #(A) = #(B) = n. Thedistane between strutures A and B isdist(A,B) :=

∑

1≤i≤s |{x | x ∈ Uai and RA
i (x) ⊕RB

i (x)}|
∑s

i=1 n
ai

.That is, the distane is de�ned as the number of tuples that are assigned di�erent truthvalues for the same prediate symbol in A and B, divided by the total number of tuples.It is the fration of assignments on whih the two strutures disagree. For struturesthat are binary strings, the above de�nition is equivalent to their edit distane.In the ase of graphs, De�nition 3 is equivalent to the �adjaeny matrix� model intro-dued by Goldreih et al. [20℄. This approah is partiularly suited to dense graphs, andan alternative approah for bounded degree graphs whih are represented using boundedinidene lists has been developed by Goldreih and Ron [19℄.De�nition 4. Let P be a property of strutures with voabulary τ and A be suh astruture with a universe of size n. Then, A is said to be ε-far from P if every struture
B with universe of size n and voabulary τ that has P satis�es dist(A,B) ≥ ε.Struture A is far from having a property if it is far from all strutures that have theproperty and are the same size as A. Our goal is to di�erentiate between strutures thathave a desired property and those that are far from having the property. As usual, wemust have this property in mind before onstruting algorithms for it. We are espeiallyinterested in extremely e�ient probabilisti approximation algorithms that examineonly a very small portion of the struture.Instead of diretly providing these algorithms with the strutures as input, we providethem with aess to an orale. We will assume that the algorithm is for testing property
P of type τ , and that we wish to run this on the �input� A ∈ STRUC (τ). The algorithmis allowed to query the orale for desired bits of the input. We formalize the queries asbeing of the form Ri(x), where Ri is a prediate symbol in the voabulary τ determinedby the property and x ∈ N

ai is some tuple with the appropriate arity. The orale thenreturns �1� if the tuple is in the prediate RA
i and �0� if it is not. 8



2.2. PROPERTY TESTING DEFINITIONS 9One the struture A is �xed, it is of some �xed universe size n. A truly random queryis overwhelmingly likely to be of a tuple x 6∈ Un. It is therefore essential to providethe algorithm with some means of making �meaningful� queries. In our model we allowan additional, speial query: The algorithm may ask the orale for n, the size of theuniverse.We disuss multiple variations of the above after formalizing our de�nition in thefollowing way. In partiular, the speial query for the universe is not allowed in theso-alled �oblivious� model. There, it is ommon for the algorithm to give the orale anatural number m, in response to whih the orale returns a uniformly random induedsubstruture of A with size m or an error if no suh substruture exists.De�nition 5. An ε-tester for property P is a randomized algorithm that is given anorale whih answers queries for the universe size and truth values of relations on desiredtuples in a struture A. The ε-tester must aept A with probability at least 2/3 if A has
P and must rejet A with probability at least 2/3 if A is ε-far from P .The hoie of 2/3 in De�nition 5 is both traditional and arbitrary. Any probabilitystritly greater than 1/2 an be hosen and the resulting testers iterated a onstantnumber of times and the majority taken to ahieve any desired auray stritly lessthan one, see e.g., Hromkovi£ [27℄. The tester is not designed aording to any partiularstruture A and so di�erent �inputs� an be tested using di�erent orales. However, thetester may be designed using the approximation parameter ε, whih we disuss shortly.Our de�nition of testers allows them to know the size of the input, have two-sided errorand make adaptive queries based on the results of previous queries. Testers that are notgiven the size of their input are known as oblivious testers. These testers generally makequeries by requesting a random sample of the input whih is of a ertain size. Suh asample is returned if it exists, otherwise the query fails. It is easy to onstrut propertiesthat are testable by our de�nition but not by oblivious testers; for example, the propertythat the size of the universe is odd. In fat, several of the testers in this thesis willexamine the size of the universe.Many of those testers will examine the size of the universe only to determine if it issu�iently large, where su�iently large is de�ned as greater than some funtion of ε. Itis possible to onstrut an oblivious tester in suh ases, by having the tester request asample that is larger than this funtion. The input is su�iently large i� suh a sampleis available.Alon and Shapira [7℄ have provided an exat haraterization of the graph propertiestestable by oblivious testers with one-sided error. Goldreih and Trevisan [21℄ haveshown that every graph property testable with q adaptive queries an be tested with
O(q2) non-adaptive queries and Gonen and Ron [22℄ have shown that this gap exists.We have mentioned above the notion of testable properties, and also implied the exis-tene of untestable properties. It is therefore neessary to de�ne testability, whih we doas follows. 9



2.3. LOGICAL DEFINITIONS 10De�nition 6. Property P is alled testable if for every ε > 0 there exists an ε-testerthat makes a number of queries whih an be upper-bounded by a funtion depending onlyon ε.It is interesting to note we allow di�erent ε-testers for eah ε > 0 and natural to askwhy a single algorithm does not su�e. The situation is similar to that familiar in iruitomplexity (f. Straubing [45℄), where we have uniform and non-uniform ases.De�nition 6 is non-uniform in the sense that the ε-testers may not be onstrutiblegiven ε. It is very natural to require the ε-testers for P to be omputable given ε,an additional ondition (equivalent to requiring the ε-testers to be a single algorithm)that results in uniform testability. We [28℄ have shown that there exist undeidableproperties that are testable i� we use a non-uniform de�nition of testability while Alonand Shapira [8℄ have also shown the same separation between uniform and non-uniformtestability using a deidable property. We disuss the role of uniformity in Setion 3.6.Alon and Shapira [8℄ also emphasize the importane of the funtion in De�nition 6being only an upper bound on the number of queries. This is beause query omplexitiessuh as 1/ε + (−1)n are aeptable, albeit problemati for oblivious testers.2.3 Logial De�nitionsThe de�nitions in this setion are used espeially in formulating and disussing lassi�-ation problems in Chapter 4. Our logi is a pure prediate logi with equality that doesnot ontain funtion symbols. There are no ordering symbols suh as ≤ nor are therearithmeti relations suh as PLUS or BIT. Enderton [14℄ provides a more omprehen-sive introdution to logi and Börger et al. [11℄ is an exellent referene for lassi�ationproblems.We begin by de�ning the underlying language. There exist ountably in�nite variablesymbols, whih we generally name with (possibly subsripted) x, y and z. We use lowerase letters to distinguish these variable symbols from prediate symbols and let V ARbe the set of variable symbols.The equality symbol (=) is speial. Although = is a prediate, we do not allow stru-tures to rede�ne it and insist that it is always interpreted as true equality. We do notallow funtion symbols or onstant symbols (nullary funtion symbols).Given a voabulary τ as de�ned in De�nition 1, the �rst-order logi of τ is de�ned asfollows. Our logi does not ontain onstant symbols, and so the atomi terms are thevariable symbols, x. Our language does not ontain funtion symbols, and so the termsare exatly the atomi terms.The atomi formulas are x = y for terms x and y and Ri(x1, . . . , xai
) where the xj areterms and Ri is a prediate symbol of τ .The formulas are de�ned indutively. If ϕ and ψ are formulas, then (ϕ ∨ ψ) and (¬ϕ)are formulas. If x is a variable, then (∃x : ϕ) and (∀x : ϕ) are also formulas. A well-formed formula is a formula in whih no variable ours free. The �rst-order logi of τ10



2.3. LOGICAL DEFINITIONS 11is exatly the set of well-formed formulas. We have no further use for formulas with freevariables and will now refer to well-formed formulas simply as formulas.Additional onnetives inluding ∧, → and ↔ are allowed but are formally onsideredabbreviations. The parentheses required by the de�nition are omitted where the intendedmeaning is lear.We say that a struture A of type τ and universe Un models (or satis�es) a formula ϕ,written A |= ϕ, if ϕ is true when interpreted in the ontext of A. We de�ne this moreformally in the following way.An interpretation is a funtion from the variable symbols to the universe,
I : V AR 7→ Un.In addition, the funtion f maps the prediate symbols of τ to their orrespondingprediates in A, that is, f(Ri) = RA
i . Realling that voabularies and strutures aretuples, the funtion f maps the i-th element of τ to the (i+ 1)-th element of A.As a notational onveniene, if I is a funtion, we will write I[x\\a] to mean

I[x\\a](y) =







I(y), if y 6= x;

a, if y = x.That is, I[x\\a](y) is the funtion I(y) exept that the value I(x) has been replaedwith a.The de�nition of truth is indutive and follows our de�nition of formulas. We onlywrite A |= ϕ for well-formed formulas ϕ and so the initial interpretation is irrelevant,but formulas whih are not well-formed may appear during the indutive steps. We saythat A |= ϕ if there is an interpretation I suh that (A, I, f) |= ϕ. Indutively,1. (A, I, f) |= (x = y) if I(x) = I(y). Note = is always interpreted as equality on Un;2. (A, I, f) |= Ri(x1, . . . , xai
) if the tuple (I(x1), . . . , I(xai

)) ∈ f(Ri);3. (A, I, f) |= (ψ ∨ γ) if it is true that (A, I, f) |= ψ or (A, I, f) |= γ;4. (A, I, f) |= (¬ψ) if (A, I, f) |= ψ is not true,5. (A, I, f) |= (∃x : ψ) if there exists an a ∈ Un suh that (A, I[x\\a], f) |= ψ;6. (A, I, f) |= (∀x : ψ) if for every a ∈ Un, it is true that (A, I[x\\a], f) |= ψ.This de�nition of truth is generally attributed to Tarski [47℄ (see [48℄ for an Englishtranslation).We say that formula ϕ de�nes property P := {A | A |= ϕ} and so A |= ϕ is equivalentto saying that A has property P . On one hand, the expressive power of our languageis quite weak. First-order logi with ordering (≤) and arithmeti relations PLUS andTIMES, or equivalently BIT, is a haraterization of DLOGTIME-uniform AC0, see e.g.Barrington et al. [9℄. It therefore annot express the property PARITY, whih is true11



2.4. CLASSIFICATION DEFINITIONS 12only for binary strings ontaining an odd number of 1s, see Furst et al. [18℄. Our languagedoes not ontain ordering or arithmeti relations and so it is even weaker.On the other hand, it is rih enough to express both testable and untestable properties.In some sense (see indistinguishability in Setion 3.4) it is more powerful in the ontextof testing than lassially. It is useful that our language is the same as the pure prediatelogi onsidered in the traditional lassi�ation problem, allowing us to make severalomparisons in Subsetion 4.1.2. Finally, properties that are losed under isomorphismsare most natural in property testing and many possible additions to our language wouldfore us to fous on properties that are not losed under isomorphisms.We use lower-ase Greek letters, espeially ϕ, ψ and γ, for �rst-order formulas and
x, y and z for �rst-order variables. We refer to members of the universes of strutureswith a, b and u when it is neessary to distinguish between variables and the underlyingmembers of the universe that they are bound to.2.4 Classi�ation De�nitionsReall that every �rst-order formula has an equivalent formula in prenex normal form.That is, for any ϕ there exists a logially equivalent ϕ′ that is of the form

ϕ′ = π1x1 . . . πaxa : ψ,where ψ is quanti�er-free and the πi are either ∀ or ∃. For example, the �rst-orderformula ∃x : (S(x) ∧ ∃x : (¬S(x))) is equivalent to ∃x∃y : (S(x) ∧ ¬S(y)).This example an be expressed with two existential quanti�ers (∃2), a single monadiprediate and does not require equality. There are a number of ommon ways to las-sify �rst-order formulas, inluding the number of distint variables and the number ofquanti�ers. However, the most traditional methods have been to lassify formulas inprenex normal form based on the pattern of quanti�ers and the voabulary τ de�ningthe language. In partiular, there are a number of interesting relationships between thetestability of properties and the patterns of quanti�ers that an be used to express them.Our de�nitions for lassi�ation are very similar to those used by Börger et al. [11℄,however one notable di�erene is that we restrit ourselves to pure prediate logis ratherthan also onsidering logis with funtion symbols. The similar notation allows us toeasily ompare what is urrently known regarding the lassi�ation for testability withthe traditional lassi�ation for deidability, whih we do in Setion 4.1.2.De�nition 7. A pre�x voabulary lass is spei�ed as
[Π, p]e.Here, Π is a string over the four-harater alphabet {∃,∀,∃∗,∀∗}, p is either the speialphrase `all' or a sequene over N and the �rst in�nite ordinal ω, and e is either `=' or λ.12



2.4. CLASSIFICATION DEFINITIONS 13Note that we have only de�ned a syntati objet; it is essentially a triple that alsoontains two brakets. In general, p is an in�nite sequene although we will onsidernormal forms shortly. We will use these triples to de�ne lasses of �rst-order formulas,and so we now de�ne their meaning.The �rst-order sentene
ϕ := π1x1π2x2 . . . πrxr : ψin prenex normal form, with quanti�ers πi and quanti�er-free ψ, is a member of the pre�xvoabulary lass given by [Π, (p1, p2, . . .)]e, where pi ∈ N ∪ {ω} i�1. The string π1π2 . . . πr is ontained in the language spei�ed by Π when Π is inter-preted as a regular expression2.2. If p is not all, at most pi distint prediate symbols of arity i ≥ 1 appear in ψ.3. Equality (=) appears in ψ only if e is `='.That is, Π desribes the pattern of quanti�ers for sentenes in the lass, p gives themaximum number of prediate symbols of eah arity and e determines whether the equal-ity symbol is permitted. It is traditional to inlude an additional sequene f desribingthe permitted funtion symbols, but we do not allow funtion symbols and so omit f .Our sentenes are always �nite in length. If a pre�x lass has pi = ω, then formulasmay ontain any �nite number of i-ary relation symbols. If p = all, then formulas in thelass may ontain any �nite number of relation symbols of any �nite arities.We mentioned above that p is, in general, an in�nite sequene. However if we on-sider graphs as an example, it is tiresome to write the in�nitely many trailing zeros in

(0, 1, 0, . . .). As a onvention, we therefore suppress trailing zeros in p, and so (0, 1)orresponds to the ase of graphs.If there are not in�nitely many trailing zeros in p, then the sum pi + pi+1 + · · · isin�nite for all i. In this ase, we an use some of these higher arity prediate symbols to�simulate� lower arity symbols, for example using E(x, x) to simulate a monadi prediate
S(x). This implies that all sequenes p have an equivalent sequene p′ suh that p′ iseither a �nite sequene (omitting trailing zeros) or the speial phrase all. This is part ofthe de�nition of a standard pre�x lass, see Börger et al. [11℄.We are interested in the testability of pre�x lasses and so we say that a pre�x lass istestable if every formula in the lass expresses a testable property in the ontext of everyvoabulary in whih it is possible to evaluate the formula. However, it is su�ient toonsider only the minimal voabulary needed to evaluate the formula. We formalize thisin the following simple lemma, where an extension of a voabulary τ is any voabularyformed by adding a new (distint) prediate symbol to those in τ .2We slightly modify the usual semantis of regular expressions so that ∀ (resp. ∃) mathes the emptystring λ as well as ∀ (resp. ∃). This is beause we wish to onsider losed pre�x voabulary lasses, seeSetion 2.3.3 of Börger et al. [11℄. 13



2.4. CLASSIFICATION DEFINITIONS 14Lemma 1. Let ϕ be a formula in the �rst-order logi of voabulary τ and τ ′ be anyextension of τ . If ϕ de�nes a property that is testable in the ontext of τ , then theproperty of type τ ′ de�ned by ϕ is also testable.Proof. Assume ϕ de�nes property P of type τ when interpreted as a formula of type τand property P ′ of type τ ′ when interpreted as a formula of type τ ′. Additionally assumethat the �new� prediate symbol in τ ′ is N whih has arity a.Let T τ
ε be a ε-tester for P . We will show that this is also a ε-tester for P ′. Let A be astruture with type τ ′ and assume A ∈ P ′. Removing the N prediate, the orresponding

A′ ∈ STRUC (τ) has property P and so the tester will aept with probability at least
2/3, as desired.Assume that dist(A,P ′) ≥ ε and again let A′ be the struture of type τ formed byremoving the N prediate from A. By the de�nition of distane,dist(A′, P ) = min

B∈P

∑

1≤i≤s |{x | x ∈ Uai and RA
i (x) ⊕RB

i (x)}|
∑s

i=1 n
ai

≥dist(A,P ′) = min
B∈P

∑

1≤i≤s |{x | x ∈ Uai and RA
i (x) ⊕RB

i (x)}|
na +

∑s
i=1 n

ai
≥ ε.The tester will therefore rejet suh A with probability at least 2/3 as desired.Testable properties therefore remain testable when the voabulary is extended and soa property is testable in every relevant voabulary if and only if it is testable in theminimal relevant voabulary. A pre�x lass is untestable if it is not testable, that is, if itinludes some property that is untestable.

14
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Chapter 3Basi Results
3.1 Testable PropertiesPerhaps the most basi result in property testing is the existene of the objets beingstudied, testable properties. The testability of a property depends only on the propertyitself and not on whih of the various equivalent de�nitions (formulas) expresses it. Itis therefore easy to see that trivial properties suh as always true and always false aretestable, but it is worthwhile to prove an example expliitly. We begin by onsideringpalindromes of even length. It is easy to extend this to all palindromes, however it isuseful to maintain uniformity with later results (f. Theorem 4) from the literature.Theorem 1. The property of being an even-length palindrome, LP = {u←u} over thealphabet {0, 1}, is testable with query omplexity O(1/ε).Proof. The following algorithm is an ε-tester for the property.1. Query the orale for the number of haraters, n. Rejet if n is odd.2. Choose 2/ε integers uniformly at random from [0, n/2 − 1].3. For eah of these integers i, query the orale for S(i) and S(n− 1 − i).4. Rejet if any of these pairs di�er, otherwise aept.To show that this is an ε-tester for even-length palindromes, we are required to showthat it aepts palindromes with probability greater than 2/3, and rejets when the oraleuses a string w where dist(w,LP ) ≥ ε, again with probability greater than 2/3. The �rstpart is easy; if the input is a palindrome, the bits we ompare will be equal by de�nitionand so we will aept with zero error.Next, assume that dist(w,LP ) ≥ ε. Therefore, there are at least εn bits in w that mustbe modi�ed to reah a palindrome. For eah of the random bit pairs that we examine,the probability that we have failed to �nd one of these bits of evidene is at most (1−ε).The total error probability is then at most (1− ε)2/ε, whih is uniformly upper-boundedby e

−2ε/ε = e
−2 ≈ 0.135 for all ε in (0, 1], where e is the Euler number. The testertherefore rejets suh inputs with probability at least 1 − e

−2 > 2/3, as desired. 15



3.2. UNTESTABLE PROPERTIES 16The language of palindromes (with even length) is a well-known example of a ontext-free language that is not regular. The property of being an empty graph is also testable,and the proof is nearly idential. However, we will use both results a number of times,and so we show both expliitly.Theorem 2. The property of being an empty graph,
PE := {G | G ∈ STRUC (τG) and G has no edges},is testable.Proof. The following is an ε-tester for the property.1. Query the orale for the number of verties, n.2. Choose 2/ε pairs of verties (x, y) uniformly at random.3. For eah of these pairs, query the orale for E(x, y).4. Rejet if we see any edges, otherwise aept.Of ourse, we will not see any edges if the input is empty and so we will aept withzero error. For G suh that dist(G,PE) ≥ ε, graph G ontains at least εn2 edges. Foreah of the random pairs that we query, the probability that we have failed to �nd anedge is at at most (1 − ε). As above, the total error probability is at most (1 − ε)2/εwhih is stritly less than 1/3 for all ε ∈ (0, 1]. Therefore, we will �nd an edge and rejetsuh G with probability at least 2/3, as desired.3.2 Untestable PropertiesIn Setion 3.1, we proved that the language of (even-length) palindromes is testable byproviding a orret tester that makes O(1/ε) queries. Here we wish to show that thereexists an untestable property, i.e., a property whih annot be tested with o(n) queries.The example and proof that we use is due to Alon et al. [4℄.The spei� example given here allows a number of interesting orollaries, for example,that the testable properties are not losed under omplement (Corollary 3). We beginby reviewing and proving the tool that we will use to prove non-testability.3.2.1 Yao's PrinipleThe proof relies on a variation (Priniple 1) of Yao's priniple, a tool for proving lowerbounds in the ontext of randomized algorithms. Yao's priniple is an interpretationby Yao [49℄ of von Neumann's [34℄ minimax theorem for randomized omputation. Weprove only the diretion of the minimax theorem that is required for our purposes; for asurvey of minimax theorems and their proofs see Simons [42℄.We begin by providing the de�nitions required to state Priniple 1. 16



3.2. UNTESTABLE PROPERTIES 17De�nition 8. A deterministi tester is a binary tree where eah internal node is labeledwith a non-negative integer, eah leaf is labeled �aept� or �rejet,� and the two edgesfrom a node are labeled 0 and 1.Given an input, we exeute the tester as follows. Beginning at the root, we interpretthe labels on internal nodes as the bit position of the input that will be queried. If theresult of the query is 0, we follow the 0 edge and otherwise the 1 edge. When we reah aleaf we output the deision on the label. Note that it is equivalent to label the internalnodes with atomi formulas suh as E(0, 1) as these are equivalent to spei� bits of theinput, the positions of whih an be easily omputed.De�nition 9. The omplexity of a deterministi tester is the number of internal nodes,inluding the root unless it is a leaf, on the longest path from the root to a leaf.The omplexity of a deterministi tester is then the maximum number of queries thatit makes. Our interest is limited to testers of �nite omplexity, i.e., those that outputa deision in �nite time. Without loss of generality, we an restrit our attention tobalaned binary trees, by making extra, useless queries on the shorter paths in order to�pad� their lengths.Priniple 1 (Yao's Priniple). Let τ be a voabulary. If there exists an ε ∈ (0, 1) and adistribution over STRUCn(τ) suh that all deterministi testers with omplexity c havean error-rate greater than 1/3 for property P , then P is not testable with omplexity c.The de�nition of �testable� is of ourse our usual one involving random testers. Ingeneral, our goal will be to show that it is impossible to test P using randomized testerswhose omplexity does not depend on the input size. That is, for su�iently large n andsome inreasing funtion c := c(n) of n, we wish to �nd a distribution of inputs suhthat all deterministi testers with omplexity c have error-rates greater than 1/3.For testability, we are onerned only with the error-rate on inputs that either have ourdesired property or are ε-far from having the property. Therefore, we de�ne the error-rateof a tester to be non-zero only on suh examples. Beause of this, it su�es to restrit ourattention to distributions that give zero probability to the remaining �possible� inputs(those that do not have the property in question, but are also not ε-far from it).We begin by proving the following diretion of the minimax theorem. We say that avetor x ∈ R
|x| is a probability vetor if eah of its omponents is a non-negative realnumber and the sum of its omponents is 1. For n > 0, we let P

n be the set of probabilityvetors with n omponents,
P

n :=

{

x | x = (x1, . . . , xn) ∈ R
n, xi ≥ 0 for all 1 ≤ i ≤ n, and n

∑

i=1

xi = 1

}

.It is well-known that equality holds in the following, however we restrit ourselves tostating and proving only the diretion required for Priniple 1, as mentioned above. 17



3.2. UNTESTABLE PROPERTIES 18Theorem 3 (Minimax Theorem). Let M be an a × b matrix of non-negative reals and
X = P

a and Y = P
b be the sets of all probability vetors with a and b omponents,respetively. Then,

max
y∈Y

min
x∈X

xMy
T ≤ min

x∈X
max
y∈Y

xMy
T . (3.1)Proof. Let y

∗ be any of the arg max on the left in (3.1),
y
∗ := arg max

y∈Y
min
x∈X

xMy
T ,and x

∗ be any of the arg min on the left in (3.1),
x
∗ := arg min

x∈X
xMy

∗T .Then, for any probability vetor x ∈ X, by the de�nition of minimum,
xMy

∗T ≥ x
∗My

∗T . (3.2)Let x
+ and y

+ be any of the arg min and arg max on the right of (3.1), that is
x

+ := arg min
x∈X

max
y∈Y

xMy
T and y

+ := arg max
y∈Y

x
+My

T .Then, by the de�nition of maximum, x
+My

+T ≥ x
+My

∗T . Therefore, by (3.2),
min
x∈X

max
y∈Y

xMy
T = x

+My
+T ≥ x

+My
∗T ≥ x

∗My
∗T = max

y∈Y
min
x∈X

xMy
T .Given Theorem 3, it is easy to show Priniple 1. In (3.1), we all x on the left and yon the right �inner vetors.� This is beause we an think of them as being hosen afterthe �outer vetors� (y on the left and x on the right) are �xed. For the �inner� vetors, itsu�es to onsider unit vetors ei, where omponent i is 1 and all other elements are 0.This is beause one the outer vetor is �xed, denoting the i-th omponent of a vetor zby [z]i,

min
x∈X

xMy
T = eargmini[MyT ]iMy

Tand likewise for the maximum on the right of (3.1). This proves the following simpleorollary of Theorem 3.Corollary 1. Let M be an a× b matrix of non-negative reals and X = P
a and Y = P

bbe the sets of all probability vetors with a and b omponents, respetively. Then,
max
y∈Y

min
ei∈X

eiMy
T ≤ min

x∈X
max
ej∈Y

xMe
T
j . (3.3)

18



3.2. UNTESTABLE PROPERTIES 19Proof (Priniple 1). Priniple 1 is an interpretation of (3.3) in the ontext of testing. Welet a be the number of deterministi testers with omplexity c whose queries are evaluablein strutures of type τ that have n elements. We assume that there is an enumeration ofthese testers. Then, a randomized tester with omplexity c for strutures of n elementsis given by a probability vetor x ∈ X, where [x]i is interpreted as the probability thatthe randomized tester behaves like the i-th deterministi tester. A unit vetor ei ∈ Xspei�es the i-th deterministi tester.Likewise, we assume there is an enumeration of strutures of type τ that have nelements and let b be the number of suh strutures. Then, a probability vetor y ∈ Yis a distribution over these strutures and a unit vetor ej spei�es the j-th struture.For matrix M , we let Mij be 1 if the i-th deterministi tester is inorret on the j-thinput and this input either has the desired property or is ε-far from it. Otherwise, we let
Mij be 0.We now have have an a×b matrixM and a meaning for a and b omponent probabilityvetors and so we an interpret the meaning of Corollary 1. On the left, eiMy

T isthe average-error of the i-th deterministi tester on a struture hosen aording todistribution y. Likewise, on the right, xMe
T
j is the error-rate of the randomized testerspei�ed by x on the j-th struture.Therefore, the left side of (3.3) is the average-error of the �best� deterministi tester onthe �worst� distribution of inputs, when we de�ne �best� as the lowest average-error. Ifwe �nd some distribution y

+ of inputs suh that all deterministi testers have an error-rate greater than 1/3, then 1/3 is a lower bound on the left side, and therefore the rightside, of (3.3).The right side of (3.3) is the error-rate of the �best� randomized tester on the �worst�input struture, when �best� is de�ned as the best worst-ase. If the �best� randomizedtester with omplexity c has an error-rate greater than 1/3 on an input, we an onludethat the property in question is not testable with omplexity c.3.2.2 An Untestable PropertyWe will now prove that there exists an untestable property. The spei� example thatwe use is L := {u←uv←v}, where the underlying alphabet is {0, 1}. This is learly a ontext-free language and so Theorem 4 will also imply that there exist untestable ontext-freelanguages. The proof here is due to Alon et al. [4℄.In Theorem 1, we showed that LP = {u←u} is testable. We might hope to use thistester twie in an attempt to test L = {u←uv←v}, possibly iterating and taking the majoritydeision in order to inrease the suess probability above 2/3. However, this assumesthat we know the �divider� between u←u and v←v in advane, whih is not true. Our attemptto use the tester from Theorem 1 is therefore unsuessful, as we would be fored to searhfor the divider by using the previous tester a linear number of times and make too manyqueries. In the following theorem, we will show that it is not possible to test L using19



3.2. UNTESTABLE PROPERTIES 20any algorithm that makes o(√(n)) queries. This is our �rst example of a property thatis untestable.Theorem 4 (Alon et al. [4℄). The language L = {u←uv←v}, where u and v are strings over
{0, 1} is not testable with omplexity o(√n).Proof. The proof is an appliation of Priniple 1, and so we begin by de�ning a distribu-tion D of strings. Our goal is to show that D is suh that all deterministi testers thatmake c = o(

√
n) queries have error rates greater than 1/3 for L. Priniple 1 will thenimply that L is not testable with o(√n) queries, as desired. In the proof we will assumethat n is su�iently large, although it is of ourse always �nite. This will onvenientlyallow us to assume that n is divisible by 6 (if it is not, use the �rst multiple of 6 that islarger than n), avoiding the use of �oors.Distribution D draws from a distribution D+ of strings in L or from a distribution

D− of strings that are ε-far from L with probability 1/2 in eah ase. Distribution D−selets a w ∈ {0, 1}n uniformly at random from the set of w suh that dist(w,L) ≥ ε.Distribution D+ �rst selets a positive integer k ∈ {1, . . . , n/3}, and then selets strings
u ∈ {0, 1}k and v ∈ {0, 1}(n−2k)/2 , uniformly at random in eah ase. The result is astring w = u

←
uv
←
v ∈ L ∩ {0, 1}n. We an think of D+ as seleting a pair (k,w) and some

w an be hosen with multiple values of k.We now onsider an arbitrary deterministi tester A with omplexity c = o(
√
n).As mentioned above, we an onsider A to be a balaned binary tree and it thereforehas 2c leaves. We let T0 be the set of leaves labeled �rejet� and T1 be the set ofleaves labeled �aept.� Additionally, we assoiate to eah leaf t a sequene of c pairs

Qt := ((pt
1, r

t
1), . . . , (p

t
c, r

t
c)) orresponding to the bit positions queried (pt

i ∈ [0, n − 1])and the results (rt
i ∈ {0, 1}) on the path from the root of A to t. Furthermore, we de�ne

q(Q,w) for w ∈ {0, 1}n to be true if w agrees with Q, or more formally, if bit pi in wis ri for all 1 ≤ i ≤ c, and false otherwise.We also de�ne E+(Q) (resp. E−(Q)) to be the set of strings with length n that agreewith Q and are positive (ε-far) instanes for L. More formally,
E+(Q) := {w | w ∈ L ∩ {0, 1}n and q(Q,w) is true} and

E−(Q) := {w | w ∈ {0, 1}n,dist(w,L) ≥ ε and q(Q,w) is true} .If we onsider some �xed aepting leaf t, then E−(Qt) is the set of strings that Amakes an error on when ending in t and similarly for a rejeting leaf t and E+(Qt). Wede�ne the probability of a set to be the sum of the probabilities of the members of theset, and therefore the total error of A is
∑

t∈T0

Pr
D

(E+(Qt)) +
∑

t∈T1

Pr
D

(E−(Qt)).We will show the following two lemmata for any sequene Q of o(√n) elements. 20



3.2. UNTESTABLE PROPERTIES 21Lemma 2. PrD(E+(Q)) = (1/2 − o(1))2−|Q|.Lemma 3. PrD(E−(Q)) = (1/2 − o(1))2−|Q|.Every leaf of A must be labeled with exatly one deision, and so |T0| + |T1| = 2|Q|.Using the two lemmata, the total error of A is then
|T0|(1/2 − o(1))2−|Q| + |T1|(1/2 − o(1))2−|Q| =

|T0| + |T1|
2|Q|

(1/2 − o(1)) = (1/2 − o(1)).The o(1) term approahes zero as n grows and so the error is greater than 1/3 for su�-iently large n. Therefore, by Priniple 1, language L annot be tested with omplexity
o(
√
n) and is therefore untestable.We must now show the two lemmata used by the theorem. We will use the (loose)upper bound |L ∩ {0, 1}n| ≤ 2n/2n/2, whih follows from the observation that we �rsthoose the string uv and then hoose the length of u to determine a w ∈ L. In addition,if the length of u is �xed at k, there are exatly 2n/2 orresponding w, whih will beuseful given the de�nition of distribution P .Lemma 2. If |Q| = o(

√
n), then PrD(E+(Q)) = (1/2 − o(1))2−|Q|.Proof. First, for any w ∈ {0, 1}n ∩ L, by the de�nition of D,

Pr
D

(w) = 1/2 Pr
D+

(w) =

∑n/3
k=1 |{u | ∃v : w = u

←
uv
←
v, |u| = k}|

2n/2 2n
3

.Next, it follows from the de�nition of E+(Q) that PrD(E+(Q)) = 1
2 PrD+(E+(Q)) =

(

1

2n/22n/3

) n/3
∑

k=1

|{w | ∃u, v : w = u
←
uv
←
v, |u| = k and q(Q,w)}| .If the sequene Q ontains a pair of queries that are symmetri about k or n/2 + k,then the pair queries the same bit in u and ←u or in v and ←v. If the results of these queriesmust be di�erent, then it is impossible for suh a w to exist. However, Q ontains (|Q|

2

)pairs, and so there is no suh pair of queries for at least n/3 − 2
(|Q|

2

) hoies of k. Foreah of these k,
|{w | ∃u, v : w = u

←
uv
←
v, |u| = k and q(Q,w)}| = 2n/2−|Q|.Therefore, as an upper bound,

Pr
D

(E+(Q)) ≤
(

1

2n/22n/3

)

(

2n/2−|Q|
)

(

n/3 − 2

(|Q|
2

))

=

(

1/2 − 2
(|Q|

2

)

n/3

)

2−|Q|,whih is (1/2 − o(1))2−|Q| for |Q| = o(
√
n), as desired. 21



3.3. CLOSURE PROPERTIES 22Lemma 3. If |Q| = o(
√
n), then PrD(E−(Q)) = (1/2 − o(1))2−|Q|.Proof. We noted above that the number of strings in L with length n is at most 2n/2n/2and so the number of strings of length n that are not ε-far from L satis�es

|{w | dist(w,L) ≤ ε, |w| = n}| ≤
(

2n/2n/2
)

εn
∑

i=0

(

n

i

)

.This is upper-bounded by 2n/2+2εn log 1/ε. Reall that E−(Q) is the set of w ∈ {0, 1}nsuh that dist(w,L) ≥ ε and w agrees with Q. Then, the size of E−(Q) must satisfy
∣

∣E−(Q)
∣

∣ ≥ 2n−|Q| − 2n/2+2ε log 1/εn.Then, by the de�nition of distribution D,
Pr
D

(E−(Q)) = 1/2PrD−(E−(Q)) ≥ |E−(Q)|
2n

.For ε < 1/16, this is
(1/2 − 2−Θ(n)+|Q|)2−|Q| = (1/2 − o(1))2−|Q|,where the last equality holds for |Q| = o(n). Our assumption is striter, |Q| = o(

√
n).Theorem 4 allows a number of interesting orollaries. In partiular, now that wehave seen that both testable and untestable properties exist, in the next setion we willexamine losure properties of the set of testable properties.3.3 Closure PropertiesThe language in Theorem 4 is the set of strings that are the onatenation of two even-length palindromes. That is, it is the produt LPLP , where LP is the language of binarypalindromes with even length proven testable in Theorem 1. We therefore immediatelyget the following orollary.Corollary 2. The testable properties are not losed under produt.In addition, the de�nition of testability is asymmetri in the sense that it requires usto aept all positive instanes with high probability while requiring us to rejet, againwith high probability, only those negative instanes that are also far from having theproperty.Corollary 3. The testable properties are not losed under omplement.Proof. We use the omplement of the language L from Theorem 4, L := {w | w 6∈ L}.We begin by showing that for su�iently large n, there is no w ∈ {0, 1}n suh thatdist(w,L) ≥ ε. 22



3.3. CLOSURE PROPERTIES 23Lemma 4. Given ε > 0, there is no w ∈ {0, 1}n suh that dist(w,L) ≥ ε for n > 1/ε.Proof. Let w ∈ {0, 1}n be arbitrary. There are two ases. If w ∈ L, then dist(w,L) =

0 < ε. Therefore, assume that w ∈ L and n > 0. It is trivial to see that all strings in
L have an even number of 1s and an even number of 0s. We hange the �rst haraterof w to its opposite, and all the resulting string w′. The number of 1s in w was even,and therefore the number of 1s in w′ is odd (we have either removed one or added one).Therefore, w′ annot be in L and so it is by de�nition in L. We have only modi�ed onebit, and so dist(w,L) = 1/n < ε, where the inequality holds for n > 1/ε. Lemma 4A tester for L an therefore simply verify that the input string is su�iently long, i.e.,that n > 1/ε, and then aept. Membership for inputs that are not su�iently long anbe omputed exatly after querying all n ≤ 1/ε bits. This tester learly aepts w ∈ Lwith no error. When ε > 0 is �xed, if dist(w,L) ≥ ε, then n ≤ 1/ε, by Lemma 4. Thetester therefore queries every bit and rejets without error. The tester makes at most
1/ε queries, whih does not depend on n, and therefore L is testable.However, by the de�nition of omplement, L = L, whih is not testable by Theorem 4and so the testable properties are not losed under omplement.The above results are both negative. However, if we onsider losure under union, weobtain the following.Theorem 5. The testable properties are losed under �nite unions.Proof. Reall that for all α, β ∈ (0, 1/2), if we have a tester whih is orret with proba-bility at least 1/2+α, we an onstrut a tester whih is orret with probability at least
1/2 + β by running the �rst tester a onstant number of times and taking the majorityoutput (see, e.g., Setion 11.2 in Papadimitriou [35℄). The number of iterations for �xedreals α and β does not depend on n and so the number of queries in the new tester is aonstant multiple of the original number of queries.Let P1 and P2 be two testable properties. Then, for every ε > 0, there exist testers T ε

1(T ε
2 ) aepting inputs S that have property P1 (resp. P2) and rejeting inputs S wheredist(S,P1) ≥ ε (resp. dist(S,P2) ≥ ε). The disussion above allows us to assume thatthe testers are orret in eah ase with probability at least √2/3. It is then simple toonstrut the following tester T ε for P1 ∪ P2, for input I.1. Run T ε

1 on I. If T ε
1 aepts, halt and aept.2. Next, run T ε

2 on I and output its deision.Clearly, T ε aepts inputs I that have property P1 or P2 with probability greaterthan 2/3. An input I that is ε-far from the property P1 ∪ P2 is ε-far from both P1 andfrom P2. This is beause, if I is ε-far from P1 ∪ P2, then there is no I ′ ∈ P1 ∪ P2 suhthat dist(I, I ′) ≤ ε. By the de�nition of union this implies that there is no I ′ ∈ P1 suhthat dist(I, I ′) ≤ ε, and likewise for P2. 23



3.4. INDISTINGUISHABILITY 24We therefore rejet inputs whih are ε-far from P1 ∪ P2 with probability at least
√

2/3
2

= 2/3 and so T ε is an ε-tester for P1 ∪ P2, as desired.3.4 IndistinguishabilityWhen proving the testable properties are not losed under omplement (Corollary 3),we showed that all su�iently long strings were �lose� to the language L we were on-sidering. That is, for all ε there is an upper bound on the length of strings w suh thatdist(w,L) ≥ ε (Lemma 4).This was our �rst example of a onept alled indistinguishability, whih was de�nedfor graph properties by Alon et al. [2℄. Roughly speaking, if we have two languages(properties) L1 and L2 suh that all elements of L1 are lose to L2 and all elementsof L2 are lose to L1, then we say the two languages (properties) are indistinguishable.Beause property testers only examine a very small portion of their inputs, the probabilitythat these testers will �nd evidene that a w ∈ L1 is not atually in L2 is small. Thiswill allow us to show the most important result regarding indistinguishability, that itpreserves testability (Theorem 6).Unfortunately, formally de�ning �lose enough� is not trivial in our generalized setting.Alon et al. [2℄ de�ned it for loop-free graphs, but we do not have the luxury of suhrestritions. Two strutures are �lose enough� if there is no di�erene that an distinguishthem with high probability, and so simply using our de�nition of distane may not su�e.To see this, we onsider a voabulary with two relations, H of high arity and L of lowarity. The low arity relation ontributes an asymptotially insigni�ant amount to thedistane of De�nition 3 beause the number of possible high arity tuples dominates anydi�erene in L assignments. Consider two large strutures A and B with this voabulary,where A and B have idential H assignments and opposite L assignments. For ε > 0,if these strutures are su�iently large, then dist(A,B) < ε. However, although thesestrutures are very lose, a tester ould distinguish between them by examining only asmall number (one) of the L assignments.We an use loops in graphs in a similar way, a graph possibly ontaining loops isequivalent to an loop-free graph with a monadi olor relation. We therefore begin byde�ning a subtype of a relation.De�nition 10. Let R be a relation with arity a. Then, a subtype of R is a set of atmost a elements, eah of whih is a set ontaining integers from {1, . . . , a}. Eah of theseintegers must appear in exatly one of the elements of the subtype.For example, {{1}, {2}} is a subtype of the edge prediate E for graphs. This orre-sponds to the set of pairs of E for whih the element in position 1 of the pair oursonly in position 1 and the element in position 2 ours only in position 2. That is, thissubtype is the set of edges that are not loops. The subtype {{1, 2}} then orresponds tothe set of edges that are loops. This an be more formally de�ned as follows. 24



3.4. INDISTINGUISHABILITY 25De�nition 11. Let R be a relation with arity a and S be a subtype of R,
S =

{

{t11, . . . , t1b1}, . . . , {t
|S|
1 , . . . , t

|S|
b|S|

}
}

.A tuple (x1, . . . , xa) belongs to S if for all ti1, it is the ase that xti
1

= xtij
for all j and,if xu = xv for some u, v then u and v are both ontained in the same element of S.It is harmless but useless for the same i to appear multiple times in the same elementof a subtype. We now de�ne the S−distane between strutures, where S is a subtypeof relation Ri.De�nition 12. Let A,B ∈ STRUCn(τ) be strutures with universe U and voabulary τ ,and let S be a subtype of relation Ri ∈ τ . Then, the S-distane between A and B is

S-dist(A,B) :=
|{x | x ∈ Uai ,x belongs to S and RA

i (x) ⊕RB
i (x)}|

n|S|
.The S-distane is the fration of tuples belonging to S that are given di�erent assign-ments by Ri in A and B. We de�ne the Ri-distane to be the maximum S-distane forsubtypes S of Ri. If the maximum Ri-distane between two strutures is very small, allof the subtypes of all the relations are very similar, and there is no speial query thathas a high probability of �nding a di�erene.Let SUB(R) be the set of subtypes of relation R. Then, the maximum Ri-distane isthe following.De�nition 13. Let A,B ∈ STRUCn(τ) be strutures with universe U and voabulary τ .Then, the maximum Ri-distane between A and B is

max
1≤i≤s

Ri-dist := max
1≤i≤s

max
S∈SUB(Ri)

S-dist(A,B).When de�ning indistinguishability, we use the maximum Ri-distane. Note thatdist(A,B) ≤ maxiRi-dist(A,B), whih we show as part of Theorem 9 in Setion 3.7.The Ri-distane is equal to the usual distane for voabularies with exatly one predi-ate symbol if it has one subtype, suh as loop-free graphs or binary strings.We generalize our de�nition of Ri-distane in the following way, where P is a property.De�nition 14. Let A ∈ STRUCn(τ) be a struture and P be a property of type τ . Then,the Ri-distane between A and P is
Ri-dist(A,P ) := min

{B∈P |#(B)=n}
Ri-dist(A,B).If the minimum is taken over an empty set, we de�ne the distane to be in�nite.Properties that are losed under isomorphisms are most natural in property testing,and we now de�ne this idea.De�nition 15. Let A,B ∈ STRUCn(τ) be strutures with voabulary τ . We all Aisomorphi to B if there is a mapping φ : {0, . . . , n− 1} 7→ {0, . . . , n− 1} suh that 25



3.4. INDISTINGUISHABILITY 261. The mapping φ is bijetive;2. For all Ri ∈ τ and all (x1, . . . , xai
), it is true that RA

i (x1, . . . , xai
) if and only if

RB
i (φ(x1), . . . , φ(xai

)).The mapping φ is alled an isomorphism. We de�ne properties to be losed underisomorphisms in the following way.De�nition 16. Let P be a property of type τ . We say that P is losed under isomor-phisms if for all n ∈ N and all A,B ∈ STRUCn(τ), if A and B are isomorphi then
A ∈ P if and only if B ∈ P .We note that given the lak of ordering, all properties that an be expressed by formulasin our logi are losed under isomorphisms, although we do not use this assertion here.We are now �nally ready to de�ne indistinguishability. In the ase of loop-free graphs itis equivalent to the de�nition given by Alon et al. [2℄.De�nition 17. Two properties P and Q of strutures with voabulary τ are said to beindistinguishable if they are losed under isomorphisms and for every ε > 0 there existsan Nε suh that for any struture A with voabulary τ and universe of size n ≥ Nε, if Ahas P then maxiRi-dist(A,Q) ≤ ε and if A has Q then maxiRi-dist(A,P ) ≤ ε.It is worthwhile to note that indistinguishability is an equivalene relation. It is learlysymmetri and re�exive, and transitivity is also simple to show. Assume that P isindistinguishable from P2, whih is in turn indistinguishable from P3. For su�ientlylarge A, if A has P1 then there is a B that has P2 suh that maxiRi-dist(A,B) ≤ ε/2 andlikewise for B and a C that has P3. Then, maxiRi-dist(A,P3) ≤ maxiRi-dist(A,C) ≤ ε,as desired.The importane of indistinguishability is expressed by the following theorem, whihwas shown by Alon et al. [2℄ for the ase of graphs. Their proof works nearly verbatimin our setting.Theorem 6. If P and Q are indistinguishable, then P is testable if and only if Q istestable.Proof. We assume without loss of generality that P is testable and provide an ε-testerfor Q. By assumption, P is testable and so there exists an ε/2-tester T ε/2 for P thatmakes at most c(ε/2) queries. The tester aepts strutures A that have P and rejetsthose that are ε/2-far with probability at least 2/3 in both ases.LetN be suh that for strutures A of size n ≥ N , if A hasQ then maxiRi-dist(A,P ) ≤
min

(

ε/2, 2
81c

). The 2/(81c) appears beause we would like to use a trik similar to thatin Theorem 1, and this will anel niely beause 81 = 3 · 27.We will test input A for Q in the following way.1. If #(A) ≤ N , query all of A and output an exat deision. 26



3.5. TESTABLE PROPERTIES THAT ARE HARD TO DECIDE 272. Otherwise, run T ε/2 three times on A, using random permutations of the labels of
A eah time. Output the majority deision.The restrition that the properties are losed under isomorphisms allows us to use therandom permutations in Step 2. This tester makes at most 3c := 3c(ε/2) queries and hasa suess probability of at least 2/3. Assume that n = #(A) is su�iently large. If A is

ε-far from Q, it is also ε/2-far from P . Therefore, T ε/2 will rejet A with probability atleast 2/3 and our tester orretly rejets with probability at least 20/27 > 2/3.Now, assume that A has Q. Then, there exists an A′ that has P suh that A and A′di�er in no more than a 2
81c fration of the possible assignments, for every subtype andevery relation. The probability that any partiular query will see one of these assignmentsis at most 2

81c and so the probability that any of the 3c queries will see one of these bitsis at most 1 −
(

1 − 2
81c

)3c ≤ e
−2/27 ≤ 2/27. The probability of suess is then at least

20/27 − 2/27 = 2/3 and so Q is testable, as desired.Indistinguishability is an equivalene relation on properties that preserves testability.It therefore partitions the set of properties into equivalene lasses suh that eah lassontains only testable properties or only untestable properties. However, in the generalase only non-uniform testability is preserved, as we will see in Setion 3.6. Alon et al. [2℄used indistinguishability as a tool for proving lasses of properties to be testable, as wewill, but it is likely to be of more general interest.3.5 Testable Properties that are Hard to DeideWe have already seen that there exist ontext-free languages that are testable (The-orem 1) and also some that are not testable (Theorem 4). However, the relationshipof the testable properties with the traditional omplexity hierarhy is worthy of moreinvestigation. Goldreih et al. [20℄ have shown that there exist testable NP-ompleteproperties. Assuming P 6= NP, this means that there exists properties for whih it isvery easy to deide if the input nearly satis�es the property but quite hard to deide theproblem exatly. Here we will show that this gap is muh larger: There exist propertiesfor whih it is very easy to deide if the input nearly satis�es the property but extremelydi�ult to deide exatly.In this setion we show the existene of testable properties that are arbitrarily hard todeide exatly. The testable properties therefore extend arbitrarily high in the traditionalhierarhy, but, by Theorem 4, do not ontain even the ontext-free languages.We de�ne �arbitrarily hard� properties as meaning, for every omputable f(n), on-taining properties that are not deidable in DTIME(f(n))1.It su�es to onsider loop-free graph properties, where the maximum Ri-distane isequal to the usual distane. The same result an also be shown for other voabularies.1The hoie of DTIME here is arbitrary and other omplexity measures suh as DSPACE result inequivalent de�nitions. 27



3.6. UNIFORMITY CONDITIONS 28Theorem 7. There are arbitrarily-hard testable properties.Proof. Let P be an arbitrarily-hard property. We de�ne a property Q suh that Predues to Q. Let p(x) be the harateristi funtion for P on some reasonable enodingof the input. We de�ne Q to be true for graph G of size n i� the number of edges in Gis equal to p(n).We an obviously redue P to Q by, on input x, omputing the enoding x and out-putting a graph on x verties with exatly one edge. We an therefore onstrut arbi-trarily hard properties Q.It is worth noting that this redution inreases the input length by an exponentialfator. Beause we are only interested in arbitrarily hard properties and by the timehierarhy theorem (see Hartmanis and Stearns [25℄), we an simply hoose P suh thatit is not omputable in DTIME(2f(n)) to onstrut a property Q that is not omputablein DTIME(f(n)).Property Q is indistinguishable from the property of being the empty graph, whih weshowed to be testable in Theorem 2. If a graph G has property Q, it is either empty orit has one edge, and so the maximum Ri-distane is at most 1/n2. The onverse is thesame, an empty graph either has Q or the distane is at most 1/n2. Obviously, 1/n2 < εfor n >√1/ε and so the properties are indistinguishable.We showed in Theorem 2 that being the empty graph is testable, and therefore, byTheorem 6, so is Q.3.6 Uniformity ConditionsWe enoded the harateristi funtion for an arbitrary property while proving The-orem 7. There was no partiular requirement for the property to be deidable. Theexistene of undeidable properties that are testable warrants additional onsideration.We noted that our de�nition of testability (De�nition 6) is non-uniform in the sensethat it does not require the various ε-testers to be omputable given ε. It is reasonableto expet a situation similar to that of iruit omplexity lasses suh as AC0, wherethe non-uniform versions ontain undeidable properties and the uniform versions do not(see, for example, Straubing [45℄). We will see that this is the ase, thereby showing thatthe non-uniformly testable properties stritly ontain the uniformly testable properties.Alon and Shapira [8℄ have shown the same separation by using a deidable graph property.That probabilisti mahines do not ompute properties that are deterministially un-omputable was �rst shown by de Leeuw et al. [30℄. We have de�ned ε-testers to berandomized algorithms, and so we assume that the probability of a given hoie beingmade by an ε-tester is a omputable real number. Mahines that make hoies withnonomputable probabilities have additional power, see, e.g., de Leeuw [30℄.We again onsider loop-free graph properties and so the maximum Ri-distane is theusual distane. 28



3.6. UNIFORMITY CONDITIONS 29Theorem 8. There exist undeidable properties that are (non-uniformly) testable.Proof. We de�ne a graph property P that is not deidable but is testable. As shown inHoproft and Ullman [26℄, there is an enumeration of all and only Turing mahines. Let
Mi refer to the i-th mahine in this enumeration. A graph G with size n has property
P i� either G is empty and Mi does not halt on the empty string, or G has exatly oneedge and Mi does halt on the empty string.First, P is learly undeidable. Given i, the problem of deiding whether mahine Mihalts on the empty string is a anonial RE-omplete property, and it is simple to reduethis to P . On input i, output a graph with i verties and exatly one edge.
P is indistinguishable from the empty graph in exatly the same way as in the proofto Theorem 7 and so it is testable.The non-uniformness of these testers an be seen by observing that for n <√1/ε weare required to deide, orretly with high probability, whether mahine Mi halts on theempty string. One ε is �xed, there are only a �nite number of mahines for whih wemust deide this question, and so their behavior an be given in a �nite list. However,in the ase of uniform testability, we must be able to onstrut these �nite lists for everyvalue of ε, whih would ontradit the undeidability of P .We show this more formally in the following. All uniform testers are probabilistimahines and, by hoosing ε > 0 as a funtion of n, we an remove the �approximation�in �probabilisti approximation algorithm.� Of ourse we then make a number of queriesthat depends on the input size.Proposition 1. All uniformly testable properties an be deided by a probabilisti Turingmahine with suess probability at least 2/3.Proof. Assume property P of strutures with voabulary τ is testable. On input A withuniverse size n, hoose ε suh that ε < 1/

∑

i n
ai , for example, ε = 1

1+
P

i nai
. Run the

ε-test on A and output the result. The tester must di�erentiate between inputs having
P and inputs being ε-far from having P . For A, a struture with universe size n, it musttherefore distinguish between those that have the property and those that do not, withprobability 2/3, as desired.Corollary 4. All uniformly testable properties are deidable.Proof. Convert the probabilisti mahine of Proposition 1 using the following generionstrution.All probabilisti mahines an be modi�ed suh that their randomness is taken froma speial binary �random tape� that is randomly �xed when the mahine is started, inwhih eah digit is 0 or 1 with equal probability.All halting probabilisti mahines must eventually halt, regardless of the randomhoies made. We an then simulate the mahine over all initial segments of inreas-ing lengths, keeping trak of �aepting,� �rejeting� and �still running� states. One any29



3.7. ALTERNATE DEFINITIONS OF DISTANCE 30given segment has halted, all random strings beginning with that initial segment mustalso halt. Therefore, the perentage of halting paths is inreasing, and we shall eventuallyreah a length suh that at least 7/10 of the paths have halted. Our error probabilityis at most 1/3, stritly less than half of 7/10 and so we an output the deision of themajority of the halting paths.Theorem 8 and Corollary 4 immediately yield the following separation. A di�erentproof using a deidable property has been given by Alon and Shapira [8℄.Corollary 5. There exist properties that are non-uniformly testable but not uniformlytestable.3.7 Alternate De�nitions of DistaneDe�nition 3 de�nes the distane between strutures to be the fration of assignments onwhih they disagree. As we saw in Setion 3.4, this means that any possible di�erene inthe assignments of low-arity relations is dominated by the number of high-arity tuples. Insome sense this is a natural de�nition, as the number of low-arity tuples is asymptotiallyinsigni�ant and so two strutures are lose if most of their assignments agree.However, there are situations where this de�nition may not be ideal. Vertex-oloredgraphs are graphs in whih eah vertex is assigned one of some (usually onstant) num-ber of olors. We say that the oloring is admissible if for all (x, y) ∈ E, verties
x and y have di�erent olors. If we onsider 3-olored graphs with the voabulary
τC := {E2, R1, G1, B1} we might be interested in testing whether the given oloringis admissible or not. If we use our usual de�nition of oloring, this is equivalent totesting whether the graph is 3-olorable and ignores (for su�iently large graphs) theexisting oloring. If we wish to test whether the given oloring is nearly admissible, weneed a slightly di�erent model.In this setion we present a number of alternate de�nitions for the distane betweenstrutures. In testing we wish to distinguish strutures that have a desired property andthose that are far from the property, and so modifying the de�nition of distane hangesthe task of testing. We will also show the relationships between the sets of testableproperties that arise from eah of our de�nitions. As in De�nition 3, the symbol ⊕denotes exlusive-or.De�nition 18. Let A,B ∈ STRUC (τ) be strutures suh that #(A) = #(B) = n. Ther-distane between strutures A and B isrdist(A,B) := max

1≤i≤s

|{x | x ∈ Uai and RA
i (x) ⊕RB

i (x)}|
nai

.That is, the r-distane is the maximum over the relations Ri of the fration of Ri-assignments di�ering between A and B. While De�nition 3 gave equal weight to eahtuple, regardless of its arity, this de�nition gives equal weight to eah relation. Tuples30



3.7. ALTERNATE DEFINITIONS OF DISTANCE 31with lower arity an then be onsidered to have greater weight than those with higherarity. We will also onsider the maxiRi-distane (whih we will shorten to mrdist(A,B)),whih was de�ned using subtypes in Setion 3.4 (f. De�nition 13).We begin by showing the following simple relationship between these distanes.Theorem 9. Let τ be a voabulary and A,B ∈ STRUC (τ) be strutures suh that
#(A) = #(B). Then, dist(A,B) ≤ rdist(A,B) ≤ mrdist(A,B).Proof. We begin by showing dist(A,B) ≤ rdist(A,B). Essentially, if dist(A,B) = ε thenan ε-fration of the total assignments di�ers. If we then partition the total assignments,there must exist a partition suh that at least an ε-fration of the assignments di�ers inthat partition.Let dist(A,B) = ε and let αi be the fration of Ri-assignments that di�ers betweenthe strutures, i.e.,

αi :=
|{x | x ∈ Uai and RA

i (x) ⊕RB
i (x)}|

nai
.Then, rdist(A,B) = maxi αi and we an write dist(A,B) in terms of the αi:dist(A,B) =

∑

i αin
ai

∑

i n
ai

= ε.This implies that ∑i αin
ai = ε

∑

i n
ai . We do not know the values ai, but if equalityholds there must be at least one αi satisfying αi ≥ ε. This implies that dist(A,B) ≤rdist(A,B), as desired.Next, we show that rdist(A,B) ≤ mrdist(A,B). The proof is nearly idential to theabove. If rdist(A,B) = ε then there is an Ri suh that an ε-fration of the Ri-assignmentsdi�ers between the strutures. If we partition the Ri-assignments into the subtypes of Ri(whih are disjoint), then there must be some partition suh that at least an ε-frationof the assignments in that partition di�er. As above we let rdist(A,B) = ε. Let Ri bea relation suh that the Ri-distane between A and B is ε and let αj be the fration ofassignments in subtype Sj of Ri that di�er between the strutures. Using the notationof Setion 3.4, i := arg maxk Rk-dist(A,B) and αj = Sj-dist(A,B) for subtypes Sj of Ri.Then, mrdist(A,B) = maxj αj andrdist(A,B) =

∑

j αj|Sj |
∑

j |Sj|
= ε.By exatly the same argument as above, there must exist an αj ≥ ε and so rdist(A,B) ≤mrdist(A,B).There exist voabularies suh as τS = {S1} where equality is attained in eah of theabove inequalities and also voabularies where equality is not attained. 31



3.7. ALTERNATE DEFINITIONS OF DISTANCE 32Theorem 9 immediately admits the following nie orollary, where we let T be the setof testable properties with our usual de�nitions, Tr be the set of testable properties usingthe rdist de�nition for distane and Tmr be the set of testable properties using the mrdistde�nition for distane.Corollary 6. Tmr ⊆ Tr ⊆ T .Proof. Assume we have a Tmr ε-tester for property P . Then, it distinguishes with prob-ability at least 2/3 between strutures with P and strutures A suh that mrdist ≥ ε.We will show that this is also a Tr ε-tester for P . Let A denote the input struture. If Ahas property P then our tester aepts with probability at least 2/3, as desired. We sawabove that rdist(A,B) ≤ mrdist(A,B) and so if rdist(A,B) ≥ ε then mrdist(A,B) ≥ εand the tester rejets with probability at least 2/3, as desired.The proof of Tr ⊆ T is analogous to the above.In fat, we an show both of these inlusions are strit and so it is stritly easier totest using De�nition 3 than the others. Of ourse, it is possible for equality to hold ifwe restrit ourselves to a �xed voabulary. We have noted above that the de�nitionsare all equivalent in the ase of binary strings. In the ase of graphs or other strutureswith exatly one prediate symbol whih is not monadi, rdist(G,G′) = dist(G,G′) andso testing these properties with the dist de�nition is equivalent to testing with the rdistde�nition for distane. The proof of Theorem 10 will show that testing suh propertieswith the mrdist de�nition for distane is not equivalent.Theorem 10. Tmr ⊂ Tr ⊂ T .Proof. The inlusions are shown in Corollary 6 and so it su�es to show the separations.We begin by showing that T\Tr is not empty. To do this we onsider the voabulary
τC := {E2, S1} whih we an interpret as the voabulary of (not neessarily admissible)one-olored graphs.We will show that P1 ∈ T\Tr, where P1 is the set of strutures A with voabulary τCsuh that the S assignments enode the language L = {u←uv←v} from Theorem 4. Thatis, A has P1 if there is some 0 ≤ k ≤ n/2 suh that for all 0 ≤ i < k, S(i) is true i�
S(2k − 1 − i) is true and for all 0 ≤ j < (n − 2k)/2, S(2k + j) is true i� S(n − 1 − j)is true. The property is deided only by the low-arity relation S; the E relation existsonly to provide �padding� so that the property is testable using the dist de�nition fordistane.We begin by showing that P1 is testable using De�nition 3. An input struture Awith a universe of odd size annot have P1. With our de�nitions, a tester an begin byheking the parity of n and then rejet if it is odd. We an therefore assume in thefollowing that the size of the universe is even. It is also possible to de�ne P slightlydi�erently to avoid this problem, for example requiring the S assignments to be of theform u

←
uv
←
v or 1u

←
uv
←
v. However, it is simpler for us to be onsistent with Theorem 4.Lemma 5. Property P1 is testable under the dist de�nition for distane. 32



3.7. ALTERNATE DEFINITIONS OF DISTANCE 33Proof. The proof is similar to that of Corollary 3. We again begin by showing that forsu�iently large n, there is no struture A with universe size n suh that dist(A,P1) ≥ ε.For any (even) n, there exist possible w ∈ {0, 1}n that are of the form u
←
uv
←
v, suhas 1n. Given A we reate A′ by hanging all S(i) assignments to be true. This involvesat most n modi�ations and so dist(A,P1) ≤ dist(A,A′) = O(n)/Θ(n2) < ε, where the�nal inequality holds for su�iently large n. Let N(ε) be the smallest value of n forwhih the inequality holds. Then, the following is an ε-tester for P1, where the input hasuniverse size n.1. If n < N(ε), query all assignments and output whether the input has P1.2. Otherwise, aept.If the input A has P1, we will aept with zero error. If dist(A,P1) ≥ ε, then n < N(ε)by the above. In this ase we query all assignments and will rejet with zero error.Lemma 5It remains to show that P1 is not testable when using the rdist de�nition for distane.We do this by showing that if it were testable under the rdist de�nition, we would beable to onstrut testers for {u←uv←v}, ontraditing Theorem 4.Lemma 6. Property P1 is not testable under the rdist de�nition for distane.Proof. Assume that P1 is testable under the rdist de�nition for distane. Then, thereexist ε-testers T ε using this de�nition for all ε > 0. We will show that the following is an

ε-tester using De�nition 3 for the language L of Theorem 4. We denote the input with
w and note that w is a binary string with voabulary τS = {S1}.1. Run T ε and interept all queries.2. When a query is made for S(i), return the value of S(i) in w.3. When a query is made for E(i, j), return 0.4. Output the deision of T ε.That is, given a string w, we simulate T ε on the struture A ∈ STRUC (τC) thathas the same universe size as w, agrees with w on the S assignments and where all Eassignments are false.Assume that w ∈ L and let n be the size of the universe. Then, any A ∈ STRUC (τC)with universe size n that satis�es ∀i : Sw(i) ↔ SA(i) has property P1. That is, if w and
A agree on the S assignments, w ∈ L implies A ∈ P1. In this ase, T ε will aept Awith probability at least 2/3. Therefore, our tester will also aept w with probabilityat least 2/3, as desired. 33



3.7. ALTERNATE DEFINITIONS OF DISTANCE 34Now, assume that dist(w,L) ≥ ε. In this ase, rdist(A,P1) = dist(w,L) ≥ ε and so T εwill rejet A with probability at least 2/3. Our tester will therefore rejet suh w withprobability at least 2/3 as desired.We have onstruted ε-testers for the language L shown to be untestable in Theorem 4,and therefore P1 must be untestable under the rdist de�nition of distane. Lemma 6Lemmata 5 and 6, together with Corollary 6 show Tr ⊂ T . We now show the separation
Tmr ⊂ Tr. The proof is similar: We onstrut a property where there is su�ient�padding� to make Tr testing simple but Tmr testing would ontradit Theorem 4.We use the following property P2 of graphs (τG = {E2}). A graph G has P2 if the�loops� E(i, i) enode the language {u←uv←v} from Theorem 4. That is, P2 is determinedonly by the linear number of loops and the remaining E assignments an be arbitrary.More formally, a graph G with universe size n has P2 if there exists some 0 ≤ k ≤ n/2suh that for all 0 ≤ i < k, E(i, i) is true i� E(2k − 1 − i, 2k − 1 − i) is true and for all
0 ≤ j < (n− 2k)/2, E(2k + j, 2k + j) is true i� E(n− 1 − j, n − 1 − j) is true.As before, we �rst show that P2 is testable using the rdist de�nition for distane. Thetester an again begin by heking the parity of the universe, and so we assume that nis even.Lemma 7. Property P2 is testable under the rdist de�nition for distane.Proof. As before, we begin by showing that for su�iently large n, there is no graph Gwith universe size n suh that rdist(G,P2) ≥ ε.Reall that for all (even) n there exist possible w ∈ {0, 1}n that are of the form
u
←
uv
←
v, for example 1n. Given G we reate G′ by hanging all E(i, i) assignments to betrue. This involves at most n modi�ations. There is only one relation symbol, and sordist(G,P2) = dist(G,P2) ≤ dist(G,G′). There are n2 possible E assignments, and sothis is O(n)/n2 < ε where the inequality holds for su�iently large n. Letting N(ε) bethe smallest value of n for whih the inequality holds, we an easily onstrut a tester asin Lemma 5 by replaing �P1� with �P2�. Lemma 7It remains to show that P2 is not testable under the mrdist de�nition for distane.The proof is nearly idential to that of Lemma 6; given a Tmr style tester for P2, weonstrut testers using De�nition 3 for the language {u←uv←v} that was proven untestablein Theorem 4.Lemma 8. Property P2 is not testable under the mrdist de�nition for distane.Proof. Assume that P2 is testable under the rdist de�nition for distane. Then, thereexist ε-testers T ε using this de�nition for all ε > 0. We will show that the following isan ε-tester using De�nition 3 for the language L of Theorem 4. We denote the input by

w and note that it is a binary string with voabulary τS = {S1}.1. Run T ε and interept all queries. 34



3.7. ALTERNATE DEFINITIONS OF DISTANCE 352. When a query is made for E(i, i), return the value of S(i) in w.3. When a query is made for E(i, j) and i 6= j, return 0.4. Output the deision of T ε.Given a string w, we simulate T ε on the graph G with �loops� in the graph orrespond-ing to bits of w and all other edges absent. Note that G has the same universe size as wand that G has P2 i� w ∈ L. Therefore, if w ∈ L, our tester will aept with probabilityat least 2/3, as desired.Now, assume that dist(w,L) ≥ ε. There are exatly two subtypes of a binary relation:the loops and the non-loops. The S-distane (see De�nition 12) for the subtype Sof non-loops is zero, and so mrdist(G,P2) = SL-dist(G,P2) where SL is the subtypeof loops ({{1, 2}}). This in turn is equal to dist(w,L) by the de�nition of G and somrdist(G,P2) ≥ ε. The tester T ε will then rejet G with probability at least 2/3, and soour tester will rejet w with probability at least 2/3. Lemma 8Lemmata 7 and 8, together with Corollary 6 yield the desired Tmr ⊂ Tr. We havealready shown Tr ⊂ T and so the proof is omplete. Theorem 10
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Chapter 4The Classi�ation Problem forTestabilityIn this setion we onsider the lassi�ation problem of �rst-order logi for testability.That is, our goal is to reah a omplete lassi�ation of the pre�x lasses of �rst-orderlogi into testable lasses (those that ontain only testable properties) and untestablelasses (those that ontain an untestable property). This program is inspired by thetraditional lassi�ation problem, that of deidable and undeidable lasses, and also byresults in property testing related to the testability of ertain logial lasses suh as thoseby Alon et al. [2℄.We begin by brie�y desribing the traditional lassi�ation problem, and in partiularfous on the results that allow us to draw parallels to reent results in property testing.Next, we introdue the previous results that begin a lassi�ation for testability. Finally,we prove an additional lass, traditionally known as Akermann's lass with equality, tobe a testable lass and brie�y mention a few open problems.4.1 History of the Classi�ation ProblemHere we outline some of the history of the traditional lassi�ation problem, fousingespeially on results where we an draw an expliit omparison with testability results.Börger et al. [11℄ provide the omplete lassi�ation and its history, as well as proofs andan overview of related topis.The lassial deision problem was onsidered the entral problem of logi in the 20thentury. In this problem, we are given a sentene of �rst-order logi and wish to deidewhether or not it is satis�able (or, roughly equivalently, valid). Although Churh andTuring showed the problem to be undeidable in general, Löwenheim [32℄ had shownin 1915 that the monadi ase is deidable. There was therefore an enormous e�ort tounderstand exatly whih lasses of formulas are deidable and whih lasses are not.The traditional lassi�ation problem is now onsidered to be essentially resolved and aomplete lassi�ation has been obtained. By omplete we mean that for any pre�x lass36



4.1. HISTORY OF THE CLASSIFICATION PROBLEM 37of �rst-order logi, either the lass is ontained in a lass that is lassi�ed as deidableor it ontains a lass that is lassi�ed as undeidable. That suh a omplete and �nitelassi�ation exists seems to be quite fortunate.4.1.1 Gurevih's Classi�ability TheoremThat a omplete and �nite lassi�ation of the pre�x voabulary lasses of �rst-order logi exists is explained by Gurevih's Classi�ability Theorem (see Setion 2.3of Börger et al. [11℄). Fortunately, this phenomenon is not restrited to deidabilityand the theorem gives su�ient riteria for suh a lassi�ation to exist. A ompletestatement and proof an be found in Börger et al. [11℄ while Gurevih [24℄ gives a nieintrodution to the theorem and its history.We an summarize Gurevih's Classi�ability Theorem in the following way. Let Drefer to the set of pre�x voabulary lasses that have the property in question (in ourase, D is the set of testable pre�x voabulary lasses) and U refer to its negation (theuntestable pre�x voabulary lasses). Then, if D is losed downward and under �niteunions, there exists a �nite set M of the minimal losed lasses of U suh that U is theupwards losure of M and all members of M are standard1.The testable lasses are losed downwards and we have shown (Theorem 5) that theyare losed under �nite unions. Therefore, there exists a �nite set M of standard lassessuh that every pre�x voabulary lass that ontains an untestable property also ontainsone of the lasses in M . Written in a table, M is a �nite way to give a ompletelassi�ation of the pre�x voabulary lasses for testability.Our goal of eventually �nding a omplete haraterization of the testable pre�x lassesis then obtainable: there exists a �nite table providing suh a lassi�ation. In thefollowing setion we state some of the lassial results for the lassi�ation for deidabilityand ompare them with what is known regarding the lassi�ation for testability. It isworth noting that we do not neessarily state the optimal lassial results, but insteadfous on those that losely parallel the known results for testability.4.1.2 Classi�ation SimilaritiesMonadi �rst-order logi2 was the �rst fragment of �rst-order logi to be proven deid-able. We begin with this result, whih is due to Löwenheim [32℄. This subsetion is anoverview of the similarities and does not ontain proofs. Later results in Subsetion 4.3depend on the testability results for monadi �rst-order logi, whih we review moreformally in Setion 4.2.Monadi logis are very well studied in the literature. Of partiular relevane to us arethe results onneting these logis to formal languages. Perhaps the most well-known is1Standard lasses are those with �nie� representations in our notation, see Börger et al. [11℄.2Monadi �rst-order logi is the set of formulas in whih all prediate symbols are monadi. 37



4.1. HISTORY OF THE CLASSIFICATION PROBLEM 38Bühi's [12℄ result that monadi seond-order logi haraterizes the regular languages.We are foused on (a very restrited) �rst-order logi, but we an at least onlude thatall monadi �rst-order formulas express regular properties, given that monadi �rst-orderlogi is a subset of monadi seond-order logi.More immediately relevant is the result by MNaughton and Papert [33℄ that monadi�rst-order logi haraterizes the star-free regular languages. Their de�nition of �rst-order logi inludes an ordering prediate ≤ as well as some additional arithmeti thatis not present in our logi, and so the properties expressible in our �rst-order logi are astrit subset of the star-free regular languages.In any ase, the star-free regular languages are a subset of the regular languages.Together with the result by Alon et al. [4℄, this immediately implies that all propertiesexpressible in monadi �rst-order logi are testable. Using an extension of our notationfrom Setion 2.4, we an say that [all, (ω)]= is testable. This is the lass proven deidableby Löwenheim [32℄, providing the �rst similarity between the lassi�ation for deidabilityand that for testability.However, we an say more than this. As previously mentioned, Bühi [12℄ showedthat monadi seond-order logi haraterizes the regular languages. As Alon et al. [4℄themselves note, the ombination of their result and Bühi's implies that all monadiseond-order formulas express testable properties. This is not part of the lassi�ationproblem for �rst-order logi, but it is worth making a omparison with Skolem's [43℄extension to seond-order logi of Löwenheim's result. That is, monadi seond-orderlogi is another example of a lass that is both testable and deidable.If we return to �rst-order logi, Skolem [44℄ showed a pre�x voabulary lass to be aredution lass. As a result of developing Skolem Normal Form, he showed the lass offormulas where all universal quanti�ers preede all existential quanti�ers, [∀∗∃∗, all] is aredution lass. Although it was of ourse unknown at the time, this implies that thelass is undeidable. This lass is not a minimal undeidable lass and Skolem's resultwas later improved.Alon et al. [2℄ onsidered testing graph properties and showed there exists an untestableproperty (an enoding of graph isomorphism) that is expressible in [∀∗∃∗, (0, 1)]=. Thisis not idential to the undeidable lass onsidered by Skolem [44℄, but it is lose enoughto be interesting. Among the several improvements of Skolem's result is, for example,Surányi's [46℄ result that [∀3∃, (0, ω)] is a redution lass. The enoding of graph isomor-phism shown to be untestable by Alon et al. [2℄ an be expressed as a formula with twelveuniversal quanti�ers and �ve existential quanti�ers3 while Theorem 12 below implies thatone universal quanti�er is not enough to express any untestable graph property. It wouldbe worthwhile to attempt to �nd the minimum number of quanti�ers needed to expresssuh a property, and also to look at other enodings of isomorphisms.Alon et al. [2℄ also showed a positive result: that [∃∗∀∗, (0, 1)]= is testable. The restri-tion to graphs here is more unfortunate. The lass [∃∗∀∗, all]= for pure prediate logi is3That is, by a formula in [∀12
∃

5, (0, 1)]=. 38



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 39very well-known and generally alled Ramsey's lass. This is a maximal deidable lasswhose deidability was �rst shown by Ramsey [37℄. A generalization of the testabilityresult to arbitrary voabularies would be very desirable.4.2 Testability of Monadi First-Order LogiIn Subsetion 4.1.2 we mentioned that we an ombine the result by MNaughton andPapert [33℄ that monadi �rst-order logi4 haraterizes the star-free regular languageswith that of Alon et al. [4℄ showing the regular languages are testable. This allows us toonlude that all properties expressible in monadi �rst-order logi are testable. However,we will use this result in our proof for the testability of Akermann's lass with equalityin Setion 4.3, and so we onsider this ombination more formally.Our goal is to prove that monadi �rst-order logi, as we have de�ned it, expressesonly testable properties. Our de�nition of �rst-order logi does not ontain ordering orsymbols for suessor and predeessor, unlike the de�nitions used by MNaughton andPapert [33℄.The proof is strutured in the following way. First, in Subsetion 4.2.2 we show that allproperties expressible by monadi �rst-order sentenes an be expressed in a ertain waywhih we an easily translate to a regular expression. Regular expressions haraterizethe regular languages and so all of our properties are regular. This part of the proof isbased on that given by MNaughton and Papert [33℄ although our version is simpli�eddue to the absene of the ordering and other symbols mentioned above.Next, Alon et al. [4℄ have shown that all regular languages are testable. The proofuses the haraterization of regular languages as �nite automata. We omit the detailedproof here for spae onsiderations. Basi results onerning the regular languages, suhas the equivalene of regular expressions and �nite automata, an be found in Hoproftand Ullman [26℄.4.2.1 BasisOur proofs will use the voabulary τM := {R1
1, . . . , R

1
s}, and so there are s monadiprediate symbols named Ri. As always, if the universe of suh a struture has size n, welabel it with the non-negative integers {0, 1, . . . , n − 1} and map these to the haraterpositions of n-harater strings from left to right. That is, universe member 0 orrespondsto the leftmost harater position in the string and n− 1 to the rightmost.Regular languages are de�ned over alphabets, traditionally denoted by Σ. The alpha-bet orresponding to τM will have 2s symbols, whih we will name with binary strings oflength s in the obvious way, Σ := {00 · · · 00, . . . , 11 · · · 11}. These denote the possible as-signments Ri(x) for some �xed harater position x. For example, the leftmost harater4Their de�nition of monadi �rst-order logi allows ordering and other symbols that are not presentin ours. 39



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 40in a string is 00 · · · 00 i� Ri(0) is false for all 0 ≤ i ≤ s. Likewise, the rightmost harateris 00 · · · 01 i� Ri(n − 1) is false for all 0 ≤ i < s and Rs(n − 1) is true. Any reasonableenoding will work provided that the harater at position i an be determined using aonstant number of queries. We will use c to denote haraters in Σ.The basi idea is to treat formulas ∃x : ψ with the regular expression Σ∗RΣ∗, where
R is a union over the haraters for whih ψ holds true. More ompliated formulas arehandled largely by using the losure properties of regular languages.4.2.2 Monadi First-Order Logi is RegularThe goal of this subsetion is to show the following theorem. This is a weaker resultthan that shown by MNaughton and Papert [33℄.Theorem 11. All properties expressible in monadi �rst-order logi are regular lan-guages.Proof. We are given a monadi �rst-order formula ϕ of type τM = {R1

1, . . . , R
1
s}. Withoutloss of generality, we an assume that ϕ is in prenex normal form and by renaming thevariables, that no variable is bound by more than one quanti�er. We rename the variablesto be x1, . . . , xa in order, so that ϕ is of the form

ϕ = π1x1π2x2 · · · πaxa : ψwhere eah πj is either ∃ or ∀ and ψ is quanti�er free.Regular expressions are inherently ordered in the sense that they are written from leftto right. However, we do not know if x1 < x2 in formulas suh as ∃x1∃x2 : ψ. This willbe handled by breaking the formula into a disjuntion of three formulas, eah enforingan order. One formula will orrespond to x1 < x2, one to x1 > x2 and one to x1 = x2.We do this by using restrited quanti�ers.De�nition 19. Quanti�ers of the form ∃τ2
τ1x : ψ or ∀τ2

τ1x : ψ are restrited quanti-�ers. These quanti�ers are interpreted in the following way. The formula ∃τ2
τ1x : ψis equivalent to ∃x : ((τ1 ≤ x ≤ τ2) ∧ ψ) and the formula ∀τ2

τ1x : ψ is equivalent to
∀x : ((τ1 ≤ x ≤ τ2) → ψ).The range of the quanti�ed variable is restrited by τ1 and τ2. Note that these quan-ti�ers are not part of our de�nition of monadi �rst-order logi. However, we will showthat all formulas in our logi an be expressed in a speial form using these quanti�ers.First, we replae all universal quanti�ers ∀xi : ψ with duals of existential quanti�ers
¬∃xi : ¬ψ. Next, we will onvert all quanti�ers to restrited quanti�ers and ensure thatthe urrent formula is always equivalent to the original.We begin with x1. There are no variables in the ordering yet and so we replae ∃x1 : ψwith ∃n−1

0 x1 : ψ, keeping any initial negation. Indutively, we onsider xi+1 and haveexisting orderings over the i variables that have already been handled. 40



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 41Let the urrent formula be ϕ = α(∃xi+1 : ψ), where α denotes the part of the formulapreeding the quanti�er on xi+1. We replae γ := (∃xi+1 : ψ) with an equivalent dis-juntion (γ1 ∨ · · · ∨ γ2i+1) of at most 2i+ 1 formulas that orrespond to the possible neworderings, reating
ϕ′ = α(γ1 ∨ · · · ∨ γ2i+1),whih is logially equivalent to ϕ.There are at most i ases where xi+1 is equal to one of the previous variables. Theseare handled by letting γj be the formula γ with the quanti�er ∃xi+1 removed and allourrenes of xi+1 replaed with xj , for 1 ≤ j ≤ i. Cases where more than two variablesare equal to eah other an be easily handled in several ways, for example by renamingvariables or �skipping� removed quanti�ers.By indution, in ϕ there is a �xed ordering on the variables that have already beenhandled. For eah adjaent pair (α, β) in this ordering we onstrut a γj that is identialto the original formula γ exept that ∃xi+1 is replaed with ∃β−1

α+1xi+1. In addition, wemust add formulas where xi+1 is the smallest variable as well as the largest. Theseformulas are onstruted by replaing the quanti�er with ∃α−1
0 xi+1 and ∃n−1

β+1xi+1, where
α is the minimum and β the maximum element in the ordering. This is at most anadditional i+ 1 formulas and the resulting ϕ′ is equivalent to the original formula.We ontinue applying the above proess until all quanti�ers have been replaed byrestrited quanti�ers. At this point we have a (onsiderably larger) formula suh thatthere is always an ordering of the variables. It is now simple to determine whetherequality holds between two variables and so we an replae all instanes of xi = xj withlogial truth, written ⊤, if i = j and with logial falsehood, written ⊥, otherwise. Wean then make the obvious simpli�ations if desired. The resulting formula satis�es theprevious onditions and no longer ontains equality symbols, whih we have replaedwith restrited quanti�ers and ase distintions.All prediate symbols are monadi. We move all Ri(x) prediates to their minimum�depth,� by whih we mean that Ri(x) may our in the sope of the quanti�er on xbut must not our in the sope of any variable whose quanti�er ours in the sope ofthat on x. This is done using the following general proedure, whih is borrowed fromMNaughton and Papert [33℄.Let Ri(xj) be a relation violating the ondition that ours in the formula. Assumethe formula ϕ is γ∃τ2

τ1xj : ψ. We replae this with
γ∃τ2

τ1xj : ((Ri(xj) ∧ ψ1) ∨ (¬Ri(xj) ∧ ψ2)) .Here, ψ1 is the result of replaing all ourrenes of Ri(xj) in ψ with ⊤, and ψ2 is theresult of replaing these ourrenes with ⊥.We also want to ensure that all quanti�ed formulas are at their minimum depth. Thisis beause we will use the quanti�er ∃τ2
τ1x : ψ to onstrut a regular expression for thepart of the string orresponding to the interval [τ1, τ2], and quanti�ers that are not at41



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 42their minimum depth an �esape� this interval. We use essentially the same proess thatwe used to move prediate symbols to their minimum depths.We will onsider the quanti�er ∃τ2
τ1x : ψ. By onstrution, there is only one ase whereboth τ1 and τ2 ontain no quanti�ed variables. This is where τ1 = 0 and τ2 = n− 1, andit only ours at the outermost level. Without loss of generality, we will assume that yis the quanti�ed variable in τ1 = y + 1 and z is the quanti�ed variable in τ2. We willalso assume that the quanti�er on y is in the sope of the quanti�er on z. Cases where

τ1 = 0 or τ2 = n − 1 are similar although only one of these quanti�ed variables exists,and so the minimum depth is immediately within the sope of that variable.The formula ϕ is
α∃τ4

τ3 zβ∃τ6
τ5yγ(∃z−1

y+1x : ψ)ζ.We move (∃z−1
y+1x : ψ) to its minimum depth in the same way we moved prediate symbols,replaing ϕ with

ϕ′ := α∃τ4

τ3 zβ∃τ6
τ5y :

[(

(∃z−1
y+1x : ψ) ∧ (γ⊤ζ)

)

∨
(

¬(∃z−1
y+1x : ψ) ∧ (γ⊥ζ)

)]

.The quanti�er on x was the innermost quanti�er that did not satisfy the new ondi-tion, and so all quanti�ers within ψ are at their minimum depths. There quanti�ersimmediately within ψ are therefore of the form ∃z−1
x+1x1 or ∃x−1

y+1x2. This is beause ouronstrution has ensured that quanti�ers always range over the interval spanned by ad-jaent pairs in the ordering. In addition, all variables ourring within ψ are either xor they are bound by quanti�ers that our inside ψ. This is beause we have movedall prediates to their minimum depth. Indutively, ψ depends only on the interval
[y+ 1, z − 1] and so ϕ′ is logially equivalent to ϕ. If the input is the empty string, then
∃z−1

y+1x : ψ is false by de�nition and the formula evaluates as it would have. We repeatthe proess as neessary.Finally, we will ensure that in all quanti�ations ϕ = ∃τ2
τ1x : ψ, the formula ψ is a on-juntion over atomi formulas, negated atomi formulas, quanti�ed formulas and negatedquanti�ed formulas. This is simple to do. We begin with the innermost quanti�ationthat does not satisfy the ondition. If we treat quanti�ed formulas as units, we begin byonverting ϕ into disjuntive normal form,

ϕ1 = ∃τ2
τ1x : (ψ1 ∨ · · · ∨ ψc) ,where c is the number of lauses. This is equivalent to

ϕ′ =
(

∃τ2
τ1x : ψ1

)

∨ · · · ∨
(

∃τ2
τ1x : ψc

)

.Eah quanti�ed formula is a onjuntion and the proess is iterated as neessary.The result we will all a basi formula. These formulas satisfy the following onditions,whih will help us onstrut regular expressions from them.1. All quanti�ers are existential. 42



4.2. TESTABILITY OF MONADIC FIRST-ORDER LOGIC 432. All quanti�ed formulas have a �xed ordering of the variables and no two variablesare equal to eah other.3. Equality does not our.4. All prediate symbols our at �minimum� depth. Prediate symbols are the onlyway for a variable to appear in these formulas, and so all variables x our only atminimum depth, omitting their appearane on the restrited quanti�ers.5. All quanti�ers are at their minimum depth.6. All quanti�ers are over onjuntions of atomi symbols, negated atomi symbols,quanti�ed formulas and negated quanti�ed formulas.We will now show that a regular expression orresponds to eah of these formulas.Reall that the regular expressions are losed under omplement, union and intersetion.First, the formula ⊤ orresponds to the regular expression Σ∗ and ⊥ to ∅. The regularexpressions are losed under omplement, and so the regular expression for ¬φ is theomplement of the expression for φ.Next, all quanti�ed formulas are of the form
φ = ∃τ2−1

τ1+1x : (α ∧ β ∧ γ),where α is a onjuntion of monadi prediate symbols (and possibly ⊤ and ⊥) whoseatomi parts are x, β is a (possibly empty) onjuntion of quanti�ed formulas rangingfrom τ1 + 1 to x − 1, and γ is a (possibly empty) onjuntion of quanti�ed formulasranging from x+ 1 to τ2 − 1.There is a (possibly empty) set of haraters that orrespond to assignments of the
Ri(x) that model α. If the set is empty, then φ is equivalent to ⊥ and so the regularexpression ∅ orresponds to it. Otherwise, we let C be regular expression formed by theunion of these haraters.By indution we have regular expressions for eah of the quanti�ed formulas appear-ing in β and γ. The regular expression L orresponding to β is formed by taking theintersetion of the regular expressions for eah of the quanti�ed formulas appearing init. The regular expressions are losed under intersetion, and so L exists. Likewise,the regular expression R orresponding to γ is formed by taking the intersetion of theregular expressions for eah of the quanti�ed formulas appearing in it.The regular expression orresponding to φ is then the onatenation LCR. This or-responds to the part of the string from positions τ1 + 1 to τ2 − 1.Finally, disjuntions may appear outside of quanti�ed formulas at the outermost level.These are disjuntions of quanti�ed formulas ranging from 0 to n − 1 and so the reg-ular expression orresponding to the disjuntion is the union of the expressions for theformulas.The regular languages are losed under intersetion, union and omplement, and so wehave shown that monadi �rst-order logi haraterizes a subset of the regular languages.43



4.3. ACKERMANN'S CLASS WITH EQUALITY 444.3 Akermann's Class with EqualityIn Setion 4.1 we reviewed a small portion of the history of the lassi�ation problemfor deidability. We found several similarities between the lassi�ation for deidabilityand the urrently known lassi�ation for testability. In this setion we onsider anadditional lass, generally referred to as Akermann's lass with equality, and show thislass to be testable.In our notation (see Setion 2.4), we denote Akermann's lass with equality 2.4)by [∃∗∀∃∗, all]=. It is the set of sentenes ontaining at most one universal quanti�er.Equality and any number of prediate symbols of any arities may our, but we onsideronly pure prediate logi and so there are no funtion symbols.Akermann's lass, without equality, was �rst shown to be deidable and to have the�nite model property by Akermann [1℄. If we also allow equality and one unary funtionsymbol, the resulting lass is Shelah's lass. The deidability of this lass was proven byShelah [41℄, however it does not have the �nite model property.In Setion 4.1 we desribed similarities between the traditional lassi�ation for deid-ability and the urrently known lassi�ation for testability. However, all of the deidablelasses mentioned there have the �nite model property and so all of the similarities wefound also hold between the lassi�ation for the �nite model property and the lassi-�ation for testability. One interesting open problem is therefore to determine whetherShelah's lass is testable. This would require a further generalization of our de�nitionsto allow funtion symbols.Returning to the history of Akermann's lass with equality, Kolaitis and Vardi [29℄showed that the satis�ability problem for the Akermann lass with equality is ompletefor NEXPTIME. They also showed that a 0-1 law holds for sentenes of existentialseond-order logi where the �rst-order part belongs to Akermann's lass with equality.In the absene of equality, Grädel [23℄ showed that satis�ability for Akermann's lassis deidable in deterministi exponential time. The main result of Chapter 4 is thetestability of Akermann's lass with equality, whih we show in the next setion.4.3.1 Testability of Akermann's Class with EqualityWe would like to assume that the the formulas we onsider ontain at least one pred-iate symbol with arity at least two. Therefore, we must treat the remaining asesspeially, whih we do now. For formulas that ontain no prediate symbols, we ansimply ompute ϕ with at most one query. These are therefore trivially testable. First-order formulas that ontain only monadi prediate symbols haraterize a subset of theregular languages and are therefore testable, see Setion 4.2. All remaining ases ontainat least one prediate symbol with arity at least two.The proof is similar to many of the proofs in Chapter 3. For an arbitrary formulain Akermann's lass with equality, we show that either there are only �nitely many44



4.3. ACKERMANN'S CLASS WITH EQUALITY 45strutures that are ε-far from having the property de�ned by the formula, or there areonly �nitely many strutures that are models of the formula.Theorem 12. All properties expressible by a formula in [∃∗∀∃∗, all]= are testable.Proof. Let P be the property expressed by an arbitrary formula ϕ in [∃∗∀∃∗, all]=. Then,we an rename the variables in ϕ so that it takes the following form, where ψ is quanti�er-free,
ϕ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zb : ψ.We an further assume that P is a property of strutures with voabulary τ , and wetherefore have s relation symbols Ri of arity ai. We let m := maxi(ai) be the maximumarity. The strutures in the proof are all impliitly of voabulary τ .Either property P holds for at most �nitely many strutures or it holds for in�nitelymany. We an trivially test any property that holds for at most �nitely many struturesby making the onstant number of queries required to determine if the input is exatlyone of the models. Therefore, it remains only to onsider the ase where ϕ has in�nitelymany models.We will show that in this ase, there are only �nitely many strutures A ∈ STRUC (τ)that satisfy dist(A,P ) ≥ ε (f. Lemma 9). There is therefore a funtion N(ε) suhthat for any A ∈ STRUC (τ), if #(A) > N(ε) then the struture A is not ε-far from P .Therefore, the following is an ε-tester for P on input A with size #(A) = n.1. If n ≤ N(ε), query all assignments in A and deide exatly whether A has P .2. Otherwise, aept.It is worth noting that in the non-uniform ase, the N(ε) is simply a onstant. It doesdepend on the voabulary, but N(ε) is omputable and so P is also uniformly testable.The proof is omplete onditional on Lemma 9, whih we show next.Lemma 9. Let P be the property with voabulary τ expressed by
ϕ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zb : ψwhere ψ is quanti�er free. If ϕ has in�nitely many models, then there exists an N(ε) forevery ε > 0 satisfying the following. If A ∈ STRUC (τ) has universe size n > N(ε), thendist(A,P ) < ε.Proof. Let A ∈ STRUC (τ) be arbitrary and assume it is su�iently large. We will showthat there exists an A′ suh that A′ |= ϕ (and so A′ has P ) and dist(A,A′) < ε.We begin by showing in Lemma 10 that there must exist a model, A1, of ϕ suh thatthe size of the universe of A1 satis�es a+ 1 ≤ #(A1) ≤ κ1, where

κ1 := a+ 3b
(

a+ 2
Ps

i=1

Pai
j=1 (ai

j )aai−j
)

. 45



4.3. ACKERMANN'S CLASS WITH EQUALITY 46The onstant κ1 is determined only by ϕ and does not depend on the input struture.It is possible to prove tighter bounds on #(A1) but this su�es for our purposes.Next, we will show in Lemma 11 that we an easily add additional elements to theuniverse of A1 and onstrut larger models of ϕ by making only a small number ofmodi�ations. We will then use an indutive argument to show that, for su�ientlylarge input strutures A, we an onstrut A′ |= ϕ where A and A′ have the sameuniverse size and dist(A,A′) < ε.We now prove the two neessary lemmata.Lemma 10. If ϕ := ∃x1 . . . ∃xa∀y∃z1 . . . ∃zbψ has in�nitely many models with voabu-lary τ , then it has a model A1 suh that the ardinality of the universe in A1 satis�es
a+ 1 ≤ #(A1) ≤ κ1.Proof. It su�es to onsider ases where ϕ has in�nitely many models with voabulary τ .Let B be the smallest5 model of ϕ suh that #(B) ≥ a+ 1. We are guaranteed that Bexists beause there are in�nitely many models. The proof is by ontradition; assume

#(B) > κ1. We will show that we an onstrut a smaller6 model of ϕ, violating therequirement that B is the smallest. Therefore, the smallest model of ϕ larger than a+ 1must be of size at most κ1.We have hosen B suh that it models ϕ, and therefore there exists a tuple of a elements
(u1, . . . , ua) suh that ϕ is satis�ed when the existential quanti�ers bind these elementsto (x1, . . . , xa). If there are multiple possible hoies for the xi, we hoose one arbitrarily.We now onsider the xi and the substruture indued by them to be �xed. We refer tothis substruture as Ax.There are at most κ2 := a+ 2

Ps
i=1

Pai
j=1 (ai

j )aai−j many distint strutures onstrutedby adding an element labeled y to Ax when we inlude the strutures where the label yis simply plaed on one of the xi. We let v ≤ κ2 be the number of suh strutures thatour in B and assume there is an enumeration of them.We know that B models ϕ, and so for eah of these v strutures there exist b elements,whih we all w1, . . . , wb, suh that when we label wi with zi, the struture indued by
(x1, . . . , xa, y, z1, . . . , zb) models ψ. We onstrut Ai,j for 1 ≤ i ≤ 3 and 1 ≤ j ≤ v suhthat Ai,j is a opy of the w1, . . . , wb used for the j-th struture in our enumeration. Ineah of these ases, we onnet the Ai,j to Ax in the same way as in B, by modifyingassignments on tuples (Ax ∪Ai,j)

ak .For eah wh in Ai,j, we must onsider the ase where y is bound to wh. By onstrutionthe substruture indued by (x1, . . . , xa, y) ours in B. We assume that it is the k-thstruture in our enumeration. In this ase we will use the elements of Ai+1 mod 3,k toonstrut a struture satisfying ψ. Therefore, we modify the assignments as neededto reate a struture idential to that in B satisfying ψ and laim that the resultingstruture satis�es ϕ. Before this step we have not modi�ed any assignments �spanning�5If there are multiple �smallest� models, hoose one arbitrarily.6But still of size at least a + 1. 46



4.3. ACKERMANN'S CLASS WITH EQUALITY 47
Ax

A1,1

A1,2

A1,v

A3,1

A3,2

A3,v

A2,1

A2,2

A2,vFigure 4.3.1: Struture A1the olumns of A1 (see Figure 4.3.1) and so there are no assignments that we modifymore than one.Counting the number of elements, we have at most a + 3bv ≤ a + 3bκ2 = κ1. If
#(A1) < a+ 1, we an �grow� it by adding additional olumns to A1 in Figure 4.3.1 toonstrut a new A1 satisfying the requirements of the Lemma. Lemma 10Our goal is to onstrut an A′ that has property P by making only a small number ofhanges. We will make the substruture indued by a onstant-sized part of A′ equivalentto the A1 shown to exist above. The size of A1 is upper-bounded by a onstant, andso this will require only onstantly many modi�ations to assignments. However, wemust also deal with the other elements of A. We will use the following lemma for theseremaining elements.Lemma 11. Let ϕ = ∃x1 . . . ∃xa∀y∃z1 . . . ∃zbψ and assume there exists an A |= ϕ, suhthat #(A) ≥ a+ 1. Then, for any struture A′ ontaining A as an indued substruturewhere #(A′) = #(A)+1, we an onstrut a model of ϕ by modifying a onstant numberof assignments.Proof. A′ ontains an indued opy of A and one additional element, whih we will denoteby q. By assumption, A is a model of ϕ and therefore ontains an a-tuple (u1, . . . , ua)suh that the formula is satis�ed when xi is bound to ui. In addition, the size of A is atleast a+ 1, and so it also ontains at least one additional element, whih we will all p.We will now make q equivalent to p.We begin by modifying the assignments neessary to make the struture induedby (x1, . . . , xa, q) idential to that indued by (x1, . . . , xa, p). This requires at most
∑s

i=1

∑ai

j=1

(ai

j

)

aai−j = O(1) modi�ations. There must exist (v1, . . . , vb) in A suh that
ψ is satis�ed when zi is bound to vi and y to p. We now modify the assignmentsneessary to make the struture indued by (q, v1, . . . , vb) idential to that indued47



4.3. ACKERMANN'S CLASS WITH EQUALITY 48by (p, v1, . . . , vb)
7. This requires at most an additional ∑s

i=1

∑ai

j=1

(ai

j

)

bai−j = O(1)modi�ations. The resulting struture has #(A) + 1 elements, models ϕ and was on-struted from A′ by making only a onstant number of modi�ations to assignments.Lemma 11Now, given a su�iently large struture A, we will onstrut A′ by making only alinear8 number of modi�ations, and ensure that A′ |= ϕ.We begin by seleting arbitrarily #(A1) elements and making the indued substrutureidential to the A1 proven to exist in Lemma 10. The size of A1 is onstant and thereforethere are at most a onstant number of assignments to modify. The A1 from Lemma10 is of size at least a + 1 and so it satis�es the onditions of Lemma 11. We proeedindutively: selet an element q of A that has not yet been seleted. Using Lemma10, make the substruture indued by the elements seleted so far a model of ϕ. Eahstep requires O(1) modi�ations and we require Θ(n) steps. By indution we an thenonstrut A′ from A suh that A′ |= ϕ by making at most O(n) modi�ations to theassignments of relations in A.Then, by de�nition, dist(A,A′) =
O(n)

Θ(nm)
< ε.The maximum arity is at least two, and so the inequality holds for n su�iently large.This ompletes the proof of Lemma 9 and therefore that of Theorem 12. Lemma 9

7The ase where vi = p an be handled either by assuming it does not our or by replaing vi with
q in (q, v1, . . . , vb).8Linear in n = #(A). 48
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Chapter 5ConlusionIn this thesis we have introdued a generalization of property testing whih we allrelational property testing. We gave a number of basi results in Chapter 3. In partiular,in Setion 3.7 we onsidered a number of natural alternative de�nitions of distane andshowed the relationships between the resulting de�nitions of testability. The de�nitionsform a strit hierarhy, and the �best� de�nition depends on the problem in question.Relational databases are perhaps the most obvious example of massive strutures whereit would be promising to onsider appliations of property testing. Relational propertytesting is a natural way to haraterize this problem. In addition, properties of databasesare often given by queries written in formal languages suh as SQL and so it is very naturalto onsider the testability of properties expressible in various syntati restritions offormal languages. Finally, a generalization of property testing suh as ours is required ifwe wish to onsider this kind of lassi�ation problem.The seond major topi of this thesis is the lassi�ation problem for testability, whihwe onsidered in Chapter 4. This problem is inspired by the lassial problem for de-idability. The major result of Chapter 4 is the testability of Akermann's lass withequality, another example of a similarity between the lassi�ation for testability and thelassial one for deidability.AknowledgementsI am indebted to my advisor, Prof. Thomas Zeugmann, for his onstant enouragementand advie, whih has signi�antly improved both my researh life and this thesis. Iam very grateful for the support of the Japanese government via a Monbukagakushosholarship. Finally, I will always be indebted to my family for their love and support,and for putting up with me being so far away for so long.
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