
TCS -TR-A-09-39

TCS Technical Report

Contributions to the Classification for Testability:

Four Universal and One Existential Quantifier

by

Charles Jordan and Thomas Zeugmann

Division of Computer Science

Report Series A

November 27, 2009

Hokkaido University
Graduate School of

Information Science and Technology

Email: skip@ist.hokudai.ac.jp Phone: +81-011-706-7675

Fax: +81-011-706-7675

Contributions to the Classification for
Testability: Four Universal and One Existential

Quantifier

Charles Jordan? and Thomas Zeugmann??

Division of Computer Science
Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan

{skip,thomas}@ist.hokudai.ac.jp

Abstract. In property testing, the goal is to distinguish between struc-
tures that have some desired property and those that are far from having
the property, after examining only a small, random sample of the struc-
ture. We focus on the classification of first-order sentences based on their
quantifier prefixes and vocabulary into testable and untestable classes.
This classification was begun by Alon et al. [1] who showed that graph
properties expressible with quantifier patterns ∃∗∀∗ are testable but that
there is an untestable graph property expressible with a quantifier pat-
tern ∀∗∃∗. We simplify their untestable example and therefore show that
there is an untestable graph property expressible with each of the fol-
lowing quantifier patterns: ∀4∃, ∀3∃∀, ∀2∃∀2 and ∀∃∀3.

1 Introduction

In property testing, we take a small, random sample of a large structure and wish
to determine if the structure has some desired property or if it is far from having
the property. The hope is that we can gain efficiency in return for not deciding
the problem exactly. We focus on the classification problem for testability, where
the goal is to determine exactly which prefix vocabulary classes of first-order logic
are testable and which are not.

Property testing was first introduced in the context of program verification
(cf. Rubinfeld and Sudan [11] and Blum et al. [5]). Goldreich et al. [9] initi-
ated the study of combinatorial property testing, focusing on graphs. Alon et
al. [1] first considered the classification problem for testability, although they re-
stricted their attention to undirected, loop-free graphs. They showed that all such
first-order sentences1 with quantifier prefixes of the form ∃∗∀∗ express testable
properties. They also showed that there exists an untestable property expressible
? Supported by a Grant-in-Aid for JSPS Fellows under Grant No. 2100195209.

?? Supported by MEXT Grand-in-Aid for Scientific Research on Priority Areas under
Grant No. 21013001.

1 We assume throughout that all sentences are in prenex normal form.

2 Charles Jordan and Thomas Zeugmann

with the prefix ∀∗∃∗. The example they give is (essentially) an encoding of graph
isomorphism that can be expressed with a quantifier prefix of the form ∀12∃5.

In studying the classification problem, it is necessary to minimize the number
of quantifiers needed to express untestable properties. Additionally, the first-
order theory of graphs is not restricted to undirected, loop-free graphs. Here,
we show that there exists an untestable property of directed graphs that is
expressible in first-order sentences with prefixes ∀4∃, ∀3∃∀, ∀2∃∀2, and ∀∃∀3 (see
Theorem 2 for a more formal statement). That is, four universal quantifiers and
one existential quantifier, when the existential quantifier follows at least one
universal quantifier, suffice to express an untestable graph property. The proof
is a modification of the proof in Alon et al. [1], which is made possible by the
presence of directed edges and loops.

The results in Jordan and Zeugmann [10] show that one universal quantifier
is not sufficient to express an untestable property (regardless of the vocabulary),
and so it would be interesting to determine the status of prefixes containing two
and three universal quantifiers.

2 Preliminaries

In property testing, the goal is always to distinguish structures that have some
property from those that are far from having the property. We are particularly
interested in properties that are first-order definable, and so we begin by defining
our logic. Enderton [8] provides a more detailed introduction.

The atomic terms are the (countable) variable symbols xi. There are no func-
tion or constant symbols, and so the terms are exactly the atomic terms. The
atomic formulas are E(xi, xj) and xi = xj , for any two variable symbols xi and
xj . The formulas are built from the atomic formulas using the Boolean connec-
tives and first-order quantifiers (∀, ∃) in the usual way. The well-formed formulas
or sentences are the formulas which contain no free variables. We have no further
use for formulas that are not well-formed, and so we will refer to the well-formed
formulas simply as formulas.

Our logic contains a special equality symbol (=) which we will always inter-
pret as true equality (i.e., xi = xj is true iff the two symbols refer to the same
object). It also contains a single binary predicate symbol, which we have given
the name E. Of course, the name of this symbol is not important; any fixed,
unique name could have been chosen.

A structure is an object that allows us to interpret a sentence in our logic.
It consists of a finite universe U over which the variable symbols are allowed to
range, and a binary relation E corresponding to the symbol E in our logic. Any
such object can be considered a (directed) graph, and we will now refer to these
structures as graphs. See Diestel [7] for an introduction to graph theory.

Definition 1. A graph A = (UA, EA) is a pair consisting of a finite set of
vertices UA and a binary edge relation EA ⊆ UA × UA.

Classification for Testability: Four Universal and One Existential Quantifier 3

The natural numbers are denoted by N := {0, 1, . . .}. We denote the set of
graphs on exactly n vertices by Gn and the set of all graphs by G := ∪n∈NGn.
The size of the universe of a graph A = (UA, EA) is #(A) := |UA|.

A property P is any subset of G. Sentences are interpreted in the usual way,
and so we can decide A |= ϕ for any fixed graph A and first-order sentence ϕ.
Each sentence ϕ therefore defines a property, namely the set of its models,

Pϕ := {A | A ∈ G and A |= ϕ} .

The properties that we use in the proof of Theorem 2 involve encodings of
isomorphisms. Graphs A = (UA, EA) and B = (UB , EB) are isomorphic if there
is a bijection f : UA 7→ UB such that for all (x, y) ∈ UA × UA, (x, y) ∈ EA

iff (f(x), f(y)) ∈ EB . We say that a property P is closed under isomorphisms
if for all isomorphic A,B ∈ G, it is true that A ∈ P iff B ∈ P . All properties
expressible in our logic are closed under isomorphisms.

The goal in property testing is to distinguish between structures that have
properties and structures that are far from having them. This requires a distance
measure, which we define next. In the following, ⊕ denotes exclusive-or and EA

is the edge relation of A.

Definition 2. Let A = (U,EA) and B = (U,EB) be any two graphs such that
#(A) = #(B) = n. The distance between A and B is

dist(A,B) :=
|{(x1, x2) | x1, x2 ∈ U and EA(x1, x2)⊕ EB(x1, x2)}|

n2
.

The dist distance is the fraction of edges on which the two graphs disagree.
This is the dense graph model introduced by Goldreich et al. [9] and is essen-
tially based on the adjacency matrix representation. The distance generalizes to
properties in the following way.

Definition 3. Let P ⊆ G be a property of graphs and let A ∈ Gn be a graph
with n vertices. Then,

dist(A,P) := min
A′∈Gn∩P

dist(A,A′) .

We are now able to define property testing itself. The following definitions
are typical, but we will also mention several variations.

Definition 4. An ε-tester for property P is a randomized algorithm given an
oracle which answers queries for the universe size and queries for edges on de-
sired pairs in a graph A. The tester must accept with probability at least 2/3 if
A has P and must reject with probability at least 2/3 if dist(A,P) ≥ ε.

Definition 5. A property P is testable if for every ε > 0 there is an ε-tester for
P making a number of queries which is upper-bounded by a function depending
only on ε.

4 Charles Jordan and Thomas Zeugmann

We allow different ε-testers for each ε > 0 and our definitions are there-
fore non-uniform. The uniform case is strictly more difficult (see, e.g., Alon and
Shapira [3]). We are interested in proving untestability, and our results hold
even in the non-uniform case. In oblivious testing (see Alon and Shapira [2]),
the testers are not given access to the size of the universe. Again, our results hold
in the more general case where the testers may make decisions based on the size
of the universe. In a similar way, the number of loops in a graph is asymptoti-
cally insignificant compared to the number of possible non-loops. Modifying the
definition of distance to account for this makes testing strictly more difficult (see
Jordan and Zeugmann [10]) and so we use the more general definition above.

However, the (possible) loops seem to affect the notion of indistinguishability
defined by Alon et al. [1]. We use the following modification of Definition 2.

Definition 6. Let A = (U,EA) and B = (U,EB) be any two graphs such that
#(A) = #(B) = n. For convenience, let

d1(A,B) :=
|{x | x ∈ U and EA(x, x)⊕ EB(x, x)}|

n
, and

d2(A,B) :=
|{(x1, x2) | x1, x2 ∈ U, x1 6= x2, and EA(x1, x2)⊕ EB(x1, x2)}|

n2
.

The mr-distance between A and B is

mrdist(A,B) := max {d1(A,B), d2(A,B)} .

That is, although the number of loops is asymptotically insigificant, a tester
can easily restrict its queries to the form (x, x) and distinguish between graphs
that differ only in loops. Definition 6 is a special case of a definition from Jordan
and Zeugmann [10]. We use the following simple variation of indistinguishability
for graphs that may contain loops.

Definition 7. Two properties P and Q of graphs are indistinguishable if they
are closed under isomorphisms and for every ε > 0 there exists an Nε such that
for any graph A with universe of size n ≥ Nε, if A has P then mrdist(A,Q) ≤ ε
and if A has Q then mrdist(A,P) ≤ ε.

The important fact to note is that indistinguishability preserves testability.
The proof of the following is analogous to that given in Alon et al. [1].

Theorem 1. If P and Q are indistinguishable, then P is testable if and only if
Q is testable.

Our classification definitions are from Börger et al. [6] except that we omit
function symbols. We omit a detailed discussion, but the following is for com-
pleteness. Let Π be a string over the four-character alphabet {∃,∃∗,∀,∀∗}. Then
[Π, (0, 1)]= is the set of sentences in prenex normal form which satisfy the fol-
lowing conditions:

Classification for Testability: Four Universal and One Existential Quantifier 5

1. The quantifier prefix is contained in the language specified by the regular
expression Π.

2. There are zero (0) monadic predicate symbols.
3. There is at most one (1) binary predicate symbol.
4. There are no other predicate symbols.
5. Equality (=) may additionally appear.

That is, [Π, (0, 1)]= is the set of sentences in the logic that we have defined above
whose quantifier prefixes in prenex normal form match Π.

3 An Untestable Property

We will begin by defining property P , which is essentially the graph isomorphism
problem for undirected loop-free graphs encoded in directed graphs that may
contain loops. We will begin by showing in Lemma 1 that P is indistinguishable
from property Pf (cf. Definition 9) which is expressible in any of the prefix
vocabulary classes mentioned in Theorem 2. We will then show that P is not
testable. Indistinguishability preserves testability and so this implies that Pf is
also untestable, which will suffice to show the following theorem.

Theorem 2. The following prefix classes are not testable:

1. [∀4∃, (0, 1)]=
2. [∀3∃∀, (0, 1)]=
3. [∀2∃∀2, (0, 1)]=
4. [∀∃∀3, (0, 1)]=

We define property P as follows. First, a graph that has property P must
consist of an even number of vertices, of which exactly half have loops. The
subgraph induced by the vertices with loops must be isomorphic to that induced
by the vertices without loops, ignoring all loops, and there must be no edges
connecting the vertices with loops to those without loops. Finally, all edges
must be undirected (i.e., an edge from x to y implies an edge from y to x). We
refer to such undirected edges as paired edges.

Definition 8. A graph G ∈ Gn has P iff the following are true.

1. For some s, n = 2s.
2. There are exactly s vertices x satisfying E(x, x). We will refer to the set of

such vertices as H1 and to the remaining s vertices as H2.
3. The substructure induced by H1 is isomorphic to that induced by H2 when

all loops are removed.That is, there is a bijection f from H1 to H2 such that
for distinct x, y ∈ H1, it is true that G |= E(x, y) iff G |= E(f(x), f(y)).

4. There are no edges between H1 and H2.
5. All edges are undirected.

6 Charles Jordan and Thomas Zeugmann

Graph isomorphism is not directly expressible in first-order logic, and so we
use the following encoding where the bijection f is made explicit by adding n
edges between H1 and H2.

Definition 9. A graph G ∈ Gn has Pf iff the following are true.

1. For every vertex x, if E(x, x) then there is an edge from x to exactly one y
such that ¬E(y, y).

2. For every vertex x, if ¬E(x, x) then there is an edge from x to exactly one
y such that E(y, y).

3. For all vertices x and y, E(x, y) iff E(y, x).
4. For all pair-wise distinct vertices x1, x2, x3, x4, if E(x1, x1), ¬E(x2, x2),

E(x3, x3), ¬E(x4, x4), E(x1, x2) and E(x3, x4), then E(x1, x3) iff E(x2, x4).

Expressing Conditions 1 and 2 as “there is at most one such y” and “there
is at least one such y,” Pf can be expressed in each of the classes [∀4∃, (0, 1)]=,
[∀3∃∀, (0, 1)]=, [∀2∃∀2, (0, 1)]= and [∀∃∀3, (0, 1)]=.

For example, in the class [∀∃∀3, (0, 1)]=, we can express Pf by

∀x1∃x2∀x3∀x4∀x5 :
[

(
E(x1, x1) → (¬E(x2, x2) ∧ E(x1, x2) ∧
((¬E(x3, x3) ∧ ¬E(x4, x4) ∧ E(x1, x3) ∧ E(x1, x4)) → x3 = x4))

)
∧(

¬E(x1, x1) → (E(x2, x2) ∧ E(x1, x2) ∧
((E(x3, x3) ∧ E(x4, x4) ∧ E(x1, x3) ∧ E(x1, x4)) → x3 = x4))

)
∧

(E(x1, x3) → E(x3, x1)) ∧([
E(x1, x1) ∧ E(x4, x4) ∧ ¬E(x3, x3) ∧ ¬E(x5, x5) ∧ E(x1, x3) ∧ E(x4, x5) ∧
x1 6= x3 ∧ x1 6= x4 ∧ x1 6= x5 ∧ x3 6= x4 ∧ x3 6= x5 ∧ x4 6= x5

]
→

(E(x1, x4) ↔ E(x3, x5))
)]

.

To express Pf in the other classes of Theorem 2 it is sufficient to change only
the quantifier prefix.

The two properties P and Pf differ only in the edges which make the isomor-
phism explicit in Pf but are forbidden in P . There are at most n such edges, all
of which are not loops. This suffices to prove the following.

Lemma 1. Properties P and Pf are indistinguishable.

Proof. Let ε > 0 be arbitrary and let Nε = ε−1. Assume that G is a structure
that has property P and that #(G) > Nε. We will show that mrdist(G, Pf) < ε.

Structure G has P and so there is a bijection f satisfying Condition 3 of
Definition 8. For all x ∈ H1, we add the edges E(x, f(x)) and E(f(x), x) and
call the result G′. Property Pf differs from P only in that the isomorphism is

Classification for Testability: Four Universal and One Existential Quantifier 7

made explicit by the edges connecting loops and non-loops, and so G′ has Pf .
Indeed, it satisfies Conditions 1 and 2 of Definition 9 because G had no edges
between loops and non-loops and we have connected each to exactly one of the
other, following the bijection f . Next, G′ satisfies Condition 3 of Definition 9
because G satisfied Condition 5 of Definition 8 and we added only paired edges.
Finally, G′ satisfies Condition 4 of Definition 9 because the edges between loops
and non-loops follow the isomorphism f from Condition 3 of Definition 8.

We have added exactly n (directed) edges, none of which are loops and so
mrdist(G, P) ≤ mrdist(G, G′) = 0 + n/n2 < ε, where the inequality holds for
n > Nε. The converse is analogous; given a G that has property Pf , we simply
remove the n edges between loops and non-loops after using them to construct
the isomorphism f . ut

Properties P and Pf are indistinguishable. Testability is preserved by indis-
tinguishability (cf. Theorem 1) and therefore showing that P is not testable
suffices to prove that Pf is not testable (and therefore Theorem 2). The proof
closely follows that of Alon et al. [1]. The crucial lemma is the following, a com-
bination of Lemmata 7.3 and 7.4 from Alon et al. [1]. We use countH(T) to refer
to the number of times that a graph T occurs as an induced subgraph in H. A
bipartite graph is a graph where we can partition the vertices into two sets H1

and H2 such that there are no edges “internal” to the partitions. That is, for all
x1, y1 ∈ H1 and x2, y2 ∈ H2, ¬E(x1, y1) and ¬E(x2, y2).

Lemma 2 (Alon et al. [1]). There exists a constant ε′ > 0 such that for every
D ∈ N, there exist two undirected bipartite graphs H = H(D) and H ′ = H ′(D)
satisfying the following conditions.

1. Both H and H ′ have a bipartition into classes U1 and U2, each of size t.
2. In both H and H ′, for all subgraphs X with size t/3 ≤ #(X) ≤ t, there are

more than t2/18 undirected edges between X and the remaining part of the
graph.

3. The minimum degree of both H and H ′ is at least t/3.
4. dist(H,H ′) ≥ ε′.
5. For all D-element graphs T , countH(T) = countH′(T).

It is worth noting that the above is for undirected, loop-free graphs. However,
bipartite graphs never have loops and “undirected” in our setting results in
paired edges. It is easy to show that if two structures agree on the counts for all
size D induced subgraphs, they agree on the counts for all induced subgraphs of
size at most D. This is done by applying Lemma 3 inductively.

Lemma 3. Let H and H ′ be two graphs, both of size s, and let 2 < D ≤ s. If
for every graph T of size D, countH(T) = countH′(T), then for every graph T ′

of size D − 1, countH(T ′) = countH′(T ′).

8 Charles Jordan and Thomas Zeugmann

Proof. Assume H and H ′ satisfy the initial conditions of Lemma 3, but that
there exists a T ′ of size D − 1 such that countH(T ′) 6= countH′(T ′). Let C =
{T | #(T) = D and T contains T ′ as an induced subgraph}.

Note that
∑

T∈C countH(T) countT (T ′) = countH(T ′)(s − D + 1) and like-
wise for

∑
T∈C countH′(T) countT (T ′). We have assumed that H and H ′ satisfy

countH(T) = countH′(T) for T ∈ C, but countH(T ′) 6= countH′(T ′), giving a
contradiction and the Lemma follows. ut

Recall that testing is easiest under the dist definition, and so Lemma 4 also
implies that P is not testable under the mrdist definition.

Lemma 4. Property P is not testable under the dist definition.

Proof. Assume that P is testable. Then, there exists an ε-tester for

ε := 1/2 min {ε′/4, 1/72} ,

where ε′ is the constant from Lemma 2. We can assume without loss of generality
that the tester queries all edges in a random sample of D := D(ε) vertices.

Consider the graph G which contains two copies of the H = H(D) from
Lemma 2, where one of the copies is marked by loops on each vertex and there
are no edges between the copies. This graph has property P , and so the tester
must accept it with probability at least 2/3. Next, consider the graph G′ which
contains one copy of H marked by loops and one copy of H ′, again where
there are no edges between the two (induced) subgraphs. Graph G′ is such that
dist(G′, P) ≥ ε (cf. Lemma 5) and so it must be rejected with probability at
least 2/3. Both G and G′ consist of two bipartite graphs, each of which has a
bipartition into two classes of size t, and so #(G) = #(G′) = 4t.

However, G and G′ both contain exactly the same number of each induced
subgraph with D vertices. This is because both have loops on exactly half of
the vertices and the two halves are not connected by any edges. Some of the D
vertices must be in the first copy of H and the others in the second H (resp. H ′).
By Lemma 3, H and H ′ contain the same number of each induced subgraph
with size at most D. The tester therefore obtains any fixed sample with the
same probability in G and G′ and is unable to distinguish between them. It is
therefore unable to accept G with probability 2/3 and reject G′ with probability
2/3. This completes the proof, conditional on Lemma 5. ut

Lemma 5. The graph G′ is such that dist(G′, P) ≥ ε.

Proof. Assume that dist(G′, P) < ε. Then, there is an M ∈ P such that
dist(G′,M) < ε. Let M1 be the set of vertices with loops in M and M2 the
set of vertices without loops. We will refer to the vertices with loops in G′ as
H and to those without loops as H ′. Without loss of generality, assume that
|M1 ∩H| ≥ |M1 ∩H ′|. Then, |M1 ∩H| ≥ t. We let α1 be the set M1\H and α2

be M2\H ′. Note that |α1| = |α2| and |α1| ≤ t because |M1 ∩H| ≥ t.
Informally, M is formed by moving the vertices α1 from H ′ to H and the

vertices α2 from H to H ′, and then possibly making other changes. There are
three cases, which we will consider in order.

Classification for Testability: Four Universal and One Existential Quantifier 9

1. |α1| = 0.
2. |α1| ≥ t/3.
3. 0 < α1 < t/3.

If |α1| = 0, then we can construct M from G′ without exchanging vertices
between H and H ′, and in particular, construct H ′ from H (ignoring loops), by
making less than ε(4t)2 modifications. However, dist(H,H ′) ≥ ε′ by Lemma 2
and so this must require at least ε′(2t)2 modifications. By definition, ε < ε′/4
so ε(4t)2 < ε′(2t)2. The first case is therefore not possible.

Recall that |α1| ≤ t. If |α1| ≥ t/3, then by Condition 2 of Lemma 2 there
exists at least t2/18 undirected edges between α1 and H ′\α1 and between α2

and H\α2. All of these edges must be removed to satisfy P because each would
connect a vertex with a loop to a vertex without a loop. Therefore, dist(G′,M) ≥
4t2/18
(4t)2 = 1/72. But, ε < 1/72 and so the second case is not possible.

Therefore, it must be that 0 < |α1| < t/3. Here, we will show that it must be
the case that α1 and α2 are relatively far apart. If they are not far apart, then it
is possible to modify them instead of swapping them. This essentially results in
the first case considered above. Condition 3 of Lemma 2 requires that each vertex
has relatively high degree. These edges can be either internal to α1 (resp. α2)
or connecting α1 (α2) with H ′\α1 (H\α2). If α1 and α2 are relatively far apart,
then we will see that this forces too many edges “outside” of α1 (resp. α2),
resulting in a similar situation to the second case considered above.

We have assumed that dist(G′,M) < ε and that we can construct M from
G′ by making less than ε(4t)2 modifications if we move α1 to H and α2 to H ′.
This entails the following modifications.

1. Removing all edges connecting α1 to H ′\α1.
2. Removing all edges connecting α2 to H\α2.
3. Adding any required edges between α1 and H\α2.
4. Adding any required edges between α2 and H ′\α1.
5. Changing α1, α2, H\α2 and H ′\α1 to their final forms.

We can assume that the total number of modifications is less than ε(4t)2. It
must be that dist(α1, α2)|α1|2/(4t)2 + ε ≥ ε′/4. If this does not hold, then we
could first modify α1 to make it identical to α2 and then make H ′ identical to
M2. Next, M2 is identical to M1, which we could make identical to H. This would
require less than ε′(2t)2 modifications, which would violate Lemma 2. Therefore,

dist(α1, α2) ≥
16(ε′/4− ε)t2

|α1|2
. (1)

If both α1 and α2 are complete graphs then they cannot be far apart. Given
that all vertices in α1 (α2 is analogous) have degree at least t/3, then there must
be at least

|α1|(t/3− |α1|+ 1) + 2r

10 Charles Jordan and Thomas Zeugmann

edges connecting α1 to H ′\α1, where r is the number of edges internal to α1

that must be ommited to satisfy (1). The simple lower bound on r, the number
of edges needed for two graphs with at most r edges to be dist(α1, α2)-far, that
follows from dist(α1, α2) ≤ 2r/|α1|2 is sufficient. Combining this with (1) yields

r ≥ 8(ε′/4− ε)t2 . (2)

The number of edges connecting α1 to H ′\α1 is therefore, by (2), at least

|α1|(t/3− |α1|+ 1) + 16(ε′/4− ε)t2 ≥ 16(ε′/4− ε)t2 .

All of these edges must be removed to move α1 (resp. α2), and so

dist(G′,M) ≥ 16(ε′/4− ε)t2

(4t)2
=

ε′

4
− ε .

We have defined ε ≤ ε′/8 and so dist(G′,M) ≥ ε, a contradiction.

The cases are exhausted and so dist(G′, P) ≥ ε as desired. ut

4 Conclusion

Property testing is an application of induction (in the philosophy of science
sense), in which we obtain a small, random sample of a structure and seek to
determine whether the structure has a desired property or is far from having the
property. We have considered the classification problem for testability, classify-
ing the prefix vocabulary classes of first-order logic according to their testability.
In particular, we have given a simplified version of the untestable property from
Alon et al. [1] for the case of directed graphs which may contain loops. This im-
plies that there exists an untestable property expressible with quantifier prefixes
∀4∃, ∀3∃∀, ∀2∃∀2 and ∀∃∀3. It would be worthwhile to determine the testability
of the prefixes containing two or three universal quantifiers (for graphs or more
general relational structures).

5 Appendix

We complete the proof of Lemma 2 following the outline by Alon et al. [1]. All
graphs in this appendix are undirected, loop-free graphs on labelled vertices.

5.1 Proof of Lemma 2

Lemma 2 (Alon et al. [1]) There exists a constant ε′ > 0 such that for every
D ∈ N, there exist two bipartite graphs H = H(D) and H ′ = H ′(D) satisfying
the following conditions.

Classification for Testability: Four Universal and One Existential Quantifier 11

1. Both H and H ′ have a bipartition into classes U1 and U2, each of size t.
2. In both H and H ′, for all subgraphs X with size t/3 ≤ #(X) ≤ t, there are

more than t2/18 undirected edges between X and the remaining part of the
graph.

3. The minimum degree of both H and H ′ is at least t/3.
4. dist(H,H ′) ≥ ε′.
5. For all D-element graphs T , countH(T) = countH′(T).

Proof. We follow the proof outlined by Alon et al. [1] and begin with their proof
of the following simple lemma.

Lemma 6 (Alon et al. [1]). There exist constants ε and N such that every
graph H with n > N (labelled) vertices is ε-far from all but at most 2n2/5 other
graphs with the same vertex set.

Proof. Choose an ε < 1/2 such that
(

e
ε

)ε
< 21/10 and an N > ε−1 such that

nn < 2n2/10 for n > N . The number of graphs that are less than ε-far from a
given H with n > N vertices is at most

n!
εn2∑
i=0

((
n
2

)
i

)
. (3)

We apply the identity
(
a
b

)
=

(
a−1
b−1

)
+

(
a−1

b

)
inductively to

(
n2

εn2

)
. A simple

inductive proof shows that applying this identity once to each term, repeating
for a levels, gives

(
n2

εn2

)
=

∑a
i=0

(
a
i

)(
n2−a
εn2−i

)
=: L(a), and so(

n2

εn2

)
= L(n) =

n∑
i=0

(
n

i

)(
n2 − n

εn2 − i

)
. (4)

Recalling that
∑n

i=0

(
n
i

)
= 2n, there are 2n > εn2 total “terms” in the sum-

mation. Each term in the summation
∑εn2

i=0

((n
2)
i

)
can therefore be paired with a

term from (4) that upper-bounds it. Combining with (3), we see that the number
of graphs that are less than ε-far from H is less than

n!
(

n2

εn2

)
< nn

(e

ε

)εn2

< 2n2/5 ,

as desired. utLemma 6

Next, we show that most (sufficiently large) bipartite graphs satisfy Condi-
tions 2 and 3 of Lemma 2. We use the following statement of Chernoff bounds
(see Appendix A of Alon and Spencer [4]);

Pr[X < a] ≤ E[e−λX]eλa , (5)

where λ is chosen to optimize the bound, and also the following lemma.

12 Charles Jordan and Thomas Zeugmann

Lemma 7 (Lemma A.1.5 in Alon and Spencer [4]).

eλ + e−λ

2
= cosh(λ) ≤ eλ2/2 . (6)

Lemma 8 (Alon et al. [1]). There exists an N ′ such that for n > N ′, at
least 1

22n2
of the bipartite graphs with a given (labeled) bipartition U1, U2 where

|U1| = |U2| = n satisfy both of the following conditions.

(8.1) The minimum degree is at least n/3.
(8.2) For every subset X of U1 ∪ U2 with size n/3 ≤ |X| ≤ n, there are more

than n2/18 edges between X and (U1 ∪ U2)\X.

Proof. We let G be a random bipartite graph with a given, labeled bipartition
U1, U2 chosen in the following way. Each possible edge (u, v) ∈ U1 × U2 is
placed independently and uniformly with probability 1/2. There are n2 possible
edges, and so each of the 2n2

possible such bipartite graphs is generated with
equal probability. The probability of G satisfying (8.1) and (8.2) above is (by
definition)

|{H | H is such a graph that satisfies (8.1) and (8.2)}|
2n2 .

We want a lower-bound on the number of such graphs, or equivalently a
lower-bound on Pr[G satisfies (8.1) and (8.2)] · 2n2

that is greater than 1
22n2

. It
suffices therefore to show that this probability is at least 1/2. Using the union
bound, Pr[G satisfies (8.1) and (8.2)] ≥

1− Pr[G does not satisfy (8.1)]− Pr[G does not satisfy (8.2)] .

We will show in Claims 1 and 2 that this is at least 1− o(1) > 1/2, where the
inequality holds for sufficiently large N ′. We will let U = U1 ∪ U2 be the set of
all vertices.

Claim 1 Pr[G does not satisfy (8.1)] = o(1).

Proof. Let deg(v) be the degree of a vertex v. By the union bound,

Pr[G does not satisfy (8.1)] ≤
∑
v∈U

Pr[deg(v) ≤ n/3].

Let Nuv be an “indicator” variable for the event that there is an edge E(u, v)
which is normalized to take the following values,

Nuv :=

{
−1, if ¬E(u, v);

1, if E(u, v).
(7)

Classification for Testability: Four Universal and One Existential Quantifier 13

Then, deg(v) ≤ n/3 iff

Yv :=
∑

{u|u∈U1 if v∈U2, u∈U2 if v∈U1}

Nuv ≤ −n/3 ,

and so
∑

v∈U Pr[deg(v) ≤ n/3] =
∑

v∈U Pr[Yv ≤ −n/3]. We apply (5) and
Lemma 7, and so

Pr[Yv ≤ −n/3] ≤ E[e−λYv]e−λn/3 = cosh(λ)e−λn/3 ≤ eλ2n/2−λn/3 .

Minimizing the bound by setting λ = 1/3 gives

Pr[G does not satisfy (8.1)] ≤ (2n)e−n/18 = o(1) ,

as desired. utClaim 1

Claim 2 Pr[G does not satisfy (8.2)] = o(1).

Proof. By the union bound,

Pr[G does not satisfy (8.2)] ≤
∑

{X|X⊆U,n/3≤|X|≤n}

Pr[G violates (8.2) with X] .

(8)
Let a := |X ∩ U1|, b := |X ∩ U2|, i := a + b = |X|. As in (7), we let Nuv be

a normalized indicator for the event E(u, v). Let YX :=
∑

{u,v|u∈X,v∈U\X} Nuv.
Then, G violates (8.2) with X iff YX < −i(2n− i) + n2/9. Using again (5),∑

{X|X⊆U,n/3≤|X|≤n}

Pr[G violates (8.2) with X] =

∑
{X|X⊆U,n/3≤|X|≤n}

Pr[YX < −i(2n− i) + n2/9] ≤

∑
{X|X⊆U,n/3≤|X|≤n}

E[e−λYX]eλ(−i(2n−i)+n2/9) =

∑
{X|X⊆U,n/3≤|X|≤n}

∏
{u,v|u∈X,v∈U\X}

E[e−λNuv]eλ(−i(2n−i)+n2/9) . (9)

We can divide the product into four cases,
∏

{u,v|u∈X,v∈U\X} E[e−λNuv] =

 ∏
{u,v|u∈X∩U1,v∈U1\X}

eλ

  ∏
{u,v|u∈X∩U2,v∈U2\X}

eλ

 ·

 ∏
{u,v|u∈X∩U1,v∈U2\X}

eλ + e−λ

2

  ∏
{u,v|u∈X∩U2,v∈U1\X}

eλ + e−λ

2

 .

14 Charles Jordan and Thomas Zeugmann

Recalling Lemma 7 and combining with (9), Pr[G does not satisfy (8.2)] ≤∑
{X⊆U |n/3≤|X|≤n}

e
λ(a(n−a)+b(n−b))+ λ2

2 (a(n−b)+b(n−a))+λ
“
−i(2n−i)+ n2

9

”
. (10)

There are at most
(
n
a

)(
n

i−a

)
choices of X with size i when a = |X ∩ U1| and

b = i− a = |X ∩ U2|, and so after simplifying, (10) is at most

n∑
i=dn/3e

i∑
a=0

(
n

a

)(
n

i− a

)
eλ(2ai+n2/9−2a2−in)+ λ2

2 (2a2+in−2ai) . (11)

Using the simple bound
(
n
k

)
≤

(
en
k

)k, we get that (11) is at most

n∑
i=dn/3e

i∑
a=0

ei+a ln(n/a)+(i−a) ln(n/(i−a))+λ(2ai+n2/9−2a2−in)+ λ2
2 (2a2+in−2ai) .

(12)

Let us consider 2ai + n2/9− 2a2 − in. If a ≥ 5n/6, then

2ai +
n2

9
− 2a2 − in ≤ 2in +

n2

9
− 25

18
n2 − in

≤ − 5
18

n2 = −Θ(n2) .

If a < 5n/6, then the maximum of 2ai + n2/9 − 2a2 − in occurs at a = i/2.
Therefore,

2ai +
n2

9
− 2a2 − in ≤ i2 +

n2

9
− i2

2
− in =

i2

2
+

n2

9
− in

≤ n2

18
+

n2

9
− n2

3
= −n2

6
= −Θ(n2) ,

because the maximum occurs at the boundary i = n/3. Applying these bounds,
(12) is at most

n∑
i=dn/3e

i∑
a=0

ei+a ln(n/a)+(i−a) ln(n/(i−a))+λ(−n2/6)+ λ2
2 (2a2+in−2ai) . (13)

Choosing the non-optimal λ = 1/
√

n and looking only at asymptotics, we see
from (13) that Pr[G does not satisfy (8.2)] ≤

n∑
i=dn/3e

i∑
a=0

eO(n)+O(n ln n)−Θ(n3/2)+O(n) = O(n2)e−Θ(n3/2) = o(1) .

utClaim 2

Classification for Testability: Four Universal and One Existential Quantifier 15

The two claims combine to give the lemma. utLemma 8

We are now ready to complete the proof of Lemma 2. We let ε′ be the ε of
Lemma 6, and choose a sufficiently large s = 2n > max(N, 2N ′) where N and
N ′ are from Lemmas 6 and 8 respectively. There are at most E := 2(D

2) graphs
on D vertices and each appears at most sD times as an induced subgraph in a
graph on s vertices. An “appearance count” for a graph is an 2(D

2)-tuple giving,
for each of the possible graphs on D vertices, the number of appearances as an
induced subgraph. There are therefore at most (sD)E = 2DE log s many distinct
appearance counts (tuples). By Lemma 8, there are at least 1

22n2
bipartite graphs

satisfying the conditions of that lemma, and

1
2
2n2

= 2s2/4−1 = 2s2/20−12s2/5 > 2DE log s2s2/5 ,

where the inequality holds for sufficiently large s.
There are at most 2DE log s distinct appearance counts and so there must

be some appearance count shared by more than 2s2/5 of the above graphs. By
Lemma 6, there must be two such graphs (satisfying the conditions of Lemma 8
and with the same appearance count) that are ε-far from each other. utLemma 2

References

[1] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient
testing of large graphs. Combinatorica, 20(4):451–476, 2000.

[2] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties
testable with one-sided error. SIAM J. Comput., 37(6):1703–1727, 2008.

[3] Noga Alon and Asaf Shapira. A separation theorem in property testing. Combi-
natorica, 28(3):261–281, 2008.

[4] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, third edition,
2008.

[5] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. J. of Comput. Syst. Sci., 47(3):549–595, 1993.

[6] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.
Springer-Verlag, 1997.

[7] Reinhard Diestel. Graph Theory. Springer, third edition, 2006.
[8] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,

second edition, 2000.
[9] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its con-

nection to learning and approximation. J. ACM, 45(4):653–750, 1998.
[10] Charles Jordan and Thomas Zeugmann. Relational properties expressible with one

universal quantifier are testable. In Osamu Watanabe and Thomas Zeugmann,
editors, Stochastic Algorithms: Foundations and Applications, 5th International
Symposium, SAGA 2009, Sapporo, Japan, October 2009, Proceedings, volume 5793
of Lecture Notes in Computer Science, pages 141 – 155. Springer, 2009.

[11] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

