Learning from Positive and Unlabeled Examples

Authors: Fabien Letouzey, François Denis and Rémi Gilleron .

Source: Lecture Notes in Artificial Intelligence Vol. 1968, 2000, 71 - 85.

Abstract. In many machine learning settings, examples of one class (called positive class) are easily available. Also, unlabeled data are abundant. We investigate in this paper the design of learning algorithms from positive and unlabeled data only. Many machine learning and data mining algorithms use examples for estimate of probabilities. Therefore, we design an algorithm which is based on positive statistical queries (estimates for probabilities over the set of positive instances) and instance statistical queries (estimates for probabilities over the instance space). Our algorithm guesses the weight of the target concept (the ratio of positive instances in the instance space) with the help of a hypothesis testing algorithm. It is proved that any class learnable in the Statistical Query model [Kea93] such that a lower bound on the weight of any target concept f can be estimated in polynomial time is learnable from positive statistical queries and instance statistical queries only. Then, we design a decision tree induction algorithm POSC4.5, based on C4.5 [Qui93], using only positive and unlabeled examples. We also give experimental results for this algorithm.

©Copyright 2000 Springer