Towards a Better Understanding of Incremental Learning

Authors: Sanjay Jain, Steffen Lange, and Sandra Zilles

Source: Algorithmic Learning Theory, 17th International Conference, ALT 2006, Barcelona, October 2006, Proceedings, (José L. Balcázar, Phil Long and Frank Stephan, Eds.), Lecture Notes in Artificial Intelligence 4264, pp. 169 - 183, Springer 2006.

Abstract. The present study aims at insights into the nature of incremental learning in the context of Gold's model of identification in the limit. With a focus on natural requirements such as consistency and conservativeness, incremental learning is analysed both for learning from positive examples and for learning from positive and negative examples. The results obtained illustrate in which way different consistency and conservativeness demands can affect the capabilities of incremental learners. These results may serve as a first step towards characterising the structure of typical classes learnable incrementally and thus towards elaborating uniform incremental learning methods.

©Copyright 2006, Springer