## Predictive learning models for concept drift
For each of these measures of prediction quality, for some interesting concrete classes, (nearly) optimal bounds on permanence for attaining learnability are established. The concrete classes, from which the drifting concepts are selected, include regular languages accepted by finite automata of bounded size, polynomials of bounded degree, and sequences defined by recurrence relations of bounded size. Some important, restricted cases of drifts are also studied, for example, the case where the intervals of permanence are computable. In the case where the concepts shift only among finitely many possibilities from certain infinite, arguably practical classes, the learning algorithms can be considerably improved. |

©Copyright 2001 Elsevier Science B.V.