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Motivation I

This course mainly deals with sequential computations. That is,
within our underlying model, one and only one bit operation
can be performed in one time step. So, we identify the time
complexity with the number of bit operations to be performed.

For many problems often quite different algorithms are known
that solve them. Thus, one has to compare these algorithms in
order to make a qualified choice which algorithm to use.
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Motivation II

We distinguish between the best-case, worst-case and average-case
analysis of algorithms.
The best-case deals with those inputs on which the algorithm
achieves its fastest running time. The worst-case analysis
provides an upper bound which is never exceeded
independently of the inputs the algorithm is run with. So a
worst-case analysis is of particular importance for all
applications that are safety critical.

On the other hand, it may well be that those inputs, on which
the considered algorithm achieves its worst-case, occur very
seldom in practice. Provided the application is not safety
critical, one should prefer the algorithm achieving the better
average-case behavior.
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Motivation III

Last but not least, for several applications one also needs
guarantees that there is no algorithm solving a problem quickly
on any input. We shall study such applications in the second
part of our course when dealing with cryptography. But even
without going into any detail here, it should be clear that
deciphering a password must be as difficult on average as in the
worst-case.
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Motivation IV

We aim to express the complexity as a functions of the size of
the input. This assumes that inputs are made by using any
reasonable representation for the data on hand. For doing this,
it is advantageous to neglect constant factors. Intuitively, this
means that we are aiming at results saying that the running
time of an algorithm is proportional to some function.

To formalize this approach, we need the following:
N = {0, 1, 2, . . .} is the set of all natural numbers.
We setN+ =N \ {0}.
Z is the set of all integers.
We use Q and R for the set of all rational numbers and real
numbers, respectively.
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Definitions I

The non-negative real numbers are denoted by R>0.
For all real numbers y we define byc, the floor function, to be the
greatest integer less than or equal to y.

Similarly, dye denotes the smallest integer greater than or equal
to y, i.e., the ceiling function.

Furthermore, for all numbers y ∈ R we write |y| to denote the
absolute value of y.
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Order Notations I

Definition 1
Let g : N→ R>0 be any function. We define the following sets:

(1) O(g(n)) =df {f | f : N→ R>0 there are constants c, n0 > 0
such that 0 6 f(n) 6 cg(n) for all n > n0},

(2) Ω(g(n)) =df {f | f : N→ R>0, there are constants c, n0 > 0
such that 0 6 cg(n) 6 f(n) for all n > n0},

(3) o(g(n)) =df {f | f : N→ R>0, for every constant c > 0
there exists a constant n0 > 0 such that 0 6 f(n) 6 cg(n)

for all n > n0},
(4) Θ(g(n)) =df {f | f : N→ R>0, there exist constants c1, c2,

and n0 > 0 such that 0 6 c1g(n) 6 f(n) 6 c2g(n)

for all n > n0}.
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Order Notations II

To indicate that a function f is a member of O(g(n)), we write
f(n) = O(g(n)).
We adopt this convention to Ω(g(n)), o(g(n)) and Θ(g(n)).

Note that the O-notation expresses an asymptotic upper bound
while the Ω-notation expresses an asymptotic lower bound.
Looking at the definition above, we see that the Θ-notation
establishes an asymptotic tight bound.
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More Notations

Throughout this course, we write log n to denote the logarithm
to the base 2,
ln n to denote the logarithm to the base e (where e is the Euler
number),
and logc n to denote the logarithm to the base c.

Now, we are ready to study the first algorithms. The basic
arithmetic operations, i.e., addition, subtraction, multiplication
and division are of fundamental importance. Therefore, we start
with them.
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Addition I

For measuring the complexity of addition, we use the length of
the numbers to be added as the basic complexity parameter.
Thus, in the following we assume as input two n-bit numbers
a = an−1 · · ·a0 and b = bn−1 · · ·b0,
where ai, bi ∈ {0, 1} for all i = 0, . . . , n − 1.

The semantics of these numbers a and b is then

a =
n−1∑
i=0

ai2i and

b =
n−1∑
i=0

bi2i.
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Addition II

We have to compute the sum

s = a + b =

n∑
i=0

si2i , si ∈ {0, 1} for all i = 0, . . . , n .

Note that s is a number having at most n + 1 bits.

We use ∧ and ∨ to denote the logical AND and OR operation,
respectively. By ⊕ we denote the Boolean EX − OR function,
i.e.,

⊕ 0 1
0 0 1
1 1 0
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Addition III

Using essentially the well-known school method for addition,
we can express the si and the carry bits c0 and ci+1,
i = 0, . . . , n − 1 as follows:

sn = cn ,
si = ai ⊕ bi ⊕ ci , where
c0 = 0 ,

ci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) .

Since we want to count the number of binary operations to be
performed, we have to make a decision here. Either we can
consider ⊕ also as a basic binary operation or we restrict
ourselves to allow exclusively the logical AND, OR and the
logical negation as basic binary operations.
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Addition IV

In the latter case, we have to express ⊕ as

x⊕ y = (x ∧ ȳ) ∨ (x̄ ∧ y) , where x, y ∈ {0, 1} ,

i.e., it takes 5 bit basic operations (2 negations, 2 times AND and
one time OR) to express ⊕. So, the choice we make will only
affect the constant and can thus be neglected here.

We thus obtain the following theorem:

Theorem 1
The addition of two numbers a and b each having at most n bits can
be performed in time O(n).
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Addition IV
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Subtraction I

Subtraction can be handled within the scope of integer addition.
For representing integers, we need an extra bit for representing
the sign. We shall call such representations AS-numbers, where
A stands for “absolute value” and S for “sign.”

Definition 2
The value of an AS-number x = (xn−1, . . . , x0) ∈ {0, 1}n is
defined as

VAS(x) =df (−1)xn−1(xn−22n−2 + · · ·+ x12 + x0) .
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Subtraction II

When dealing with addition of two AS-numbers x, y having at
most n bits each, we distinguish the following cases:
Case 1. xn−1 = yn−1 .
That means x and y have the same sign. Hence, the sign of the
sum is the same as the common sign of x and y. Moreover, the
absolute value of the sum equals the sum of the absolute values
of x and y. Thus, we can directly use addition algorithm
presented above.

Case 2. xn−1 , yn−1 .
Now, we have to compare the absolute values of x and y. The
sign of the sum is equal to sign of the number having the bigger
absolute value. Without loss of generality, let x ′ be the bigger
absolute value and y ′ the smaller one. Hence, the absolute
value of the sum is x ′ − y ′.
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Subtraction III

Consequently, we have to deal with two additional problems.
First, we have to show that subtraction of two n-bit numbers
can be performed in time O(n).

Second, we have to prove that comparison of absolute values of
two n-bit numbers can be done in time O(n), too. We leave it as
an exercise to show these two results, since we should have
already some familiarity with these subjects (from technical
computer science and/or electrical engineering).

Thus, we leave it as an exercise to prove the following theorem:

Theorem 2
The subtraction of two AS-numbers a and b each having at most n

bits can be performed in time O(n).
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Multiplication I

We deal here only with the multiplication of natural numbers.
Given are two n-bit numbers a = an−1 · · ·a0 and
b = bn−1 · · ·b0, where ai, bi ∈ {0, 1} for all i = 0, . . . , n − 1.
Again, the semantics of these numbers a and b is then

a =
n−1∑
i=0

ai2i and b =
n−1∑
i=0

bi2i.

We have to compute the product ab. Taking into account that
a, b < 2n, one easily estimates ab < 2n · 2n = 2n+n = 22n. So,
the product ab has at most 2n bits.
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Multiplication II

First, we apply the usual school method for multiplication.
Multiplication of two bits can be realized by the AND function.
Thus, first we need n2 many applications of AND to form the n

summands and n costless shifts. Next, we have to add these n

numbers. Using the same ideas as above, one easily verifies
that this iterated sum takes another O(n2) many bit operations.
Thus we have the following theorem:

Theorem 3
The usual school algorithm for multiplying two numbers a and b

each having at most n bits can be performed in time O(n2).
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Multiplication III

Question
Can we do any better?

The affirmative answer will be provided by our next theorem
which goes back to Anatoly Karatsuba.
We apply the method of divide et impera (divide and conquer in
English) for sequential computations.
The general idea of the method divide et impera is as follows:
The problem of size n is divided into a certain number of
independent subproblems having the same type but having
lower size. The solution of the original problem is obtained by
combining the solutions of the subproblems in an appropriate
manner. If this technique is applied recursively to the
subproblems until problems of sufficiently small size arise, then
the best effect will result.
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Multiplication IV

Theorem 4
There is an algorithm for multiplying two numbers a and b each
having at most n bits that can be performed in time O(nlog 3).

Proof. Without loss of generality, we let n = 2k. Then there exist
numbers a0, a1 and b0, b1 such that

a = a02n/2 + a1 and b = b02n/2 + b1 .

Then, it holds

ab = (a02n/2 + a1)(b02n/2 + b1)

= a0b02n + (a0b1 + a1b0)2n/2 + a1b1 . (1)
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Multiplication V

Equation (1) reduces the problem of multiplying two n-bit
numbers to four multiplications of numbers having at most n/2
bits and three additions as well as two shift operations. So, it
does not help.

Karatsuba found a way to reduce the number of multiplications
of numbers having at most n/2 bits from four to three by
observing that

(a0b1 + a1b0) = (a0 + a1)(b0 + b1) − (a0b0 + a1b1) . (2)

Using Equation (2), it is immediately clear that we only have to
compute the three products a0b0, a1b1, and (a0 + a1)(b0 + b1).
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Multiplication VI

Therefore, we directly arrive at the following algorithm: For
each of the Steps (1) through (6) perform the computation
sequentially.

Karatsuba Multiplication
(1) s0 = a0 + a1, s1 = b0 + b1;
(2) p0 = a0b0, p1 = a1b1, p2 = s0s1;
(3) t = p0 + p1;
(4) u = p2 − t, û = u2n/2;
(5) v = a0b02n + a1b1;
(6) p = v + û.
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Multiplication VII

The correctness of the algorithm above is obvious by the
arguments provided before displaying it.

We have to estimate the complexity of the Karatsuba
multiplication.

Let A(n) be the time for adding two n-bit numbers, and
let M(n) be the time for multiplying two n-bit numbers.
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Multiplication VIII

Then, we can estimate the time complexity as follows:

(1) 2A(n/2);
(2) 2M(n/2) + M(n/2 + 1);
(3) A(n);
(4) A(n + 2) and a costless shift.
(5) This step is costless, since it is only a concatenation of bits.
(6) A

(3
2n

)
, since the n/2 lower bits of û are all 0.
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Multiplication IX

Now, the main idea is to apply the Karatsuba multiplication
algorithm recursively to itself. The only disturbing point here is
that we have a subproblem (computing s0s1) which is the
multiplication of two numbers having n/2 + 1 bits (and not
only n/2 as desired). We resolve it as follows:

Let s0 = x02 + x1 and s1 = y02 + y1, where x1, y1 ∈ {0, 1} and
x0, y0 are n/2-bit numbers. Then

s0s1 = (x02 + x1)(y02 + y1)

= 4x0y0 + 2(x0y1 + x1y0) + x1y1 . (3)

Now, the multiplication of x0y0 is a multiplication of n/2-bit
numbers, i.e., it has costs M(n/2).
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Multiplication X

The remaining multiplications, i.e., x0y1, x1y0 and x1y1 can be
directly realized by using n + 1 AND gates, since x1, y1 ∈ {0, 1}.
Additionally, we have to include the costs for addition, i.e.,

A(n) + A(n/2) + 1 . (4)

Therefore, by using (3) and (4), we arrive at

M(n/2 + 1) 6 M(n/2) + A(n) + A(n/2) + 1 .

Since addition can be realized by a sequential algorithm taking
time O(n), we conclude that there is a constant ĉ > 0 such that

M(n/2 + 1) 6 M(n/2) + ĉn .

Consequently, there is a constant c > 0 such that

M(n) =

{
c, if n = 1 ;
3M(n/2) + cn, if n > 1 . (5)
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Multiplication XI

Now, it suffices to show that M(n) = 3cnlog 3 − 2cn is a solution
of the recursive Equation (5).

This is shown inductively. For the induction base, we get

M(1) = 3c1log 3 − 2c = c .

Assume the induction hypothesis for m. The induction step is
from m to 2m. Recall that n = 2k, thus this induction step is
justified. We have to show that M(2m) = 3c(2m)log 3 − 2c(2m).

M(2m) = 3M(m) + 2cm

= 3
(

3cmlog 3 − 2cm
)

+ 2cm

= 9cmlog 3 − 4cm = 9cmlog 3 − 2c(2m)

= 3c2log 3mlog 3 − 2c(2m) = 3c(2m)log 3 − 2c(2m) .

Consequently, M(n) = O(nlog 3). This proves the theorem.
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Discussion

Recall that log 3 ≈ 1.59. Thus, the Karatsuba multiplication is
indeed much faster than the usual school method. Intuitively,
the improvement is due to the fact that multiplication is more
complex than addition. Hence, performing three instead of
four multiplications results in roughly 25% saving of time.

One can do even better. Schönhage and Strassen (1971) found a
multiplication algorithm that takes time O(n log n log log n) for
computing the product of two n-bit numbers. Very roughly
speaking, their algorithm works via the fast Fourier
transformation. However, their algorithm is only
asymptotically faster, and n must be very large for achieving an
improvement in practice. We thus omit this algorithm here.
And 2007 Fürer presented an even faster algorithm for integer
multiplication.
Try to implement Karatsuba’s multiplication.
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Solutions of Recursive Equations

The technique of divide et impera yields recursive equations.
Can we say something about the general solvability of them?

Theorem 5

Let a, b, c ∈N+. Then the recursive equation

T(n) =

{
b, if n = 1 ;
aT

(
n
c

)
+ bn, for all n > 1 ,

where n is a power of c, has the following solution:

T(n) =


O(n), if a < c ;
O(n log n), for all a = c ;
O(nlogc a), for all a > c .

Complexity and Cryptography c©Thomas Zeugmann



Definitions Addition Subtraction Multiplication Solutions of Recursive Equations End

Solutions of Recursive Equations

The technique of divide et impera yields recursive equations.
Can we say something about the general solvability of them?

Theorem 5

Let a, b, c ∈N+. Then the recursive equation

T(n) =

{
b, if n = 1 ;
aT

(
n
c

)
+ bn, for all n > 1 ,

where n is a power of c, has the following solution:

T(n) =


O(n), if a < c ;
O(n log n), for all a = c ;
O(nlogc a), for all a > c .

Complexity and Cryptography c©Thomas Zeugmann



Definitions Addition Subtraction Multiplication Solutions of Recursive Equations End

Proof I

Let n be a power of c, i.e., n = ck. First, we show that

T(n) = bn ·
logc n∑
i=0

(a

c

)i

is a solution of the recursive equation given in Theorem 5.
This is done inductively. For the induction basis let n = 1.
Then, logc 1 = 0 and

T(1) = b (by definition)

= b ·
(a

c

)0
(multiplying by 1)

= b ·
0∑

i=0

(a

c

)0
.

This shows the induction basis.
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Proof II

Next, assume the induction hypothesis (abbr. IH) that

T(m) = bm ·
logc m∑

i=0

(a

c

)i

is a solution of the recursive equation for n = m. The induction
step has to be done from m to cm, i.e., we have to show that

T(cm) = bcm ·
logc(cm)∑

i=0

(a

c

)i
.
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Proof III

T(cm) = aT(m) + bcm (by definition)

= abm ·
logc m∑

i=0

(a

c

)i
+ bcm (by the IH)

= bm ·
logc m∑

i=0

ai+1

ci
+ bcm

= bcm ·
logc m∑

i=0

(a

c

)i+1
+ bcm = bcm ·

(logc m)+1∑
i=0

(a

c

)i
.

Finally, (logc m) + 1 = logc m + logc c = logc(cm). Thus,

T(cm) = bcm ·
logc(cm)∑

i=0

(a

c

)i
.
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Proof IV

Next, we distinguish the following cases:

Case 1. a < c

Then a/c < 1 and thus
∞∑

i=0

(
a
c

)i is a convergent series. Hence,

we have T(n) = O(n).

Case 2. a = c

Consequently, a/c = 1, and thus

logc n∑
i=0

(a

c

)i
= 1 + logc n .

Therefore, T(n) = O(n logc n) = O(n log n).
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Proof V

Case 3. a > c

T(n) = bn ·
logc n∑
i=0

(a

c

)i
= bn ·

(
a
c

)1+logc n
− 1

a
c − 1

6 k̂bn ·
((a

c

)1+logc n
− 1

)
(note that k̂ is a constant)

6 k̂bn · a1+logc n

c1+logc n
= k̂b

a

c
alogc n (recall that n = clogc n)

= k ′alogc n , where k ′ = k̂ba/c

= k ′elogc n ln a = k ′eln n ln a·(1/ ln c) ,
(

since logc n =
ln n

ln c

)
= k ′eln n logc a , ( since (ln a)/ ln c = logc a)

= k ′nlogc a = O(nlogc a) .
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Thank you!
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Anatolii Alexeevich Karatsuba
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