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Introduction I

We aim to study the security of cryptosystems from a higher
point of view. Instead of looking at a particular cryptosystem,
we are interested in general properties a cryptosystems must
possess to be secure. We shall distinguish between

unconditionally secure,
computationally secure,
provably secure, and
insecure

cryptosystems.
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Introduction II

Intuitively, a cryptosystem is said to be unconditionally secure if
the probability p, p < 1, of breaking it, is independent of the
computing resources available and of the time at an adversary’s
disposal.

We call a cryptosystem computationally secure if braking it is
possible in principle but all known methods of executing the
computation necessary require an infeasible amount of time
and/or hardware.

A cryptosystem is said to be provably secure if it can be shown
that breaking it for any significant number of cases implies that
some other problem – such as computing the factorization of
large composite integers – could be solved with comparable
effort.
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Introduction III

The distinction between computationally secure and provably
secure is that while in either case the security of the system
would be impeached if the underlying computationally difficult
problem could be solved, the converse does not need to hold
for computationally secure systems but does hold for provable
secure systems. To provide these intuitive definitions was easy,
but it requires extra work to make them mathematically sound.

We start with the notion of unconditionally secure cryptosystems.
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Unconditionally Secure Cryptosystems I

We model cryptosystems as follows: By Zm we denote any
fixed alphabet of size m and we set Zm,n = Zn

m. The elements
of Zm,n are called n-grams. By Pt and Ct we denote the set of
all possible plaintexts and ciphertexts, respectively, i.e., we
define Pt =df Ct =df

⋃
n∈NZm,n.

Definition 2.1

A cryptographic transformation T is a sequence of bijective
transformations (T (n))n∈N with T (n) : Zm,n → Zm,n, where
the set Zm is arbitrarily fixed.
A cryptosystem T is a family of cryptographic transformations,
i.e., T =df {Tk | k ∈ K}. We refer to K as the set of all admissible
keys (admissible means admissible for T), and every k ∈ K is
called a key.
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Unconditionally Secure Cryptosystems II

In accordance with Lecture 1, we generally assume that T is
known to the cryptanalyst but she does not know which key k;
i.e., which transformation T

(n)
k , has been used. Furthermore,

we assume that the generation of plaintext and the choice of a
key are independent probabilistic processes.

The cryptanalyst has to determine the plaintext and the key,
respectively, by using the available information derivable from
the following:
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Unconditionally Secure Cryptosystems III

1 the ciphertext Y received,

2 the cryptosystem T = {Tk | k ∈ K} used to compute Y,
3 a priori assumptions about the probability distribution

Prplain over the set of all plaintexts,
4 a priori assumptions about the probability distribution

Prkey over the set K of all keys admissible for T,
5 some possible ciphers y = Tk(x), where k ∈ K, x ∈ Pt.

The a priori assumptions about Prplain and Prkey induce a
probability distribution Prcipher over the set of all ciphertexts Ct.
Additionally, the following probabilities can be determined:
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Unconditionally Secure Cryptosystems IV

(1) Prplain, key(x, k) =df Prplain(x) · Prkey(k); i.e., the probability
that for deciphering x the key k has been used.

(2) Prcipher(y) =df

∑
{(x,k)|Tk(x)=y}

Prplain(x) · Prkey(k); i.e., the

probability of the ciphertext y to occur.

(3) Prplain, cipher(x, y) =df

∑
{k∈K|Tk(x)=y}

Prplain(x) · Prkey(k); i.e.,

the probability that y is the enciphering of the plaintext x.

(4) Prcipher, plain(y, x) =df

∑
{k∈K|T−1

k (y)=x}

Prcipher(y) · Prkey(k);

i.e., the probability that the cipher y originates from the
plaintext x.

(5) Prcipher, key(y, k) =df

∑
{x∈Pt|Tk(x)=y}

Prplain(x) · Prkey(k); i.e.,

the probability that that for cipher y the key k was used.
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Unconditionally Secure Cryptosystems V

(6) Prplain|cipher(x|y) =df
Prplain, cipher(x,y)

Prcipher(y) ; i.e., the conditional
probability of the plaintext x under the observation of the
cipher y.

(7) Prkey|cipher(k|y) =df
Prcipher, key(y,k)

Prcipher(y) ; i.e., the conditional
probability of the key k under the observation of the
cipher y.

(8) Prcipher|plain(y|x) =
Prcipher, plain(y,x)

Prplain(x) ; i.e., the conditional
probability of the cipher y under the observation of the
plaintext x.

For the definition of the conditional probabilities we must
assume that Prcipher(y) > 0 and Prplain(x) > 0, respectively. If
these probabilities are zero, we define the respective
conditional probabilities to be zero, too.
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Unconditionally Secure Cryptosystems VI

Now, we are in a position to define the notion of unconditional
security.

Definition 2.2

A cryptosystem T is unconditionally secure if

Prplain|cipher(x|y) = Prplain(x)

for all plaintexts x and ciphertexts y with Prcipher(y) > 0.

Thus, for an unconditionally secure cryptosystem the
probability distributions Prplain and Prplain|cipher( · |y) are
identical for all ciphers y provided the cipher can be generated
at all by the cryptosystem T. In other words, whatever the
eavesdropped cipher y is, for the cryptanalyst the probability to
break it is the same as having not seen it.
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Unconditionally Secure Cryptosystems VII

Note that Definition 2.2 does not make any assumptions
concerning the computing power available to the cryptanalyst
nor does it limit the time she may spend.

The following exercise provides a first characterization of
unconditionally secure cryptosystems:
Exercise 1. A cryptosystem T is unconditionally secure if and only
if Prcipher|plain(y|x) = Prcipher(y) for all plaintexts x with
Prplain(x) > 0.

The following theorem provides a necessary condition for
unconditionally secure cryptosystems by relating the number
of keys necessary to the number of plaintexts having non-zero
probability:
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Unconditionally Secure Cryptosystems VIII

Theorem 2.1

Let T be any cryptosystem that is unconditionally secure for all
n-grams x, y with Prplain(x) > 0 and Prcipher(y) > 0. Then

|K| >
∣∣{x ∈ Zm,n | Prplain(x) > 0

}∣∣ .

Proof. We introduce the following notations:

Zm,n,+,plain =df

{
x ∈ Zm,n | Prplain(x) > 0

}
,

Zm,n,+,cipher =df

{
y ∈ Zm,n | Prcipher(y) > 0

}
.

Furthermore, without loss of generality we may assume
Prkey(k) > 0 for all k ∈ K. Otherwise, we replace K by K̂,
where K̂ is the set of all keys having non-zero probability.
We need the following observations:

Complexity and Cryptography c©Thomas Zeugmann



Intro Unconditionally Secure Cryptosystems One-Time-Pads A Priori Assumptions End

Unconditionally Secure Cryptosystems VIII

Theorem 2.1

Let T be any cryptosystem that is unconditionally secure for all
n-grams x, y with Prplain(x) > 0 and Prcipher(y) > 0. Then

|K| >
∣∣{x ∈ Zm,n | Prplain(x) > 0

}∣∣ .

Proof. We introduce the following notations:

Zm,n,+,plain =df

{
x ∈ Zm,n | Prplain(x) > 0

}
,

Zm,n,+,cipher =df

{
y ∈ Zm,n | Prcipher(y) > 0

}
.

Furthermore, without loss of generality we may assume
Prkey(k) > 0 for all k ∈ K. Otherwise, we replace K by K̂,
where K̂ is the set of all keys having non-zero probability.
We need the following observations:

Complexity and Cryptography c©Thomas Zeugmann



Intro Unconditionally Secure Cryptosystems One-Time-Pads A Priori Assumptions End

Unconditionally Secure Cryptosystems IX

Observation 2.1

For all keys k ∈ K the (restricted) transformation
Tk : Zm,n,+,plain → Zm,n,+,cipher is injective.

By definition Tk : Zm,n → Zm,n is bijective. We know that

Prcipher(y) =
∑

{(x,k)|Tk(x)=y}

Prplain(x) · Prkey(k).

Thus, Prcipher(y) > 0 iff there is at least one pair (x, k) with
Tk(x) = y satisfying Prplain(x) > 0 and Prkey(k) > 0.
Since Prkey(k) > 0 for all k ∈ K, we directly obtain that
Tk(Zm,n,+,plain) ⊆ Zm,n,+,cipher for all k ∈ K. So the restriction
of Tk to Zm,n,+,plain is an injective mapping into Zm,n,+,cipher.
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Unconditionally Secure Cryptosystems X

Observation 2.2

Let y ∈ Zm,n,+,cipher be arbitrarily fixed. Then, for every
x ∈ Zm,n,+,plain there must be a key k ∈ K such that Tk(x) = y.

Suppose the converse; i.e., there exists an x̂ ∈ Zm,n,+,plain such
that Tk(x̂) , y for all k ∈ K. Hence {k ∈ K | Tk(x̂) = y} = ∅.
Since the cryptosystem is unconditionally secure we have

Prplain(x̂) = Prplain|cipher(x̂|y) =
Prplain, cipher(x̂, y)

Prcipher(y)

=

∑
{k∈K|Tk(x̂)=y}

Prplain(x̂) · Prkey(k)

Prcipher(y)
= 0 ,

a contradiction to x̂ ∈ Zm,n,+,plain.
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Unconditionally Secure Cryptosystems XI

Finally, for all x1, x2 ∈ Zm,n,+,plain with x1 , x2 and all k1, k2 ∈ K

satisfying Tk1(x1) = y = Tk2(x2) we can conclude k1 , k2.

In order to see this, suppose the converse; i.e., there are
x1, x2 ∈ Zm,n,+,plain with x1 , x2 and a key k such that
Tk(x1) = y = Tk(x2). However, Tk is injective, and therefore this
would imply x1 = x2, a contradiction.

Consequently, the set K must contain at least as many keys as
there are elements in Zm,n,+,plain.
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One-Time-Pads I

Next, we show the existence of unconditionally secure
cryptosystems. We define a cryptosystem, the so-called
one-time-pads, and prove it to be unconditionally secure.

One-time-pads were introduced by Gilbert S. Vernam in 1918.
His idea was to introduce uncertainty at the same rate at which
is was removed by redundancy among symbols of the message.
His intuition was right as proved more than two decades later
by Claude E. Shannon (1949).

But as Theorem 2.1 shows, this ideal requires exchanging an
amount of keys in advance of communication that is in most
cases impractical if not infeasible.
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One-Time-Pads II

For the sake of convenience, we identify the possible keys of
the cryptosystem to be defined by random variables. Let
{ki | 0 6 i < n} be independently and identically distributed
random variables taking the values from Zm equally likely, i.e.,
Pr(ki = x) = 1/m for all x ∈ Zm, and all i = 0, . . . , n − 1.

One-time-pads are defined as bijections as follows:

T (n) : X = (x0, . . . , xn−1) → Y = (y0, . . . , yn−1) (1)

with a randomly generated key (k0, . . . , kn−1), where for
all i = 0, . . . , n − 1

yi = T
(n)
ki

(xi) =df (ki + xi) mod m (2)

must be satisfied.
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One-Time-Pads III

Thus, we have Prkey((k0, . . . , kn−1)) = 1/mn. Moreover, the set
of all keys is K = Zm,n, and thus also |K| = mn. So there are at
least as many keys for enciphering the n-grams from Zm,n as
there are elements X ∈ Zm,n with Prplain(x) > 0. Therefore, the
condition of Theorem 2.1 is fulfilled. Thus, for the
one-time-pad we obtain the following theorem:

Theorem 2.2

For every plaintext source the random variables y0, . . . , yn−1 defined
by (2) are independent and identically distributed, and every yi,
i = 0, . . . , n − 1, is equally distributed over Zm, i.e.,

Pr(y0, . . . , yn−1) =
1

mn
for all y = (y0, . . . , yn−1) ∈ Zm,n .
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One-Time-Pads IV

Proof. The values xi and yi uniquely determine ki by
yi − xi ≡ ki mod m. All ki are independent and identically
distributed. Each ki is equally likely chosen from Zm. Hence,

Prplain, cipher{X = x, Y = y} =
∑

{k∈K|T
(n)
k (x)=y}

Prplain{X = x}Prkey(k)

=
1

mn
Prplain{X = x} .
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One-Time-Pads V

Finally, in accordance with the definition of Prcipher we have

Prcipher{Y = y} =
∑

(x0,...,xn−1)∈Zm,n

Prplain, cipher{X = x, Y = y}

=
1

mn

∑
(x0,...,xn−1)∈Zm,n

Prplain{X = x}

=
1

mn
.

Analogously, we can show for every position yi in the
ciphertext that Prcipher(yi) = 1/m. Therefore, the yi are
independent and identically distributed, and

Pr(y0, . . . , yn−1) =
1

mn
for all y = (y0, . . . , yn−1) ∈ Zm,n,

and the Theorem is shown.
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One-Time-Pads VI

Corollary 2.1

One-time pads defined by (2) are unconditionally secure for all
plaintexts of length n.

Proof. We compute

Prplain|cipher{X = x|Y = y} =
Prplain, cipher{X = x, Y = y}

Prcipher{Y = y}

=
1

mn · Prplain{X = x}

1
mn

(3)

= Prplain{X = x},

where Equality (3) is obtained by Theorem 2.2.
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Making A Priori Assumptions I

Until now, we left it open in which way a priori assumptions
concerning Prplain and Prkey are made. Usually, the keys are
uniformly distributed, i.e., each key is equally likely. The
harder part is to find appropriate models for natural languages
allowing reasonable assumptions over Prplain. We describe
some of the possible models, and outline generalizations.

First of all, we generally assume the cryptanalyst to know in
which language the plaintext is written. One could try to list all
possible n-grams in the relevant language, where n

corresponds to the length of the ciphertext eavesdropped.
However, this approach would require a too huge amount of
data to be processed, and the resulting probabilities are hard to
handle numerically.
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Making A Priori Assumptions II

So it is common to model languages as probabilistic processes.
The resulting model should fulfill the following properties:

1 The model should reflect characteristic properties of the
language modeled with “sufficient” precision. For
example, in German, English and French, the letter Q is
always followed by a U (e.g., Quark, question,
informatique), while any other combination like QE, QP,
QR, never appears.

2 It must be possible to perform a great amount of
computations within the model using a reasonable amount
of time and hardware.
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Making A Priori Assumptions III

In principle, each language can be modeled with any desired
precision. However, the complexity of the resulting models
rapidly increases with the degree of precision obtained.
Therefore, for ensuring the applicability of the models, one has
to compromise.

The basic idea of modeling languages is as follows: A plaintext
source for texts over Zm is formalized as probabilistic process;
i.e., as a finite or infinite sequence of random variables
X0, X1, . . .. That is, the source models the generation of a
plaintext by a random experiment resulting in a sequence of
letters x0, x1, . . ..
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Making A Priori Assumptions IV

A source is defined by determining the probabilities

Prplain{Xj = x0, Xj+1 = x1, . . . , Xj+n−1 = xn−1} (4)

for every n-gram (x0, . . . , xn−1) ∈ Zm,n and all j, n ∈N.
To obtain mathematically sound models, the entity of all
defined n-gram probabilities Prplain(x0, . . . , xn−1) must fulfill
the following conditions:
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Making A Priori Assumptions V

(1) Prplain(x0, . . . , xn−1) > 0 for all n ∈N and
all (x0, . . . , xn−1) ∈ Zm,n,

(2)
∑

(x0,...,xn−1)∈Zm,n

Prplain(x0, . . . , xn−1) = 1,

(3) Prplain(x0, . . . , xn−1) =∑
(xn,...,xs−1)∈Zm,s−n

Prplain(x0, . . . , xs−1) for all s > n.

Condition (1) and (2) are the classical axioms of non-negativity
and normalization, respectively. Property (3) is a special case of
Kolmogorov’s consistency requirement. It establishes the
connection between the probability of a prefix (x0, . . . , xn−1)

and the set of all s-grams, s > n, extending it. To understand its
importance, it is helpful to reflect about composed words in
English, e.g. furthermore, and moreover, or of composed words
in German, e.g., Bügeleisen, Eisenbügel.
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Variant 1: 1-gram Source

We look at different possibilities for modeling which differ from
one another with respect to the degree of accuracy achieved.

Definition 2.3

A plaintext source generates 1-grams over Zm by identical,
independent random experiments if

Prplain(x0, . . . , xn−1)=
n−1∏
i=0

p(xi), where p(xi) denotes the

probability to obtain xi.

Hence, we have to define p over Zm such that p(t) > 0 for all
t ∈ Zm, and

∑
t∈Zm

p(t) = 1. The desired probabilities p(t),

t ∈ Zm are empirically obtained by frequency analysis. But this
is something we have already done for English when attacking
the Vigenère cryptosystem.
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Variant 1: 1-gram Source

Now, it is easy to verify that Conditions (1) and (2) above are
fulfilled for the distribution Prplain given in Definition 2.3.
Exercise 2. Prove that the distribution Prplain given in Definition
2.3 does satisfy Condition (3) above.

However, modeling languages by 1-gram plaintext source is
still rough. For example, Prplain(HELP) = Prplain(LHEP). Also,
the characteristic mentioned above that Q must be followed by
U is not reflected, since Prplain(QE) = 0.000156 > 0. It may be,
nevertheless, successfully applied when trying to break
messages enciphered by simple cryptosystems.
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Variant 2: 2-gram Source

Some of the weaknesses mentioned above are overcome by the
following generalization of Definition 2.3:

Definition 2.4

A plaintext source generates 2-grams over Zm by identical and
independent random experiments if

Prplain(x0, . . . , x2n−1) =

n−1∏
i=0

p(x2i, x2i+1) ,

where p(xi, xj) denotes the probability to obtain xixj.
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Variant 2: 2-gram Source

Hence, we have to define p : Zm ×Zm → [0, 1] such that
p(t, s) > 0 for all (t, s) ∈ Zm ×Zm, and

∑
(t,s)∈Zm×Zm

p(t, s) = 1.

Again, the probability measure p is obtained by performing a
frequency analysis with respect to the language in which the
expected plaintexts are written. For arriving at reasonably
precise estimates for the desired probabilities one has, however,
to analyze much larger samples. For example, below we show
the relative frequencies of all 676 possible 2-grams over
Z26 ×Z26 obtained by analyzing a sample of size 67320 of
English 2-grams. The entry in the row i and column j stands for
the number N(i, j) of occurrences of the 2-gram (i, j) in the
sample.
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Variant 2: 2-gram Source

The desired probabilities are then obtained by computing

p(t, s) = N(t, s)/67320 .

We leave it to the reader to perform this calculation.
Nevertheless, a closer look to these Figures impressively shows
that the characteristics of English are much better reflected by
2-gram plaintext sources than by 1-gram ones. For example, all
entries that are 0 result in zero probability, too. Thus,
Prplain(QA) = Prplain(QB) = . . . = Prplain(QT) = 0. Moreover,
Prplain(HELP) = 0.0000061 > 0 = Prplain(LHEP). On the other
hand, Prplain(HELP) = 0.0000061 < 0.0000064 = Prplain(HEPL),
despite the fact that HEPL is not an English word.
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Frequency of 2-grams, Part 1

A B C D E F G H I J K L M

A 7 125 251 304 13 65 151 13 311 13 67 681 182
B 114 7 2 1 394 0 0 0 74 7 0 152 6
C 319 0 52 1 453 0 0 339 202 0 86 98 4
D 158 3 4 33 572 1 20 1 273 5 0 19 27
E 492 27 323 890 326 106 93 16 118 4 27 340 253
F 98 0 0 0 150 108 0 0 188 0 0 35 1
G 122 0 0 2 271 0 20 145 95 0 0 23 3
H 646 2 5 3 2053 0 0 2 426 0 0 6 6
I 236 51 476 285 271 80 174 1 10 0 31 352 184
J 18 0 0 0 26 0 0 0 5 0 0 0 0
K 14 1 0 1 187 1 0 7 56 0 4 7 1
L 359 5 6 197 513 28 29 0 407 0 21 378 22
M 351 65 5 0 573 2 0 0 259 0 0 2 126
N 249 2 281 761 549 46 630 6 301 4 30 33 47
O 48 57 91 130 21 731 46 14 52 8 44 234 397
P 241 0 1 0 310 0 0 42 75 0 0 144 13
Q 0 0 0 0 0 0 0 0 0 0 0 0 0
R 470 15 79 129 1280 14 80 8 541 0 94 75 139
S 200 4 94 9 595 8 0 186 390 0 30 48 37
T 381 2 22 1 872 4 1 2161 865 0 0 62 27
U 72 87 103 51 91 11 80 2 54 0 3 230 69
V 65 0 0 2 522 0 0 0 223 0 0 0 1
W 282 1 0 4 239 0 0 175 259 0 0 5 0
X 9 0 15 0 17 0 0 1 15 0 0 0 1
Y 17 1 3 2 84 0 0 0 20 0 1 5 11
Z 18 0 0 0 36 0 0 0 17 0 0 1 0
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Frequency of 2-grams, Part 2

N O P Q R S T U V W X Y Z

A 1216 5 144 0 764 648 1019 89 137 37 17 202 15
B 0 118 0 0 81 28 6 89 2 0 0 143 0
C 3 606 0 1 113 23 237 92 0 0 0 25 0
D 8 111 0 1 49 75 2 91 15 6 0 40 0
E 1029 30 143 25 1436 917 301 36 160 153 113 90 3
F 1 326 0 0 142 3 58 54 0 0 0 5 0
G 51 129 0 0 150 29 28 58 0 0 0 6 0
H 14 287 0 0 56 10 85 31 0 4 0 15 0
I 1550 554 62 5 212 741 704 7 155 0 14 1 49
J 0 45 0 0 1 0 0 48 0 0 0 0 0
K 20 7 0 0 3 39 1 1 0 0 0 4 0
L 1 208 11 0 9 104 68 72 15 3 0 219 0
M 8 240 139 0 5 47 1 65 1 0 0 37 0
N 88 239 2 3 5 340 743 56 31 8 1 71 2
O 1232 125 164 0 861 201 223 533 188 194 7 23 2
P 1 268 103 0 409 32 51 81 0 0 0 3 0
Q 0 0 0 0 0 0 0 73 0 0 0 0 0
R 149 510 25 0 97 300 273 88 65 8 1 140 0
S 7 234 128 3 9 277 823 192 0 13 0 27 0
T 9 756 2 0 295 257 131 120 3 54 0 125 3
U 318 4 81 0 306 256 263 6 3 0 2 3 1
V 0 46 0 0 0 2 0 1 1 0 0 5 0
W 44 159 0 0 13 45 2 0 0 0 0 3 0
X 0 1 47 0 0 0 23 0 0 0 5 0 0
Y 5 64 9 0 9 44 5 4 0 3 0 2 1
Z 0 4 0 0 0 0 0 1 0 0 0 0 2
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Variant 3: Markov Chains

Definition 2.5

A plaintext source generates 1-grams over Zm by a Markov
chain with transition probabilities P = (p(s|t))s,t∈Zm and initial
probability distribution π = (π0, . . . , πm−1) if

Prplain(x0, . . . , xn−1) = π(x0)p(x1|x0)p(x2|x1) . . . p(xn−1|xn−2)

for all n ∈N and every n-gram (x0, . . . , xn−1) ∈ Zm,n.

Thereby, the following properties must be fulfilled:
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Variant 3: Markov Chains

Properties

(α) p(s|t) > 0 for all 0 6 s, t < m,

(β)
∑

06s<m

p(s|t) = 1 for all 0 6 t < m,

(γ) π(t) > 0 for all t = 0, . . . , m − 1, and
∑

06s<m

π(s) = 1,

(δ) π(s) =
∑

06t<m

π(t)p(s|t) for all s = 0, . . . , m − 1.

This looks much more complicated than our previous
definitions. Hence, some additional remarks are in order. The
general idea behind the Markov chain model is to describe a
language by a probabilistic automaton having |Zm| states. Thus,
each state stands for a letter.
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Variant 3: Markov Chains

Intuitively, the initial probability distribution π describes the
probability of a plaintext to start with a particular letter. It
could be obtained by counting the number of sentences
(paragraphs) in a sufficiently long text starting with the letter
A, B, . . . , and Z and dividing these numbers by the number of
all sentences (paragraphs) in this text.

There is, however, a better method for computing it which we
describe below. Figure 1 displays these probabilities.
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Variant 3: Markov Chains

letter π letter π letter π letter π

A 0.0723 H 0.0402 O 0.0716 V 0.0117
B 0.0060 I 0.0787 P 0.0161 W 0.0078
C 0.0282 J 0.0006 Q 0.0007 X 0.0030
D 0.0483 K 0.0064 R 0.0751 Y 0.0168
E 0.1566 L 0.0396 S 0.0715 Z 0.0010
F 0.0167 M 0.0236 T 0.0773
G 0.0216 N 0.0814 U 0.0272

Figure 1: The initial probabilities π

Complexity and Cryptography c©Thomas Zeugmann



Intro Unconditionally Secure Cryptosystems One-Time-Pads A Priori Assumptions End

Variant 3: Markov Chains

The matrix P = (p(s|t))s,t∈Zm describes the transition
probabilities; i.e., entry p(s|t) is the conditional probability for
the event to obtain letter s under the condition that the
previously obtained letter was t. Thus, P can also be computed
by an appropriate frequency analysis. We may use the sample
text exploited to obtain the 2-gram counts. Let N(i, j) denote
the number of occurrences of the 2-gram (i, j) in the sample

text. We set N(i) =df

m−1∑
j=0

N(i, j) and compute

p(j|i) = N(i, j)/N(i). For example, N(A, G) = 151 as displayed
in the Figure given above. Moreover,
N(A) = N(A, A) + N(A, B) + . . . + N(A, Z) = 6476. Thus,
p(G|A) = 151/6476 = 0.0233. We leave it to the reader to
compute the whole matrix. Now, it is immediately clear that
Properties (α), (β), and (γ) are fulfilled.
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Variant 3: Markov Chains

We sketch the announced method for computing π. The key
property applied here is (δ). In matrix notation, (δ) reads as
π = πP. Furthermore, we define π(`)(j) to be the probability
that the Markov chain is in state j at the `th step, i.e.,
π(`)(j) = Pr[X`−1 = j]. By definition, π(0)(j) = π(j).

Assuming (δ), one can prove the remarkable result that
π(`)(j) = π(j), too.
That is, the probabilities π(`)(j), ` ∈N, do not change with time,
but are stationary. Thus, π can be computed by solving the
matrix equation π = πP. It is beyond the scope of this lecture to
prove this result here. Instead, the interested reader is
encouraged to consult Feller (1968).
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Variant 3: Markov Chains

Finally, it is easy to see that the Markov Chain Model is not
perfect either. As an easy calculation shows,
Prplain(HELP) < Prplain(HEPL), since p(P|L) = 0.0041 and
p(L|P) = 0.0812. But sometimes it is better than the 2-gram
source model. Consider the English word “gaga,” and the
non-English string “agag.” The 2-gram source model gives
Prplain(GAGA) = 0.00000324 < 0.00000484 = Prplain(AGAG),
while in the Markov Chain Model

Prplain(GAGA) = π(G)p(A|G)p(G|A)p(A|G)

= 0.0216 · 0.10782 · 0.0233
= 0.000005848 > 0.000004231
= π(A) · p(G|A) · p(A|G) · p(G|A)

= Prplain(AGAG) .
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Variant 3: Markov Chains

The following exercise points to further generalizations of the
1-gram Markov Chain Model:

Exercise 3. Generalize Definition 2.5 to the case that Xi depends on
(Xi−1, Xi−2, . . . , Xi−k+1), i.e., on the previous k − 1 letters.

Complexity and Cryptography c©Thomas Zeugmann



Intro Unconditionally Secure Cryptosystems One-Time-Pads A Priori Assumptions End

Thank you!
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