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M. F. Balcan, V. Feldman, and C. Szepesvári, editors, Proceedings of The 27th Conference
on Learning Theory, volume 35 of Proceedings of Machine Learning Research, pages 807–823,
Barcelona, Spain, 13–15 June 2014. PMLR.

[41] J. Abernethy and S. Mannor. Does an efficient calibrated forecasting strategy exist? In
S. M. Kakade and U. von Luxburg, editors, Proceedings of the 24th Annual Conference on
Learning Theory, volume 19 of Proceedings of Machine Learning Research, pages 809–812,
Budapest, Hungary, 09–11 June 2011. PMLR.

[42] J. Abernethy, M. K. Warmuth, and J. Yellin. When random play is optimal against an
adversary. In 21st Annual Conference on Learning Theory - COLT 2008, Helsinki, Finland,
July 9-12, 2008, pages 437–446. Omnipress, 2008.

[43] J. D. Abernethy and R. M. Frongillo. A characterization of scoring rules for linear properties.
In S. Mannor, N. Srebro, and R. C. Williamson, editors, Proceedings of the 25th Annual
Conference on Learning Theory, volume 23 of Proceedings of Machine Learning Research,
pages 27.1–27.13, Edinburgh, Scotland, 25–27 June 2012. PMLR.

[44] P. J. Abisha, D. G. Thomas, and S. J. Kumaar. Learning subclasses of pure pattern lan-
guages. In A. Clark, F. Coste, and L. Miclet, editors, Grammatical Inference: Algorithms
and Applications, 9th International Colloquium, ICGI 2008, Saint-Malo, France, Septem-
ber 22-24, 2008, Proceedings, volume 5278 of Lecture Notes in Artificial Intelligence, pages
280–282. Springer, 2008.

[45] I. Abraham, O. Alonso, V. Kandylas, and A. Slivkins. Adaptive crowdsourcing algorithms
for the bandit survey problem. In S. Shalev-Shwartz and I. Steinwart, editors, COLT 2013 -
The 26th Annual Conference on Learning Theory, June 12–14, 2013, Princeton University,
NJ, USA, volume 30 of JMLR Proceedings, pages 882–910. JMLR.org, 2013.

[46] Y. S. Abu-Mostafa. The Vapnik-Chervonenkis dimension: Information verses complexity in
learning. Neural Computation, 1(3):312–317, 1989.

[47] J. Acharya, H. Das, A. Jafarpour, A. Orlitsky, and S. Pan. Competitive closeness testing.
In S. M. Kakade and U. von Luxburg, editors, Proceedings of the 24th Annual Conference
on Learning Theory, volume 19 of Proceedings of Machine Learning Research, pages 47–68,
Budapest, Hungary, 09–11 June 2011. PMLR.

[48] J. Acharya, H. Das, A. Jafarpour, A. Orlitsky, S. Pan, and A. Suresh. Competitive clas-
sification and closeness testing. In S. Mannor, N. Srebro, and R. C. Williamson, editors,
Proceedings of the 25th Annual Conference on Learning Theory, volume 23 of Proceedings
of Machine Learning Research, pages 22.1–22.18, Edinburgh, Scotland, 25–27 June 2012.
PMLR.

[49] J. Acharya, A. Jafarpour, A. Orlitsky, and A. T. Suresh. Optimal probability estimation
with applications to prediction and classification. In S. Shalev-Shwartz and I. Steinwart,
editors, COLT 2013 - The 26th Annual Conference on Learning Theory, June 12–14, 2013,
Princeton University, NJ, USA, volume 30 of JMLR Proceedings, pages 764–796. JMLR.org,
2013.

4



[50] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In
Learning Theory: 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro,
Italy, June 27-30, 2005, Proceedings, volume 3559 of Lecture Notes in Artificial Intelligence,
pages 458–469. Springer, 2005.

[51] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9:147–169, 1985.

[52] R. T. Adams. Inference of LISP programs from examples. Bachelor’s thesis, MIT EECS
Department, June 1990.

[53] D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk. A closer look at adaptive regret.
In N. H. Bshouty, G. Stoltz, N. Vayatis, and T. Zeugmann, editors, Algorithmic Learning
Theory, 23rd International Conference, ALT 2012, Lyon, France, October 29–31, 2012,
Proceedings, volume 7568 of Lecture Notes in Artificial Intelligence, pages 290–304, Berlin,
Heidelberg, New York, 2012. Springer.
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algorithm applied to the cleavage site prediction problem in bioinformatics. In J. M. Sempere
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[262] D. Angluin and M. Kriķis. Learning with malicious membership queries and exceptions. In
Proc. 7th Annu. ACM Conf. on Comput. Learning Theory, pages 57–66, New York, NY,
1994. ACM Press.
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T. Zeugmann, and S. Zilles, editors, Algorithmic Learning Theory, 20th International Con-
ference, ALT 2009, Porto, Portugal, October 2009, Proceedings, volume 5809 of Lecture
Notes in Artificial Intelligence, pages 384–398, Berlin/Heidelberg, 2009. Springer.
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[492] J. L. Balcázar, P. M. Long, and F. Stephan, editors. Algorithmic Learning Theory, 17th
International Conference, ALT 2006, Barcelona, Spain, October 2006, Proceedings, volume
4264 of Lecture Notes in Artificial Intelligence, Berlin/Heidelberg, Oct. 2006. Springer.
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[507] B. Balle, J. Castro, and R. Gavaldà. Bootstrapping and learning PDFA in data streams.
In J. Heinz, C. de la Higuera, and T. Oates, editors, Proceedings of the Eleventh Interna-
tional Conference on Grammatical Inference, volume 21 of Proceedings of Machine Learning
Research, pages 34–48, University of Maryland, College Park, MD, USA, 05–08 Sept. 2012.
PMLR.
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and C. Szepesvári, editors, Proceedings of The 27th Conference on Learning Theory, vol-
ume 35 of Proceedings of Machine Learning Research, pages 1280–1282, Barcelona, Spain,
13–15 June 2014. PMLR.

[755] A. Bhaskara, M. Charikar, and A. Vijayaraghavan. Uniqueness of tensor decompositions with
applications to polynomial identifiability. In M. F. Balcan, V. Feldman, and C. Szepesvári,
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mixture priors to derive hidden Markov models for protein families. In L. Hunter, D. Searls,
and J. Shavlik, editors, Proc. of First Int. Conf. on Intelligent Systems for Molecular Biology,
pages 47–55, Menlo Park, CA, July 1993. AAAI/MIT Press.

[950] V.-E. Brunel, A. Moitra, P. Rigollet, and J. Urschel. Rates of estimation for determinantal
point processes. In S. Kale and O. Shamir, editors, Proceedings of the 2017 Conference on
Learning Theory, volume 65 of Proceedings of Machine Learning Research, pages 343–345,
Amsterdam, Netherlands, 07–10 July 2017. PMLR.

[951] C. Brunk and M. Pazzani. A lexically based semantic bias for theory revision. In Proc. 12th
International Conference on Machine Learning, pages 81–89. Morgan Kaufmann, 1995.

70



[952] J. D. Brutlag and C. Meek. Challenges of the email domain for text classification. In
Proc. 17th International Conf. on Machine Learning, pages 103–110. Morgan Kaufmann,
San Francisco, CA, 2000.

[953] M. Bruynooghe and D. De Schreye. Some thoughts on the role of examples in program
transformation and its relevance for explanation-based learning. In Analogical and Inductive
Inference, International Workshop AII ’89, Reinhardsbrunn Castle, GDR, October 1989,
Proceedings, volume 397 of Lecture Notes in Artificial Intelligence, pages 60–77. Springer-
Verlag, 1989.
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November 2002, Proceedings, volume 2533 of Lecture Notes in Artificial Intelligence, pages
83–97. Springer, 2002.

[972] N. H. Bshouty and L. Burroughs. On the proper learning of axis parallel concepts. In 15th
Annual Conference on Computational Learning Theory, COLT 2002, Sydney, Australia, July
2002, Proceedings, volume 2375 of Lecture Notes in Artificial Intelligence, pages 287–302.
Springer, 2002.

[973] N. H. Bshouty and L. Burroughs. On the proper learning of axis-parallel concepts. Journal
of Machine Learning Research, 4:157–176, 2003.

[974] N. H. Bshouty and L. Burroughs. Maximizing agreements and coagnostic learning. Theoret.
Comput. Sci., 350(1):24–39, 2006. Special issue for ALT 2002.

[975] N. H. Bshouty, Z. Chen, S. E. Decatur, and S. Homer. On the learnability of ZN -DNF
formulas. In Proc. 8th Annu. Conf. on Comput. Learning Theory, pages 198–205, New
York, NY, 1995. ACM Press.

[976] N. H. Bshouty, Z. Chen, and S. Homer. On learning discretized geometric concepts. In Proc.
of the 35rd Annual Symposium on Foundations of Computer Science, pages 54–63. IEEE
Computer Society Press, Los Alamitos, CA, 1994.

[977] N. H. Bshouty and R. Cleve. On the exact learning of formulas in parallel. In Proc. of the
33rd Symposium on the Foundations of Comp. Sci., pages 513–522. IEEE Computer Society
Press, Los Alamitos, CA, 1992.

[978] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that
are sufficient for exact learning. J. of Comput. Syst. Sci., 52(3):421–433, 1996.

72



[979] N. H. Bshouty, R. Cleve, S. Kannan, and C. Tamon. Oracles and queries that are sufficient
for exact learning. In Proc. 7th Annu. ACM Conf. on Comput. Learning Theory, pages
130–139, New York, NY, 1994. ACM Press.

[980] N. H. Bshouty and A. Costa. Exact learning of juntas from membership queries. In R. Or-
tner, H. U. Simon, and S. Zilles, editors, Algorithmic Learning Theory, 27th International
Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings, volume 9925 of Lec-
ture Notes in Artificial Intelligence, pages 115–129. Springer, 2016.

[981] N. H. Bshouty, N. Diab, S. R. Kawar, and R. J. Shahla. Non-adaptive randomized algorithm
for group testing. In S. Hanneke and L. Reyzin, editors, Proceedings of the 28th International
Conference on Algorithmic Learning Theory, volume 76 of Proceedings of Machine Learning
Research, pages 109–128, Kyoto University, Kyoto, Japan, 15–17 Oct. 2017. PMLR.

[982] N. H. Bshouty, D. Drachsler-Cohen, M. Vechev, and E. Yahav. Learning disjunctions of pred-
icates. In S. Kale and O. Shamir, editors, Proceedings of the 2017 Conference on Learning
Theory, volume 65 of Proceedings of Machine Learning Research, pages 346–369, Amster-
dam, Netherlands, 07–10 July 2017. PMLR.

[983] N. H. Bshouty and N. Eiron. Learning monotone DNF from a teacher that almost does not
answer membership queries. In 14th Annual Conference on Computational Learning Theory,
COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT
2001, Amsterdam, The Netherlands, July 2001, Proceedings, volume 2111 of Lecture Notes
in Artificial Intelligence, pages 546–557. Springer, 2001.

[984] N. H. Bshouty and N. Eiron. Learning monotone DNF from a teacher that almost does not
answer membership queries. Journal of Machine Learning Research, 3:49–57, 2002.

[985] N. H. Bshouty, N. Eiron, and E. Kushilevitz. PAC learning with nasty noise. In Algorithmic
Learning Theory, 10th International Conference, ALT ’99, Tokyo, Japan, December 1999,
Proceedings, volume 1720 of Lecture Notes in Artificial Intelligence, pages 206–218. Springer,
1999.

[986] N. H. Bshouty, N. Eiron, and E. Kushilevitz. PAC learning with nasty noise. Theoret.
Comput. Sci., 288(2):255–275, 2002. Special issue for ALT ’99.

[987] N. H. Bshouty and V. Feldman. On using extended statistical queries to avoid membership
queries. In 14th Annual Conference on Computational Learning Theory, COLT 2001 and
5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amster-
dam, The Netherlands, July 2001, Proceedings, volume 2111 of Lecture Notes in Artificial
Intelligence, pages 529–545. Springer, 2001.

[988] N. H. Bshouty and V. Feldman. On using extended statistical queries to avoid membership
queries. Journal of Machine Learning Research, 2:359–395, 2002.

[989] N. H. Bshouty and D. Gavinsky. On boosting with optimal poly-bounded distributions. In
14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European
Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The Nether-
lands, July 2001, Proceedings, volume 2111 of Lecture Notes in Artificial Intelligence, pages
490–506. Springer, 2001.

[990] N. H. Bshouty and D. Gavinsky. On boosting with polynomially bounded distributions.
Journal of Machine Learning Research, 3:483–506, 2002.

73



[991] N. H. Bshouty and D. Gavinsky. pac = paexact and other equivalent models in learning.
In 43rd Annual Symposium on Foundations of Computer Science, 6-19 November 2002,
Vancouver, BC, Canada, Proceedings, pages 167–176. IEEE Computer Society, 2002.

[992] N. H. Bshouty and C. Gentile, editors. Learning Theory, 20th Annual Conference on Learn-
ing Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007, Proceedings, volume 4539
of Lecture Notes in Artificial Intelligence, Berlin, 2007. Springer.

[993] N. H. Bshouty, P. W. Goldberg, S. A. Goldman, and H. D. Mathias. Exact learning of
discretized geometric concepts. SIAM J. Comput., 28(2):674–699, 1998.

[994] N. H. Bshouty, S. A. Goldman, T. R. Hancock, and S. Matar. Asking questions to minimize
errors. J. of Comput. Syst. Sci., 52(2):268–286, 1996. Earlier version in 6th COLT, 1993.

[995] N. H. Bshouty, S. A. Goldman, and D. H. Mathias. Noise-tolerant parallel learning of
geometric concepts. In Proc. 8th Annu. Conf. on Comput. Learning Theory, pages 345–352,
New York, NY, 1995. ACM Press.

[996] N. H. Bshouty, S. A. Goldman, H. D. Mathias, S. Suri, and H. Tamaki. Noise-tolerant
distribution-free learning of general geometric concepts. In Proc. 28th Annu. ACM Sympo-
sium on the Theory of Computing, pages 151–160, New York, NY, 1996. ACM Press.

[997] N. H. Bshouty, S. A. Goldman, H. D. Mathias, S. Suri, and H. Tamaki. Noise-tolerant
distribution-free learning of general geometric concepts. J. ACM, 45(5):863–890, 1998.

[998] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once formulas.
In Proc. 24th Annu. ACM Sympos. Theory Comput., pages 370–381, New York, NY, 1992.
ACM Press.

[999] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning Boolean read-once formulas
with arbitrary symmetric and constant fan-in gates. In Proc. 5th Annual ACM Workshop
on Comput. Learning Theory, pages 1–15, New York, NY, 1992. ACM Press.

[1000] N. H. Bshouty and L. Hellerstein. Attribute-efficient learning in query and mistake-bound
models. In Proc. 9th Annu. Conf. on Comput. Learning Theory, pages 235–243, New York,
NY, 1996. ACM Press.

[1001] N. H. Bshouty and J. C. Jackson. Learning DNF over the uniform distribution using a
quantum example oracle. SIAM J. Comput., 28(3):1136–1153, 1999.

[1002] N. H. Bshouty, J. C. Jackson, and C. Tamon. More efficient PAC-learning of DNF with
membership queries under the uniform distribution. In Proceedings of the Twelfth Annual
Conference on Computational Learning Theory, July 6th-9th, 1999, Santa Cruz, California,
pages 286–295, New York, NY, 1999. ACM Press.

[1003] N. H. Bshouty, J. C. Jackson, and C. Tamon. Uniform-distribution attribute noise learnabil-
ity. In Proceedings of the Twelfth Annual Conference on Computational Learning Theory,
July 6th-9th, 1999, Santa Cruz, California, pages 75–80, New York, NY, 1999. ACM Press.

[1004] N. H. Bshouty, J. C. Jackson, and C. Tamon. Exploring learnability between Exact and
PAC. In 15th Annual Conference on Computational Learning Theory, COLT 2002, Sydney,
Australia, July 2002, Proceedings, volume 2375 of Lecture Notes in Artificial Intelligence,
pages 244–254. Springer, 2002.

74



[1005] N. H. Bshouty, J. C. Jackson, and C. Tamon. More efficient PAC-learning of DNF with
membership queries under the uniform distribution. J. Comput. Syst. Sci., 68(1):205–234,
2004.

[1006] N. H. Bshouty, J. C. Jackson, and C. Tamon. Uniform-distribution attribute noise learn-
ability. Inform. Comput., 187(2):277–290, 2004.

[1007] N. H. Bshouty, J. C. Jackson, and C. Tamon. Exploring learnability between exact and
PAC. J. Comput. Syst. Sci., 70(4):471–484, 2005. Special issue on COLT 2002.

[1008] N. H. Bshouty and Y. Mansour. Simple learning algorithms for decision trees and multi-
variate polynomials. In Proc. of the 36th Annual Symposium on Foundations of Computer
Science, pages 304–311. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[1009] N. H. Bshouty and H. Mazzawi. Exact learning composed classes with a small number of
mistakes. In Learning Theory: 19th Annual Conference on Learning Theory, COLT 2006,
Pittsburgh, PA, USA, June 2006, Proceedings, volume 4005 of Lecture Notes in Artificial
Intelligence, pages 199–213, Berlin, 2006. Springer.

[1010] N. H. Bshouty and H. Mazzawi. Reconstructing weighted graphs with minimal query
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G. Lugosi, T. Zeugmann, and S. Zilles, editors, Algorithmic Learning Theory, 20th Interna-
tional Conference, ALT 2009, Porto, Portugal, October 2009, Proceedings, volume 5809 of
Lecture Notes in Artificial Intelligence, pages 110–125, Berlin/Heidelberg, 2009. Springer.

[1226] N. Cesa-Bianchi, C. Gentile, and F. Vitale. Predicting the labels of an unknown graph via
adaptive exploration. Theoret. Comput. Sci., 412(19):1791–1804, 2011.

[1227] N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. A correlation clustering approach to
link classification in signed networks. In S. Mannor, N. Srebro, and R. C. Williamson, editors,
Proceedings of the 25th Annual Conference on Learning Theory, volume 23 of Proceedings
of Machine Learning Research, pages 34.1–34.20, Edinburgh, Scotland, 25–27 June 2012.
PMLR.

[1228] N. Cesa-Bianchi and S. Goldman, editors. Proceedings of the Thirteenth Annual Conference
on Computational Learning Theory, San Francisco, CA, 2000. Morgan Kaufmann, Inc.

[1229] N. Cesa-Bianchi, D. P. Helmbold, and S. Panizza. On Bayes methods for on-line Boolean
prediction. Algorithmica, 22(1/2):112–137, 1998.

[1230] N. Cesa-Bianchi, A. Krogh, and M. K. Warmuth. Bounds on approximate steepest de-
scent for likelihood maximization in exponential families. IEEE Transaction on Information
Processing, 40(4):1215–1220, July 1994.

[1231] N. Cesa-Bianchi, P. Long, and M. Warmuth. Worst-case quadratic loss bounds for a gener-
alization of the Widrow-Hoff rule. In Proceedings of the Sixth Annual ACM Conference on
Computational Learning Theory, pages 429–438, New York, NY, 1993. ACM Press.

[1232] N. Cesa-Bianchi, P. M. Long, and M. K. Warmuth. Worst-case quadratic loss bounds for
on-line prediction of linear functions by gradient descent. IEEE Transactions on Neural
Networks, 7(3):604–619, 1996. Earlier version in 6th COLT, 1993.

[1233] N. Cesa-Bianchi and G. Lugosi. On sequential prediction of individual sequences relative
to a set of experts. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, pages 1–11, New York, NY, 1998. ACM Press.

[1234] N. Cesa-Bianchi and G. Lugosi. Minimax regret under log loss for general classes of experts.
In Proceedings of the Twelfth Annual Conference on Computational Learning Theory, July
6th-9th, 1999, Santa Cruz, California, pages 12–18, New York, NY, 1999. ACM Press.

[1235] N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line prediction and game
theory. In 14th Annual Conference on Computational Learning Theory, COLT 2001 and
5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amster-
dam, The Netherlands, July 2001, Proceedings, volume 2111 of Lecture Notes in Artificial
Intelligence, pages 48–64. Springer, 2001.

[1236] N. Cesa-Bianchi and G. Lugosi. Worst-case bounds for the logarithmic loss of predictors.
Machine Learning, 43(3):247–264, 2001.

[1237] N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line prediction and game
theory. Machine Learning, 51(3):239–261, 2003.

91



[1238] N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. J. Comput. Syst. Sci., 78(5):1404–
1422, 2012.

[1239] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label efficient prediction.
In Learning Theory: 17th Annual Conference on Learning Theory, COLT 2004, Banff,
Canada, July 1-4, 2004. Proceedings, volume 3120 of Lecture Notes in Artificial Intelligence,
pages 77–92. Springer, 2004.

[1240] N. Cesa-Bianchi, Y. Mansour, and O. Shamir. On the complexity of learning with kernels.
In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of the 28th Conference on
Learning Theory, volume 40 of Proceedings of Machine Learning Research, pages 297–325,
Paris, France, 03–06 July 2015. PMLR.

[1241] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction
with expert advice. Machine Learning, 66(2-3):321–352, 2007.

[1242] N. Cesa-Bianchi, M. Numao, and R. Reischuk, editors. Algorithmic Learning Theory, 13th
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[1424] A. Cornuéjols. Getting order independence in incremental learning. In Machine Learning:
ECML-93, European Conference on Machine Learning, Vienna, Austria, April 5–7, 1993,
Proceedings, volume 667 of Lecture Notes in Artificial Intelligence, pages 196–212. Springer-
Verlag, 1993.

[1425] C. Cortes, G. DeSalvo, and M. Mohri. Learning with rejection. In R. Ortner, H. U. Si-
mon, and S. Zilles, editors, Algorithmic Learning Theory, 27th International Conference,
ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings, volume 9925 of Lecture Notes in
Artificial Intelligence, pages 67–82. Springer, 2016.

[1426] C. Cortes, P. Haffner, and M. Mohri. Positive definite rational kernels. In Learning Theory
and Kernel Machines, 16th Annual Conference on Learning Theory and 7th Kernel Work-
shop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings, volume
2777 of Lecture Notes in Artificial Intelligence, pages 41–56. Springer, 2003.

[1427] C. Cortes, L. Kontorovich, and M. Mohri. Learning languages with rational kernels. In
Learning Theory, 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA,
USA; June 13-15, 2007, Proceedings, volume 4539 of Lecture Notes in Artificial Intelligence,
pages 349–364, Berlin, 2007. Springer.

[1428] C. Cortes, V. Kuznetsov, M. Mohri, and M. Warmuth. On-line learning algorithms for path
experts with non-additive losses. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings
of the 28th Conference on Learning Theory, volume 40 of Proceedings of Machine Learning
Research, pages 424–447, Paris, France, 03–06 July 2015. PMLR.

[1429] C. Cortes and M. Mohri. Domain adaptation in regression. In J. Kivinen, C. Szepesvári,
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ceedings of The 27th Conference on Learning Theory, volume 35 of Proceedings of Machine
Learning Research, pages 1183–1213, Barcelona, Spain, 13–15 June 2014. PMLR.

116



[1566] C. Daskalakis and Q. Pan. Square hellinger subadditivity for Bayesian networks and its
applications to identity testing. In S. Kale and O. Shamir, editors, Proceedings of the 2017
Conference on Learning Theory, volume 65 of Proceedings of Machine Learning Research,
pages 697–703, Amsterdam, Netherlands, 07–10 July 2017. PMLR.

[1567] C. Daskalakis, C. Tzamos, and M. Zampetakis. Ten steps of EM suffice for mixtures of
two gaussians. In S. Kale and O. Shamir, editors, Proceedings of the 2017 Conference on
Learning Theory, volume 65 of Proceedings of Machine Learning Research, pages 704–710,
Amsterdam, Netherlands, 07–10 July 2017. PMLR.

[1568] A. Datta, A. Choudhary, M. L. Bittner, and E. R. Dougherty. External control in markovian
genetic regulatory networks. Machine Learning, 52(1-2):169–191, 2003.

[1569] P. Datta and D. Kibler. Learning prototypical concept descriptions. In Proc. 12th Interna-
tional Conference on Machine Learning, pages 158–166. Morgan Kaufmann, 1995.

[1570] P. Datta and D. Kibler. Learning symbolic prototypes. In Proc. 14th International Confer-
ence on Machine Learning, pages 75–82. Morgan Kaufmann, 1997.

[1571] H. Daumé III, J. M. Phillips, A. Saha, and S. Venkatasubramanian. Efficient protocols for
distributed classification and optimization. In N. H. Bshouty, G. Stoltz, N. Vayatis, and
T. Zeugmann, editors, Algorithmic Learning Theory, 23rd International Conference, ALT
2012, Lyon, France, October 29–31, 2012, Proceedings, volume 7568 of Lecture Notes in
Artificial Intelligence, pages 154–168, Berlin, Heidelberg, New York, 2012. Springer.

[1572] G. David and Z. Ilias. High dimensional regression with binary coefficients. estimating
squared error and a phase transtition. In S. Kale and O. Shamir, editors, Proceedings of
the 2017 Conference on Learning Theory, volume 65 of Proceedings of Machine Learning
Research, pages 948–953, Amsterdam, Netherlands, 07–10 July 2017. PMLR.

[1573] C. d’Avignon and D. Geman. Tree-structured neural decoding. Journal of Machine Learning
Research, 4:743–754, 2003.

[1574] A. P. Dawid. Prequential analysis, stochastic complexity and Bayesian inference. Bayesian
Statistics, 109:109–125, 1992.

[1575] P. Dayan. The convergence of TD(λ) for general λ. Machine Learning, 8:341–362, 1992.

[1576] P. Dayan and T. J. Sejnowski. TD(λ) converges with probability 1. Machine Learning,
14(3):295–301, 1994.

[1577] P. Dayan and T. J. Sejnowski. Exploration bonuses and dual control. Machine Learning,
25:5–22, 1996.

[1578] L. De Raedt. Declarative modeling for machine learning and data mining. In N. H. Bshouty,
G. Stoltz, N. Vayatis, and T. Zeugmann, editors, Algorithmic Learning Theory, 23rd Inter-
national Conference, ALT 2012, Lyon, France, October 29–31, 2012, Proceedings, volume
7568 of Lecture Notes in Artificial Intelligence, pages 12–12, Berlin, Heidelberg, New York,
2012. Springer.

[1579] L. De Raedt and M. Bruynooghe. Interactive concept-learning and constructive induction
by analogy. Machine Learning, 8:107–150, 1992.

[1580] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26(2-3):99–146, 1997.

117



[1581] L. De Raedt and P. Flach, editors. Machine Learning: ECML 2001, 12th European Confer-
ence on Machine Learning, Freiburg, Germany, September 5–7, 2001, Proceedings, volume
2167 of Lecture Notes in Artificial Intelligence. Springer, 2001.

[1582] L. De Raedt and W. Van Laer. Inductive constraint logic. In Algorithmic Learning Theory,
6th International Workshop, ALT ’95, Fukuoka, Japan, October 18–20, 1995, Proceedings,
volume 997 of Lecture Notes in Artificial Intelligence, pages 80–94. Springer, 1995.

[1583] T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis, and O. Maron. In-
ferring finite automata with stochastic output functions and an application to map learning.
Machine Learning, 18(1):81–108, 1995. First appeared in Proc. of AAAI-92.

[1584] R. Dearden. Structured prioritized sweeping. In Proc. 18th International Conf. on Machine
Learning, pages 82–89. Morgan Kaufmann, San Francisco, CA, 2001.
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[1898] H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid. Revisiting shinohara’s algorithm for
computing descriptive patterns. Theoret. Comput. Sci., 733:44–54, 2018. Special Issue on
Learning Theory and Complexity.

[1899] H. Fernau and J. M. Sempere. Permutations and control sets for learning non-regular
language families. In Grammatical Inference: Algorithms and Applications, 5th International
Colloquium, ICGI 2000, Lisbon, Portugal, September 11 - 13, 2000; Proceedings, volume
1891 of Lecture Notes in Artificial Intelligence, pages 75–88. Springer, 2000.

[1900] J. Ferreira, J. Correia, T. Jamet, and E. Costa. An application of machine learning in the
domain of loan analysis. In Machine Learning: ECML-93, European Conference on Machine
Learning, Vienna, Austria, April 5–7, 1993, Proceedings, volume 667 of Lecture Notes in
Artificial Intelligence, pages 414–419. Springer-Verlag, 1993.

[1901] C. Ferretti and G. Mauri. Identifying regular languages over partially-commutative monoids.
In Algorithmic Learning Theory, 4th International Workshop on Analogical and Inductive
Inference, AII ’94, 5th International Workshop on Algorithmic Learning Theory, ALT ’94,
Reinhardsbrunn Castle, Germany, October 1994, Proceedings, volume 872 of Lecture Notes
in Artificial Intelligence, pages 282–289. Springer-Verlag, 1994.

[1902] A. Fiat, S. Moses, A. Shamir, I. Shimshoni, and G. Tardos. Planning and learning in
permutation groups. In Proc. 30th Annu. IEEE Sympos. Found. Comput. Sci., pages 274–
279. IEEE Computer Society Press, Los Alamitos, CA, 1989.

[1903] A. Fiat and D. Pechyony. Decision trees: More theoretical justification for practical algo-
rithms. In Algorithmic Learning Theory, 15th International Conference, ALT 2004, Padova,
Italy, October 2004, Proceedings, volume 3244 of Lecture Notes in Artificial Intelligence,
pages 156–170. Springer, 2004.

[1904] C. N. Fiechter. Efficient reinforcement learning. In Proc. 7th Annu. ACM Conf. on Comput.
Learning Theory, pages 88–97, New York, NY, 1994. ACM Press.

[1905] C.-N. Fiechter. PAC adaptive control of linear systems. In Proceedings of the Tenth Annual
Conference on Computational Learning Theory, July 6th–9th, 1997, Nashville, Tennessee,
pages 72–80, 1997.

[1906] C.-N. Fiechter and S. Rogers. Learning subjective functions with large margins. In Proc.
17th International Conf. on Machine Learning, pages 287–294. Morgan Kaufmann, San
Francisco, CA, 2000.

141



[1907] S. Fine, R. Gilad-Bachrach, and E. Shamir. Query by committee, linear separation and
random walks. Theoret. Comput. Sci., 284(1):25–51, 2002.

[1908] S. Fine and Y. Mansour. Active sampling for multiple output identification. In Learning
Theory: 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA,
June 2006, Proceedings, volume 4005 of Lecture Notes in Artificial Intelligence, pages 620–
634, Berlin, 2006. Springer.

[1909] S. Fine and Y. Mansour. Active sampling for multiple output identification. Machine
Learning, 69(2-3):213–228, 2007.

[1910] S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations.
Journal of Machine Learning Research, 2:243–264, 2001.

[1911] P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using the
inductive logic programming system PROG0L. Machine Learning, 30:241–270, 1998.

[1912] W. Finnoff and H. G. Zimmermann. Detecting structure in small datasets by network fitting
under complexity constraints. In S. J. Hanson, T. Petsche, R. L. Rivest, and M. Kearns,
editors, Computational Learning Theory and Natural Learning Systems, volume II: Intersec-
tions Between Theory and Experiment, chapter 8, pages 113–131. MIT Press, 1994.

[1913] D. J. Finton and Y. H. Hu. Importance-based feature extraction for reinforcement learning.
In T. Petsche, editor, Computational Learning Theory and Natural Learning Systems, volume
III: Selecting Good Models, chapter 5, pages 77–94. MIT Press, 1995.

[1914] S. Fiori. Quasi-geodesic neural learning algorithms over the orthogonal group: A tutorial.
Journal of Machine Learning Research, 6:743–781, 2005.

[1915] L. Firoiu and P. R. Cohen. Abstracting from robot sensor data using hidden Markov models.
In Proc. 16th International Conf. on Machine Learning, pages 106–114. Morgan Kaufmann,
San Francisco, CA, 1999.

[1916] L. Firoiu, T. Oates, and P. R. Cohen. Learning deterministic finite automaton with a
recurrent neural network. In Grammatical Inference, 4th International Colloquium, ICGI-
98, Ames, Iowa, USA, July 1998, Proceedings, volume 1433 of Lecture Notes in Artificial
Intelligence, pages 90–101. Springer, 1998.

[1917] P. Fischer. Learning unions of convex polygons. In Computational Learning Theory: Euro-
Colt ’93, volume New Series Number 53 of The Institute of Mathematics and its Applications
Conference Series, pages 61–67, Oxford, 1994. Oxford University Press.

[1918] P. Fischer. More or less efficient agnostic learning of convex polygons. In Proc. 8th Annu.
Conf. on Comput. Learning Theory, pages 337–344, New York, NY, 1995. ACM Press.
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classes of CCG. In J. M. Sempere and P. Garćıa, editors, Grammatical Inference: Theoret-
ical Results and Applications, 10th International Colloquium, ICGI 2010, Valencia, Spain,
September 13-16, 2010 Proceedings, volume 6339 of Lecture Notes in Artificial Intelligence,
pages 280–283. Springer, 2010.
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5, 1975, Proceedings, volume 32 of Lecture Notes in Computer Science, pages 219–225.
Springer-Verlag, 1975.

148



[2005] R. V. Freivald and R. Wiehagen. Inductive inference with additional information. Elektro-
nische Informationsverarbeitung und Kybernetik, 15(4):179–185, 1979.

[2006] R. Freivalds. On the complexity and optimality of computation in the limit. In Theory of
Algorithms and Programs, volume 1, pages 155–173. Latvian State University, Riga, 1974.
(in Russian).

[2007] R. Freivalds. Uniform and non uniform predictability. In Theory of Algorithms and Programs,
volume 1, pages 89–100. Latvian State University, Riga, 1974.

[2008] R. Freivalds. On the principle capabilities of probabilistic algorithms in inductive inference.
Semiotika Inform, 12:137–140, 1979.

[2009] R. Freivalds. An answer to an open problem. Bulletin of the EATCS, 23:31–32, 1984.

[2010] R. Freivalds. Recursiveness of the enumerating functions increases the inferrability of re-
cursively enumerable sets. Bulletin of the European Association for Theoretical Computer
Science, 27:35–40, 1985.

[2011] R. Freivalds. Inductive inference of minimal programs. In Proceedings of the Third Annual
Workshop on Computational Learning Theory, pages 3–20, San Mateo, CA, 1990. Morgan
Kaufmann.

[2012] R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In Baltic Com-
puter Science, volume 502 of Lecture Notes in Computer Science, pages 77–110. Springer,
Berlin, 1991.
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nen, and T. Zeugmann, editors, Algorithmic Learning Theory, 22nd International Confer-
ence, ALT 2011, Aalto University, Espoo, Finland October 5–7, 2011, Proceedings, volume
6925 of Lecture Notes in Artificial Intelligence, pages 84–98, Berlin, Heidelberg, New York,
2011. Springer.

[2231] S. Geisser. The inferential use of predictive distributions. In Foundations of Statistical
Inference. Holt, Rinehart, and Winston, 1970.

[2232] K. Gelbrich and R. Nakhaeizadeh. Value miner: A data mining environment for the calcula-
tion of the customer lifetime value with application to the automotive industry. In Machine
Learning: ECML 2000, 11th European Conference on Machine Learning, Barcelona, Catalo-
nia, Spain, May 31 - June 2, 2000, Proceedings, volume 1810 of Lecture Notes in Artificial
Intelligence, pages 154–161. Springer, 2000.

[2233] S. Geman. Stochastic relaxation methods for image restoration and expert systems. In
Automated Image Analysis: Theory and Experiments. Academic Press, 1986.

[2234] R. Gemello, F. Mana, and L. Saitta. Rigel: An inductive learning system. Machine Learning,
6:7–35, 1991.

[2235] J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation. Artificial
Intelligence, 40(1–3):11–61, 1989.

[2236] C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine
Learning Research, 2:213–242, 2001.

[2237] C. Gentile. Guest editor’s introduction. Machine Learning, 51(3):215–216, 2003.

[2238] C. Gentile. The robustness of the p-norm algorithms. Machine Learning, 53(3):265–299,
2003.

[2239] C. Gentile and D. P. Helmbold. Improved lower bounds for learning from noisy examples:
an information-theoretic approach. In Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, pages 104–115, New York, NY, 1998. ACM Press.

[2240] C. Gentile and D. P. Helmbold. Improved lower bounds for learning from noisy examples:
An information-theoretic approach. Inform. Comput., 166(2):133–155, May 2001.

[2241] C. Gentile, M. Herbster, and S. Pasteris. Online similarity prediction of networked data from
known and unknown graphs. In S. Shalev-Shwartz and I. Steinwart, editors, COLT 2013 -
The 26th Annual Conference on Learning Theory, June 12–14, 2013, Princeton University,
NJ, USA, volume 30 of JMLR Proceedings, pages 662–695. JMLR.org, 2013.

[2242] C. Gentile and N. Littlestone. The robustness of the p-norm algorithms. In Proceedings
of the Twelfth Annual Conference on Computational Learning Theory, July 6th-9th, 1999,
Santa Cruz, California, pages 1–11, New York, NY, 1999. ACM Press.

[2243] M. G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal of
Machine Learning Research, 2:299–312, 2001.

165



[2244] A. P. George and W. B. Powell. Adaptive stepsizes for recursive estimation with applications
in approximate dynamic programming. Machine Learning, 65(1):167–198, 2006.

[2245] F. H. George. Logical networks and probability. Bulletin of Mathematical Biophysics, 19:187–
199, 1957.

[2246] F. H. George. Inductive machines and the problem of learning. Cybernetica, II:109–126,
1959.

[2247] M. P. Georgeff and C. S. Wallace. A general selection criterion for inductive inference. In
ECAI 84: Advances in Artificial Intelligence, pages 473–482. Elsevier Science, 1984.

[2248] S. Gerchinovitz. Sparsity regret bounds for individual sequences in online linear regression.
In S. M. Kakade and U. von Luxburg, editors, Proceedings of the 24th Annual Conference on
Learning Theory, volume 19 of Proceedings of Machine Learning Research, pages 377–396,
Budapest, Hungary, 09–11 June 2011. PMLR.

[2249] S. Gerchinovitz and J. Y. Yu. Adaptive and optimal online linear regression on `1-balls.
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[2348] J. Goldsmith, R. H. Sloan, B. Szörényi, and G. Turán. Improved algorithms for theory
revision with queries. In Proc. 13th Annu. Conference on Comput. Learning Theory, pages
236–247. Morgan Kaufmann, San Francisco, 2000.
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of The 27th Conference on Learning Theory, volume 35 of Proceedings of Machine Learning
Research, pages 197–209, Barcelona, Spain, 13–15 June 2014. PMLR.

[2603] E. Hazan, T. Koren, R. Livni, and Y. Mansour. Online learning with low rank experts.
In V. Feldman, A. Rakhlin, and O. Shamir, editors, 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research, pages 1096–1114, Columbia
University, New York, New York, USA, 23–26 June 2016. PMLR.

191



[2604] E. Hazan and N. Megiddo. Online learning with prior knowledge. In Learning Theory, 20th
Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15,
2007, Proceedings, volume 4539 of Lecture Notes in Artificial Intelligence, pages 499–513,
Berlin, 2007. Springer.

[2605] Y.-B. He, Z. Geng, and X. Liang. Learning causal structures based on markov equivalence
class. In Algorithmic Learning Theory, 16th International Conference, ALT 2005, Singapore,
October 2005, Proceedings, volume 3734 of Lecture Notes in Artificial Intelligence, pages 92–
106. Springer, Oct. 2005.

[2606] T. Head, S. Kobayashi, and T. Yokomori. Locality, reversibility, and beyond: Learning
languages from positive data. In Algorithmic Learning Theory, 9th International Conference,
ALT ’98, Otzenhausen, Germany, October 1998, Proceedings, volume 1501 of Lecture Notes
in Artificial Intelligence, pages 191–204. Springer, 1998.

[2607] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency
networks for inference, collaborative filtering, and data visualization. Journal of Machine
Learning Research, 1:49–75, 2000.

[2608] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: the combi-
nation of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

[2609] F. Hedayati and P. L. Bartlett. The optimality of jeffreys prior for online density estimation
and the asymptotic normality of maximum likelihood estimators. In S. Mannor, N. Srebro,
and R. C. Williamson, editors, Proceedings of the 25th Annual Conference on Learning
Theory, volume 23 of Proceedings of Machine Learning Research, pages 7.1–7.13, Edinburgh,
Scotland, 25–27 June 2012. PMLR.
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[2722] K.-U. Höffgen and H.-U. Simon. Robust trainability of single neurons. In Proc. 5th Annual
ACM Workshop on Comput. Learning Theory, pages 428–439, New York, New York, 1992.
ACM Press.
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V. Feldman, and C. Szepesvári, editors, Proceedings of The 27th Conference on Learning
Theory, volume 35 of Proceedings of Machine Learning Research, pages 3–24, Barcelona,
Spain, 13–15 June 2014. PMLR.

[3137] T. Kanamori. Multiclass boosting algorithms for shrinkage estimators of class probability.
In Algorithmic Learning Theory, 18th International Conference, ALT 2007, Sendai, Japan,
October 2007, Proceedings, volume 4754 of Lecture Notes in Artificial Intelligence, pages
358–372, Berlin, Oct. 2007. Springer.

[3138] T. Kanamori, A. Takeda, and T. Suzuki. A conjugate property between loss functions and
uncertainty sets in classification problems. In S. Mannor, N. Srebro, and R. C. Williamson,
editors, Proceedings of the 25th Annual Conference on Learning Theory, volume 23 of Pro-
ceedings of Machine Learning Research, pages 29.1–29.23, Edinburgh, Scotland, 25–27 June
2012. PMLR.

[3139] P. Kanani and A. McCallum. Resource-bounded information gathering for correlation clus-
tering. In Learning Theory, 20th Annual Conference on Learning Theory, COLT 2007, San
Diego, CA, USA; June 13-15, 2007, Proceedings, volume 4539 of Lecture Notes in Artificial
Intelligence, pages 625–627, Berlin, 2007. Springer.

[3140] J. Kandola, T. Graepel, and J. Shawe-Taylor. Reducing kernel matrix diagonal dominance
using semi-definite programming. In Learning Theory and Kernel Machines, 16th Annual
Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washing-
ton, DC, USA, August 24-27, 2003, Proceedings, volume 2777 of Lecture Notes in Artificial
Intelligence, pages 288–302. Springer, 2003.

[3141] J. Kandola, T. Hofmann, T. Poggio, and J. Shawe-Taylor. Introduction to the special issue
on machine learning methods for text and images. Journal of Machine Learning Research,
3:1023–1024, 2003.

[3142] D. Kane, A. Klivans, and R. Meka. Learning halfspaces under log-concave densities: Polyno-
mial approximations and moment matching. In S. Shalev-Shwartz and I. Steinwart, editors,
COLT 2013 - The 26th Annual Conference on Learning Theory, June 12–14, 2013, Prince-
ton University, NJ, USA, volume 30 of JMLR Proceedings, pages 522–545. JMLR.org, 2013.

[3143] R. Kane, I. Tchoumatchenko, and M. Milgram. Extraction of knowledge from data using
constrained neural networks. In Machine Learning: ECML-93, European Conference on
Machine Learning, Vienna, Austria, April 5–7, 1993, Proceedings, volume 667 of Lecture
Notes in Artificial Intelligence, pages 420–425. Springer-Verlag, 1993.

[3144] S. Kaneda, H. Almuallim, Y. Akiba, and M. Ishi. Learning from expert hypotheses and
training examples. IEICE Transactions on Information and Systems, E80-D(12):1205–1214,
1998.

[3145] P. Kanerva. Sparse Distributed Memory. MIT Press, Cambridge, Massachusetts, 1988.

[3146] K. Kang and J.-H. Oh. Learning by a population of perceptrons. In Proc. 8th Annu. Conf.
on Comput. Learning Theory, pages 297–300, New York, NY, 1995. ACM Press.

[3147] S. Kannamma, D. G. Thomas, and K. Rangarajan. Inference of uniquely terminating EML.
In A. Clark, F. Coste, and L. Miclet, editors, Grammatical Inference: Algorithms and Ap-
plications, 9th International Colloquium, ICGI 2008, Saint-Malo, France, September 22-24,
2008, Proceedings, volume 5278 of Lecture Notes in Artificial Intelligence, pages 289–291.
Springer, 2008.

231



[3148] R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models.
In Learning Theory: 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro,
Italy, June 27-30, 2005, Proceedings, volume 3559 of Lecture Notes in Artificial Intelligence,
pages 444–457. Springer, 2005.

[3149] R. Kannan and S. Vempala. The hidden hubs problem. In S. Kale and O. Shamir, editors,
Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings of Machine
Learning Research, pages 1190–1213, Amsterdam, Netherlands, 07–10 July 2017. PMLR.

[3150] R. Kannan, S. Vempala, and D. Woodruff. Principal component analysis and higher cor-
relations for distributed data. In M. F. Balcan, V. Feldman, and C. Szepesvári, editors,
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Germany November 2002, Proceedings, volume 2533 of Lecture Notes in Artificial Intelli-
gence, pages 113–127. Springer, 2002.

244
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[3381] J. Köbler and W. Lindner. The complexity of learning concept classes with polynomial
general dimension. Theoret. Comput. Sci., 350(1):49–62, 2006. Special issue for ALT 2002.

[3382] S. Kocabas. Conflict resolution as discovery in particle physics. Machine Learning, 6:277–
309, 1991.

[3383] Y. Kodratoff. A class of functions synthesized from a finite number of examples and a LISP
program scheme. Internat. J. Comput. Info. Sci., 8:489–521, 1979.

[3384] Y. Kodratoff. Technical and scientific issues of KDD (or: Is KDD a science?). In Algorithmic
Learning Theory, 6th International Workshop, ALT ’95, Fukuoka, Japan, October 18–20,
1995, Proceedings, volume 997 of Lecture Notes in Artificial Intelligence, pages 261–265.
Springer, 1995.

[3385] Y. Kodratoff and J. Fargues. A sane algorithm for the synthesis of LISP functions from
example problems. In Proc. of AISB/GI Conference on Artificial Intelligence, pages 169–
175. AISB and GI, 1978.

[3386] Y. Kodratoff, M. Franova, and D. Partridge. Why and how program synthesis? In Analogical
and Inductive Inference, International Workshop AII ’89, Reinhardsbrunn Castle, GDR,
October 1989, Proceedings, volume 397 of Lecture Notes in Artificial Intelligence, pages
45–59. Springer-Verlag, 1989.

[3387] Y. Kodratoff and R. Michalski, editors. Machine Learning: An Artificial Intelligence Ap-
proach, volume III. Morgan Kaufmann, Los Altos, California, 1990.

[3388] S. Koenig and R. G. Simmons. The effect of representation and knowledge on goal-directed
exploration with reinforcement-learning algorithms. Machine Learning, 22:227–250, 1996.

[3389] S. Koenig and R. G. Simmons. Passive distance learning for robot navigation. In Proc. 13th
International Conference on Machine Learning, pages 266–274. Morgan Kaufmann, 1996.

[3390] S. Koenig and Y. Smirnov. Graph learning with a nearest neighbor approach. In Proc. 9th
Annu. Conf. on Comput. Learning Theory, pages 19–28, New York, NY, 1996. ACM Press.

[3391] Y. Koga, E. Hirowatari, and S. Arikawa. Explanation-based reuse of Prolog programs.
In Algorithmic Learning Theory, 4th International Workshop on Analogical and Inductive
Inference, AII ’94, 5th International Workshop on Algorithmic Learning Theory, ALT ’94,
Reinhardsbrunn Castle, Germany, October 1994, Proceedings, volume 872 of Lecture Notes
in Artificial Intelligence, pages 149–160. Springer-Verlag, 1994.

[3392] R. Kohavi and S. Benson. Research note on decision lists. Machine Learning, 13:131–134,
1993.

[3393] R. Kohavi and G. H. John. Automatic parameter selection by minimizing estimated er-
ror. In Proc. 12th International Conference on Machine Learning, pages 304–312. Morgan
Kaufmann, 1995.

[3394] R. Kohavi and C. Kunz. Option decision trees with majority votes. In Proc. 14th Interna-
tional Conference on Machine Learning, pages 161–169. Morgan Kaufmann, 1997.

249



[3395] R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one loss func-
tions. In Proc. 13th International Conference on Machine Learning, pages 275–283. Morgan
Kaufmann, 1996.

[3396] P. Koiran. Efficient learning of continuous neural networks. In Proc. 7th Annu. ACM Conf.
on Comput. Learning Theory, pages 348–355, New York, NY, 1994. ACM Press.

[3397] P. Koiran and E. D. Sontag. Vapnik-Chervonenkis dimension of recurrent neural networks. In
Computational Learning Theory, Third European Conference, EuroCOLT ’97, Jerusalem,
Israel, March 1997, Proceedings, volume 1208 of Lecture Notes in Artificial Intelligence,
pages 223–237. Springer, 1997.

[3398] M. Koivisto. Parent assignment is hard for the MDL, AIC, and NML costs. In Learning
Theory: 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA,
June 2006, Proceedings, volume 4005 of Lecture Notes in Artificial Intelligence, pages 289–
303, Berlin, 2006. Springer.

[3399] M. Koivisto, T. Kivioja, H. Mannila, P. Rastas, and E. Ukkonen. Hidden markov modelling
techniques for haplotype analysis. In Algorithmic Learning Theory, 15th International Con-
ference, ALT 2004, Padova, Italy, October 2004, Proceedings, volume 3244 of Lecture Notes
in Artificial Intelligence, pages 37–52. Springer, 2004.

[3400] M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal
of Machine Learning Research, 5:549–573, 2004.

[3401] M. M. Kokar. Determining arguments of invariant functional descriptions. Machine Learn-
ing, 1(4):403–422, 1986.

[3402] D. Koller and R. Fratkina. Using learning for approximation in stochastic processes. In
Proc. 15th International Conf. on Machine Learning, pages 287–295. Morgan Kaufmann,
San Francisco, CA, 1998.

[3403] D. Koller and M. Sahami. Toward optimal feature selection. In Proc. 13th International
Conference on Machine Learning, pages 284–292. Morgan Kaufmann, 1996.

[3404] D. Koller and M. Sahami. Hierarchically classifying documents using very few words. In Proc.
14th International Conference on Machine Learning, pages 170–178. Morgan Kaufmann,
1997.

[3405] D. Kollmar and D. H. Hellmann. Feature selection for a real-world learning task. In Machine
Learning and Data Mining in Pattern Recognition, Second International Workshop, MLDM
2001, Leipzig, Germany, July 2001, Proceedings, volume 2123 of Lecture Notes in Artificial
Intelligence, pages 157–172. Springer, 2001.

[3406] V. Koltchinskii. Entropy bounds for restricted convex hulls. In Learning Theory and
Kernel Machines, 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings, volume 2777
of Lecture Notes in Artificial Intelligence, pages 741–742. Springer, 2003.

[3407] V. Koltchinskii and O. Beznosova. Exponential convergence rates in classification. In Learn-
ing Theory: 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro, Italy,
June 27-30, 2005, Proceedings, volume 3559 of Lecture Notes in Artificial Intelligence, pages
295–307. Springer, 2005.

250



[3408] V. Koltchinskii, D. Panchenko, and S. Andonova. Generalization bounds for voting classifiers
based on sparsity and clustering. In Learning Theory and Kernel Machines, 16th Annual
Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washing-
ton, DC, USA, August 24-27, 2003, Proceedings, volume 2777 of Lecture Notes in Artificial
Intelligence, pages 492–505. Springer, 2003.

[3409] V. Koltchinskii, D. Panchenko, and F. Lozano. Further explanation of the effectiveness of
voting methods: The game between margins and weights. In 14th Annual Conference on
Computational Learning Theory, COLT 2001 and 5th European Conference on Computa-
tional Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 2001, Pro-
ceedings, volume 2111 of Lecture Notes in Artificial Intelligence, pages 241–255. Springer,
2001.

[3410] V. Koltchinskii and M. Yuan. Sparse recovery in large ensembles of kernel machines on-
line learning and bandits. In 21st Annual Conference on Learning Theory - COLT 2008,
Helsinki, Finland, July 9-12, 2008, pages 229–238. Omnipress, 2008.

[3411] P. Komarek and A. Moore. A dynamic adaptation of AD-trees for efficient machine learning
on large data sets. In Proc. 17th International Conf. on Machine Learning, pages 495–502.
Morgan Kaufmann, San Francisco, CA, 2000.

[3412] J. Komiyama, J. Honda, H. Kashima, and H. Nakagawa. Regret lower bound and optimal
algorithm in dueling bandit problem. In P. Grünwald, E. Hazan, and S. Kale, editors,
Proceedings of the 28th Conference on Learning Theory, volume 40 of Proceedings of Machine
Learning Research, pages 1141–1154, Paris, France, 03–06 July 2015. PMLR.
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[3528] W. Kwedlo and M. Krȩtowski. An evolutionary algorithm for cost-sensitive decision rule
learning. In Machine Learning: ECML 2001, 12th European Conference on Machine Learn-
ing, Freiburg, Germany, September 5–7, 2001, Proceedings, volume 2167 of Lecture Notes in
Artificial Intelligence, pages 288–299. Springer, 2001.

[3529] S. Kwek. Learning disjunctions of features. In Algorithmic Learning Theory, 8th Inter-
national Workshop, ALT ’97, Sendai, Japan, October 1997, Proceedings, volume 1316 of
Lecture Notes in Artificial Intelligence, pages 401–415. Springer, 1997.

[3530] S. Kwek. On a simple depth-first search strategy for exploring unknown graphs. In Algo-
rithms and Data Structures, 5th International Workshop, WADS ’97, Halifax, Nova Scotia,
Canada, August 6-8, 1997, Proceedings., volume 1272 of Lecture Notes in Computer Science,
pages 345–353. Springer, 1997.

[3531] S. Kwek and L. Pitt. PAC learning intersections of halfspaces with membership queries.
Algorithmica, 22(1/2):53–75, 1998.

[3532] S. S. Kwek. An apprentice learning model. In Proceedings of the Twelfth Annual Conference
on Computational Learning Theory, July 6th-9th, 1999, Santa Cruz, California, pages 63–74,
New York, NY, 1999. ACM Press.

[3533] S. S. Kwek. Learning intermediate concepts. In Algorithmic Learning Theory, 12th Interna-
tional Conference, ALT 2001, Washington, DC, USA, November 25–28, 2001, Proceedings,
volume 2225 of Lecture Notes in Artificial Intelligence, pages 151–166. Springer, 2001.

[3534] J. Kwon, V. Perchet, and C. Vernade. Sparse stochastic bandits. In S. Kale and O. Shamir,
editors, Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings of
Machine Learning Research, pages 1269–1270, Amsterdam, Netherlands, 07–10 July 2017.
PMLR.

[3535] K. H. Kwon, K. Kang, and J. H. Oh. Generalization in partially connected layered neural
networks. In Proc. 7th Annu. ACM Conf. on Comput. Learning Theory, pages 356–361,
New York, NY, 1994. ACM Press.

[3536] R. Kyng, A. Rao, S. Sachdeva, and D. A. Spielman. Algorithms for lipschitz learning on
graphs. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of the 28th Conference
on Learning Theory, volume 40 of Proceedings of Machine Learning Research, pages 1190–
1223, Paris, France, 03–06 July 2015. PMLR.

[3537] J. Lafferty. Additive models, boosting, and inference for generalized divergences. In Pro-
ceedings of the Twelfth Annual Conference on Computational Learning Theory, July 6th-9th,
1999, Santa Cruz, California, pages 125–133, New York, NY, 1999. ACM Press.

[3538] J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. Journal of Machine
Learning Research, 6:129–163, 2005.

[3539] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proc. 18th International Conf. on Machine
Learning, pages 282–289. Morgan Kaufmann, San Francisco, CA, 2001.

[3540] J. Lafond. Low rank matrix completion with exponential family noise. In P. Grünwald,
E. Hazan, and S. Kale, editors, Proceedings of the 28th Conference on Learning Theory,
volume 40 of Proceedings of Machine Learning Research, pages 1224–1243, Paris, France,
03–06 July 2015. PMLR.

260



[3541] M. G. Lagoudakis and M. L. Littman. Algorithm selection using reinforcement learning. In
Proc. 17th International Conf. on Machine Learning, pages 511–518. Morgan Kaufmann,
San Francisco, CA, 2000.

[3542] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1107–1149, 2003.
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[3734] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Text
and Monographs in Computer Science. Springer-Verlag, 1993.

[3735] M. Li and P. M. B. Vitanyi. A theory of learning simple concepts under simple distributions
and average case complexity for the universal distribution. In Proc. 30th Annu. IEEE
Sympos. Found. Comput. Sci., pages 34–39. IEEE Computer Society Press, Los Alamitos,
CA, 1989.

[3736] M. Li and P. M. B. Vitanyi. Learning simple concepts under simple distributions. SIAM J.
Comput., 20:911–935, 1991.

[3737] P. Li, T. J. Hastie, and K. W. Church. Improving random projections using marginal
information. In Learning Theory: 19th Annual Conference on Learning Theory, COLT 2006,
Pittsburgh, PA, USA, June 2006, Proceedings, volume 4005 of Lecture Notes in Artificial
Intelligence, pages 635–649, Berlin, 2006. Springer.

[3738] P. Li, T. J. Hastie, and K. W. Church. Nonlinear estimators and tail bounds for dimen-
sion reduction in l1 using cauchy random projections. In Learning Theory, 20th Annual
Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007, Pro-
ceedings, volume 4539 of Lecture Notes in Artificial Intelligence, pages 514–529, Berlin, 2007.
Springer.

[3739] P. Li and C.-H. Zhang. A new algorithm for compressed counting with applications in
shannon entropy estimation in dynamic data. In S. M. Kakade and U. von Luxburg, editors,
Proceedings of the 24th Annual Conference on Learning Theory, volume 19 of Proceedings of
Machine Learning Research, pages 477–496, Budapest, Hungary, 09–11 June 2011. PMLR.

274



[3740] P. Li, C.-H. Zhang, and T. Zhang. Compressed counting meets compressed sensing. In
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ceedings, volume 2533 of Lecture Notes in Artificial Intelligence, pages 395–402. Springer,
2002.

[3760] R. Lindner. Algorithmische Erkennung. Dissertation B, Friedrich-Schiller-Universität, Jena,
1972.

[3761] W. Lindner. Learning DNF by statistical and proper distance queries under the uniform
distribution. In Algorithmic Learning Theory, 16th International Conference, ALT 2005,
Singapore, October 2005, Proceedings, volume 3734 of Lecture Notes in Artificial Intelligence,
pages 198–210. Springer, Oct. 2005.

[3762] W. Lindner, R. Schuler, and O. Watanabe. Resource-bounded measure and learnability.
Theory of Computing Systems, 33(2):151–170, 2000.

[3763] C. X. Ling and R. Buchal. Learning to control dynamic systems with automatic quantiza-
tion. In Machine Learning: ECML-93, European Conference on Machine Learning, Vienna,
Austria, April 5–7, 1993, Proceedings, volume 667 of Lecture Notes in Artificial Intelligence,
pages 372–377. Springer-Verlag, 1993.

[3764] C. X. Ling and H. Zhang. The representational power of discrete Bayesian networks. Journal
of Machine Learning Research, 3:709–721, 2002.

[3765] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and
learnability. In Proc. of the 31st Symposium on the Foundations of Comp. Sci., pages 574–
579. IEEE Computer Society Press, 1989.

[3766] N. Linial, Y. Mansour, and R. L. Rivest. Results on learnability and the Vapnik-
Chervonenkis dimension. Inform. Comput., 90(1):33–49, Jan. 1991.

[3767] R. P. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine,
pages 4–22, Apr. 1987.

[3768] M. Liquiere and J. Sallantin. Srtuctural machine learning with Galois lattice and graphs.
In Proc. 15th International Conf. on Machine Learning, pages 305–313. Morgan Kaufmann,
San Francisco, CA, 1998.

276



[3769] N. List. Convergence of a generalized gradient selection approach for the decomposi-
tion method. In Algorithmic Learning Theory, 15th International Conference, ALT 2004,
Padova, Italy, October 2004, Proceedings, volume 3244 of Lecture Notes in Artificial Intel-
ligence, pages 338–349. Springer, 2004.

[3770] N. List. Generalized SMO-style decomposition algorithms. In Learning Theory, 20th Annual
Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007,
Proceedings, volume 4539 of Lecture Notes in Artificial Intelligence, pages 365–377, Berlin,
2007. Springer.

[3771] N. List, D. Hush, C. Scovel, and I. Steinwart. Gaps in support vector optimization. In
Learning Theory, 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA,
USA; June 13-15, 2007, Proceedings, volume 4539 of Lecture Notes in Artificial Intelligence,
pages 336–348, Berlin, 2007. Springer.

[3772] N. List and H. U. Simon. A general convergence theorem for the decomposition method. In
Learning Theory: 17th Annual Conference on Learning Theory, COLT 2004, Banff, Canada,
July 1-4, 2004. Proceedings, volume 3120 of Lecture Notes in Artificial Intelligence, pages
363–377. Springer, 2004.

[3773] N. List and H. U. Simon. General polynomial time decomposition algorithms. In Learning
Theory: 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro, Italy, June
27-30, 2005, Proceedings, volume 3559 of Lecture Notes in Artificial Intelligence, pages 308–
322. Springer, 2005.

[3774] N. List and H. U. Simon. General polynomial time decomposition algorithms. Journal of
Machine Learning Research, 8:303–321, 2007.

[3775] N. Littlestone. Learning in a layered network with many fixed-function hidden nodes. In
Proc. of the 1st Annual IEEE International Conference on Neural Networks, volume II,
pages 471–478, Washington, D.C., June 1987. IEEE Computer Society Press.

[3776] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2(4):285–318, 1988.

[3777] N. Littlestone. From on-line to batch learning. In Proceedings of the Second Annual Work-
shop on Computational Learning Theory, pages 269–284, San Mateo, CA, 1989. Morgan
Kaufmann.

[3778] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. PhD
thesis, Technical Report UCSC-CRL-89-11, University of California Santa Cruz, 1989.

[3779] N. Littlestone. Redundant noisy attributes, attribute errors, and linear threshold learning
using Winnow. In Proceedings of the Fourth Annual Workshop on Computational Learning
Theory, pages 147–156, San Mateo, CA, 1991. Morgan Kaufmann.

[3780] N. Littlestone. Learning simple Boolean concepts. In Proc. 2nd Int. Workshop on Algorith-
mic Learning Theory, pages 6–14. IOS Press, 1992.

[3781] N. Littlestone. Comparing several linear-threshold learning algorithms on tasks involving
superfluous attributes. In Proc. 12th International Conference on Machine Learning, pages
353–361. Morgan Kaufmann, 1995.

[3782] N. Littlestone and P. Long. On-line learning with linear loss constraints. In Proceedings of
the Sixth Annual ACM Conference on Computational Learning Theory, pages 412–421, New
York, NY, 1993. ACM Press.

277



[3783] N. Littlestone, P. M. Long, and M. K. Warmuth. On-line learning of linear functions. Journal
of Computational Complexity, 5:1–23, 1995. Was in STOC91.

[3784] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inform. Comput.,
108(2):212–261, 1994.

[3785] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proc. 11th International Conference on Machine Learning, pages 157–163. Morgan Kauf-
mann, 1994.

[3786] M. L. Littman. Friend-or-foe Q-learning in general-sum games. In Proc. 18th International
Conf. on Machine Learning, pages 322–328. Morgan Kaufmann, San Francisco, CA, 2001.

[3787] M. L. Littman. Tutorial: Learning topics in game-theoretic decision making. In Learning
Theory and Kernel Machines, 16th Annual Conference on Learning Theory and 7th Kernel
Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings,
volume 2777 of Lecture Notes in Artificial Intelligence, pages 1–1. Springer, 2003.

[3788] M. L. Littman. Inducing partially observable markov decision processes. In J. Heinz, C. de la
Higuera, and T. Oates, editors, Proceedings of the Eleventh International Conference on
Grammatical Inference, volume 21 of Proceedings of Machine Learning Research, pages 145–
148, University of Maryland, College Park, MD, USA, 05–08 Sept. 2012. PMLR.

[3789] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observ-
able environments: scaling up. In Proc. 12th International Conference on Machine Learning,
pages 362–370. Morgan Kaufmann, 1995.

[3790] M. L. Littman, F. Jiang, and G. A. Keim. Learning a language-independent representation
for terms from a partially aligned corpus. In Proc. 15th International Conf. on Machine
Learning, pages 314–322. Morgan Kaufmann, San Francisco, CA, 1998.
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C. Szepesvári, editors, Proceedings of The 27th Conference on Learning Theory, volume 35
of Proceedings of Machine Learning Research, pages 25–39, Barcelona, Spain, 13–15 June
2014. PMLR.

[4088] S. Mendelson and A. Pajor. Ellipsoid approximation using random vectors. In Learning
Theory: 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro, Italy, June
27-30, 2005, Proceedings, volume 3559 of Lecture Notes in Artificial Intelligence, pages 429–
443. Springer, 2005.

[4089] S. Mendelson and P. Philips. Random subclass bounds. In Learning Theory and Ker-
nel Machines, 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings, volume 2777
of Lecture Notes in Artificial Intelligence, pages 329–343. Springer, 2003.

[4090] S. Mendelson and P. Philips. On the importance of small coordinate projections. Journal
of Machine Learning Research, 5:219–238, 2004.

[4091] S. Mendelson and N. Tishby. Statistical sufficiency for classes in empirical L2 spaces. In Proc.
13th Annu. Conference on Comput. Learning Theory, pages 81–89. Morgan Kaufmann, San
Francisco, 2000.

[4092] S. Mendelson and R. Vershynin. Entropy, combinatorial dimensions and random averages. In
15th Annual Conference on Computational Learning Theory, COLT 2002, Sydney, Australia,
July 2002, Proceedings, volume 2375 of Lecture Notes in Artificial Intelligence, pages 14–28.
Springer, 2002.

[4093] S. Mendelson and R. C. Williamson. Agnostic learning nonconvex function classes. In 15th
Annual Conference on Computational Learning Theory, COLT 2002, Sydney, Australia,
July 2002, Proceedings, volume 2375 of Lecture Notes in Artificial Intelligence, pages 1–13.
Springer, 2002.

[4094] A. K. Menon and R. C. Williamson. Bayes-optimal scorers for bipartite ranking. In M. F.
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[4095] D. Meretakis, H. Lu, and B. Wüthrich. A study on the performance of large Bayes classi-
fier. In Machine Learning: ECML 2000, 11th European Conference on Machine Learning,
Barcelona, Catalonia, Spain, May 31 - June 2, 2000, Proceedings, volume 1810 of Lecture
Notes in Artificial Intelligence, pages 271–279. Springer, 2000.

[4096] N. Merhav and M. Feder. Universal sequential learning and decisions from individual data
sequences. In Proc. 5th Annual ACM Workshop on Comput. Learning Theory, pages 413–
427, New York, NY, 1992. ACM Press.

[4097] W. Merkle and F. Stephan. Trees and learning. In Proc. 9th Annu. Conf. on Comput.
Learning Theory, pages 270–279, New York, NY, 1996. ACM Press.

300



[4098] W. Merkle and F. Stephan. Refuting learning revisited. In Algorithmic Learning Theory,
12th International Conference, ALT 2001, Washington, DC, USA, November 25–28, 2001,
Proceedings, volume 2225 of Lecture Notes in Artificial Intelligence, pages 299–314. Springer,
2001.

[4099] W. Merkle and F. Stephan. Refuting learning revisited. Theoret. Comput. Sci., 298(1):145–
177, 2003.

[4100] W. Merkle and F. Stephan. Trees and learning. J. Comput. Syst. Sci., 68(1):134–156, 2004.

[4101] C. J. Merz. Using correspondence analysis to combine classifiers. Machine Learning,
36(1/2):33–58, 1999.

[4102] C. J. Merz and M. J. Pazzani. A principal components approach to combining regression
estimates. Machine Learning, 36(1/2):9–32, 1999.

[4103] C. Mesterharm. Tracking linear-threshold concepts with Winnow. In 15th Annual Confer-
ence on Computational Learning Theory, COLT 2002, Sydney, Australia, July 2002, Pro-
ceedings, volume 2375 of Lecture Notes in Artificial Intelligence, pages 138–152. Springer,
2002.

[4104] C. Mesterharm. Tracking linear-threshold concepts with Winnow. Journal of Machine
Learning Research, 4:819–838, 2003.

[4105] C. Mesterharm. On-line learning with delayed label feedback. In Algorithmic Learning
Theory, 16th International Conference, ALT 2005, Singapore, October 2005, Proceedings,
volume 3734 of Lecture Notes in Artificial Intelligence, pages 399–413. Springer, Oct. 2005.

[4106] N. Meuleau and P. Bourgine. Exploration of multi-state environments: Local measures and
back-propagation of uncertainty. Machine Learning, 35(2):117–154, 1999.

[4107] A. Meyer. Program size in restricted programming languages. Inform. Control, 21:382–394,
1972.

[4108] L. Meyer. Monotonic and dual-monotonic probabilistic language learning of indexed families
with high probability. In Computational Learning Theory, Third European Conference,
EuroCOLT ’97, Jerusalem, Israel, March 1997, Proceedings, volume 1208 of Lecture Notes
in Artificial Intelligence, pages 66–78. Springer, 1997.

[4109] L. Meyer. Probabilistic language learning under monotonicity constraint. Theoret. Comput.
Sci., 185(1):81–128, 1997. Special issue for ALT ’95.

[4110] L. Meyer. Aspects of complexity of conservative probabilistic learning. In Proceedings of the
Eleventh Annual Conference on Computational Learning Theory, pages 72–78, New York,
NY, 1998. ACM Press.

[4111] L. Meyer. Comparing the power of probabilistic learning and oracle identification under
monotonicity constraints. In Algorithmic Learning Theory, 9th International Conference,
ALT ’98, Otzenhausen, Germany, October 1998, Proceedings, volume 1501 of Lecture Notes
in Artificial Intelligence, pages 306–320. Springer, 1998.

[4112] L. Meyer. Aspects of complexity of probabilistic learning under monotonicity constraints.
Theoret. Comput. Sci., 268(2):275–322, 2001. Special issue for ALT ’98.

301



[4113] C. A. Micchelli and M. Pontil. A function representation for learning in banach spaces. In
Learning Theory: 17th Annual Conference on Learning Theory, COLT 2004, Banff, Canada,
July 1-4, 2004. Proceedings, volume 3120 of Lecture Notes in Artificial Intelligence, pages
255–269. Springer, 2004.

[4114] C. A. Micchelli and M. Pontil. Feature space perspectives for learning the kernel. Machine
Learning, 66(2-3):297–319, 2007.

[4115] L. Michael. Missing information impediments to learnability. In S. M. Kakade and U. von
Luxburg, editors, Proceedings of the 24th Annual Conference on Learning Theory, volume 19
of Proceedings of Machine Learning Research, pages 825–828, Budapest, Hungary, 09–11
June 2011. PMLR.

[4116] R. Michalski. Pattern recognition as rule guided inductive inference. IEEE Trans. Pattern
Anal. Mach. Intell., PAMI-2:349–361, 1980.

[4117] R. Michalski and G. Tecuci, editors. Machine Learning: A Multistrategy Approach, vol-
ume IV. Morgan Kaufmann, Los Altos, California, 1993.

[4118] R. M. Michalski. Understanding the Nature of Learning: Issues and Research Directions,
pages 3–26. Morgan Kaufmann, Los Altos, CA, 1986.

[4119] R. S. Michalski. A theory and methodology of inductive inference. In Machine Learning
Vol2, pages 215–244. Morgan Kaufman, 1986.

[4120] R. S. Michalski. Inferential theory of learning as a conceptual basis for multistrategy learning.
Machine Learning, 11:111–151, 1993.

[4121] R. S. Michalski. LEARNABLE EVOLUTION MODEL: Evolutionary processes guided by
machine learning. Machine Learning, 38(1/2):9–40, 2000.

[4122] R. S. Michalski and P. Brazdil. Introduction. Machine Learning, 50(3):219–222, 2003.

[4123] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning: An
Artificial Intelligence Approach, volume I. Morgan Kaufmann, Los Altos, California, 1983.

[4124] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning: An
Artificial Intelligence Approach, volume II. Morgan Kaufmann, Los Altos, California, 1986.

[4125] R. S. Michalski and J. Wnek. Guest editors’ introduction. Machine Learning, 27(3):205–208,
1997.

[4126] D. Michie. Inductive rule generation in the context of the fifth generation. In Proc. of the
First International Workshop on Machine Learning, pages 66–70, Monticello, Illinois, June
1983.

[4127] L. Miclet. Regular inference with a tail-clustering method. IEEE Trans. on Systems, Man,
and Cybernetics, SMC-10:737–743, 1980.

[4128] L. Miclet, N. Barbot, and B. Jeudy. A lattice of sets of alignments built on the common
subwords in a finite language. In J. Heinz, C. de la Higuera, and T. Oates, editors, Pro-
ceedings of the Eleventh International Conference on Grammatical Inference, volume 21 of
Proceedings of Machine Learning Research, pages 164–176, University of Maryland, College
Park, MD, USA, 05–08 Sept. 2012. PMLR.

302



[4129] S. Miesbach. High accuracy path tracking by neural linearization techniques. In T. Petsche,
editor, Computational Learning Theory and Natural Learning Systems, volume III: Selecting
Good Models, chapter 2, pages 21–42. MIT Press, 1995.

[4130] O. Mihatsch and R. Neuneier. Risk-sensitive reinforcement learning. Machine Learning,
49(2-3):267–290, 2002.

[4131] J. D. R. Millán and C. Torras. A reinforcement connectionist approach to robot path finding
in non-maze-like environments. Machine Learning, 8:363–395, 1992.

[4132] W. T. Miller, F. H. Glanz, and L. G. Kraft. Application of a general learning algorithm to
the control of robotic manipulators. International Journal of Robotics Research, 6(2):84–98,
1987.

[4133] A. Milosavljevic̀. Discovering dependencies via algorithmic mutual information: A case
study in DNA sequence comparisons. Machine Learning, 21:35–50, 1995.

[4134] A. Milosavljevi’c, D. Haussler, and J. Jurka. Informed parsimonious inference of prototyp-
ical genetic sequences. In Proceedings of the Second Annual Workshop on Computational
Learning Theory, pages 102–117, San Mateo, CA, 1989. Morgan Kaufmann.
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[4322] T. Natschläger and W. Maass. Spiking neurons and the induction of finite state machines.
Theoret. Comput. Sci., 287(1):251–265, 2002.

[4323] R. M. Neal. Learning stochastic feedforward networks. Technical report, Department of
Computer Science, University of Toronto, Nov. 1990.

[4324] R. M. Neal. Bayesian training of backpropagation networks by the hybrid monte carlo
method. Technical Report CRG-TR-92-1, Department of Computer Science, U. of Toronto,
Apr. 1992.

[4325] R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental,
sparse and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages
355–368. Kluwer Academic Publishers, 1998.

316



[4326] F. Neri. Mining TCP/IP traffic for network intrusion detection by using a distributed ge-
netic algorithm. In Machine Learning: ECML 2000, 11th European Conference on Machine
Learning, Barcelona, Catalonia, Spain, May 31 - June 2, 2000, Proceedings, volume 1810 of
Lecture Notes in Artificial Intelligence, pages 313–322. Springer, 2000.

[4327] F. Neri. Multi level knowledge in modeling qualitative physics learning. Machine Learning,
38(1/2):181–211, 2000.

[4328] J. Nessel. Birds can fly... In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, pages 56–63, New York, NY, 1998. ACM Press.

[4329] J. Nessel. Learnability of enumerable classes of recursive functions from “typical” examples.
In Algorithmic Learning Theory, 10th International Conference, ALT ’99, Tokyo, Japan,
December 1999, Proceedings, volume 1720 of Lecture Notes in Artificial Intelligence, pages
264–275. Springer, 1999.

[4330] J. Nessel and S. Lange. Learning erasing pattern languages with queries. In Algorithmic
Learning Theory, 11th International Conference, ALT 2000, Sydney, Australia, December
2000, Proceedings, volume 1968 of Lecture Notes in Artificial Intelligence, pages 86–100.
Springer, 2000.

[4331] J. Nessel and S. Lange. Learning erasing pattern languages with queries. Theoret. Comput.
Sci., 348(1):41–57, 2005. Special issue for ALT 2000.

[4332] G. Neu. First-order regret bounds for combinatorial semi-bandits. In P. Grünwald, E. Hazan,
and S. Kale, editors, Proceedings of the 28th Conference on Learning Theory, volume 40 of
Proceedings of Machine Learning Research, pages 1360–1375, Paris, France, 03–06 July 2015.
PMLR.
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[4385] A. Nowé, J. Parent, and K. Verbeeck. Social agents playing a periodical policy. In Ma-
chine Learning: ECML 2001, 12th European Conference on Machine Learning, Freiburg,
Germany, September 5–7, 2001, Proceedings, volume 2167 of Lecture Notes in Artificial
Intelligence, pages 382–393. Springer, 2001.
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[4642] S. Pölt. Improved sample size bounds for PAB-decisions. In Computational Learning The-
ory: EuroColt ’93, volume New Series Number 53 of The Institute of Mathematics and its
Applications Conference Series, pages 229–239, Oxford, 1994. Oxford University Press.

[4643] Y. Polyanskiy, A. T. Suresh, and Y. Wu. Sample complexity of population recovery. In
S. Kale and O. Shamir, editors, Proceedings of the 2017 Conference on Learning Theory,
volume 65 of Proceedings of Machine Learning Research, pages 1589–1618, Amsterdam,
Netherlands, 07–10 July 2017. PMLR.

[4644] D. A. Pomerleau. Neural network-based vision for precise control of a walking robot. Machine
Learning, 15(2):125–135, 1994.

[4645] D. A. Pomerleau. A reply to Towell’s book review of neural network perception for mobile
robot guidance. Machine Learning, 18(1):121–122, 1995.

[4646] U. Pompe. Noise-tolerant recursive best-first induction. In Proc. 16th International Conf.
on Machine Learning, pages 315–324. Morgan Kaufmann, San Francisco, CA, 1999.

[4647] M. Pontil and A. Maurer. Excess risk bounds for multitask learning with trace norm reg-
ularization. In S. Shalev-Shwartz and I. Steinwart, editors, COLT 2013 - The 26th Annual
Conference on Learning Theory, June 12–14, 2013, Princeton University, NJ, USA, vol-
ume 30 of JMLR Proceedings, pages 55–76. JMLR.org, 2013.

[4648] M. Pontil, S. Mukherjee, and F. Girosi. On the noise model of support vector machines
regression. In Algorithmic Learning Theory, 11th International Conference, ALT 2000,
Sydney, Australia, December 2000, Proceedings, volume 1968 of Lecture Notes in Artificial
Intelligence, pages 316–324. Springer, 2000.

[4649] S. Porat. Stability and looping in connectionist models with assymmetric weights. Technical
Report TR 210, University of Rochester Computer Science Department, Mar. 1987.

[4650] S. Porat and J. A. Feldman. Learning automata from ordered examples. Machine Learning,
7:109–138, 1991.

[4651] B. W. Porter and D. F. Kibler. Experimental goal regression: A method for learning
problem-solving heuristics. Machine Learning, 1(3):249–285, 1986.

[4652] S. E. Posner and S. R. Kulkarni. On-line learning of functions of bounded variation un-
der various sampling schemes. In Proceedings of the Sixth Annual ACM Conference on
Computational Learning Theory, pages 439–445, New York, NY, 1993. ACM Press.

[4653] C. Posthoff and M. Schlosser. Optimal strategies – learning from examples – Boolean equa-
tions. In Algorithmic Learning for Knowledge-Based Systems, volume 961 of Lecture Notes
in Artificial Intelligence, pages 363–390. Springer, 1995.

[4654] G. Potamias. Content-based similarity assessment in multi-segmented medical image data
bases. In Machine Learning and Data Mining in Pattern Recognition, Second International
Workshop, MLDM 2001, Leipzig, Germany, July 2001, Proceedings, volume 2123 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer, 2001.

[4655] A. Potechin and D. Steurer. Exact tensor completion with sum-of-squares. In S. Kale and
O. Shamir, editors, Proceedings of the 2017 Conference on Learning Theory, volume 65
of Proceedings of Machine Learning Research, pages 1619–1673, Amsterdam, Netherlands,
07–10 July 2017. PMLR.

339
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gosi, T. Zeugmann, and S. Zilles, editors, Algorithmic Learning Theory, 20th International
Conference, ALT 2009, Porto, Portugal, October 2009, Proceedings, volume 5809 of Lecture
Notes in Artificial Intelligence, pages 232–246, Berlin/Heidelberg, 2009. Springer.

414



[5692] L. P. J. Veelenturf. Inference of sequential machines from sample computations. IEEE
Trans. on Computers, C-27:167–170, 1978.

[5693] S. Veeser. An evolutionary approach to evidence-based learning of deterministic finite au-
tomata. In Proc. 17th International Conf. on Machine Learning, pages 1071–1078. Morgan
Kaufmann, San Francisco, CA, 2000.

[5694] M. Velauthapillai. On the Inductive Inference of Programs with Anomalies. PhD thesis,
University of Maryland, 1986.

[5695] M. Velauthapillai. Inductive inference with bounded number of mind changes. In Proceedings
of the Second Annual Workshop on Computational Learning Theory, pages 200–213, San
Mateo, CA, 1989. Morgan Kaufmann.

[5696] M. M. Veloso and J. G. Carbonell. Derivational analogy in prodigy: Automating case
acquisition, storage, and utilization. Machine Learning, 10:249–278, 1993.

[5697] S. Vempala. A random sampling based algorithm for learning the intersection of half-spaces
(extended abstract). In Proc. 38th Annu. IEEE Symposium on Foundations of Computer
Science, pages 508–513. IEEE Computer Society Press, Los Alamitos, CA, 1997.

[5698] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In 43rd
Annual Symposium on Foundations of Computer Science, 6-19 November 2002, Vancouver,
BC, Canada, Proceedings, pages 113–122. IEEE Computer Society, 2002.

[5699] S. Vempala and G. Wang. A spectral algorithm for learning mixture models. J. Comput.
Syst. Sci., 68(4):841–860, 2004.

[5700] S. S. Vempala. Spectral algorithms for learning and clustering. In Learning Theory, 20th
Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15,
2007, Proceedings, volume 4539 of Lecture Notes in Artificial Intelligence, pages 3–4, Berlin,
2007. Springer.

[5701] S. S. Vempala and Y. Xiao. Max vs min: Tensor decomposition and ICA with nearly linear
sample complexity. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of the 28th
Conference on Learning Theory, volume 40 of Proceedings of Machine Learning Research,
pages 1710–1723, Paris, France, 03–06 July 2015. PMLR.

[5702] A. Venkataraman. A procedure for unsupervised lexicon learning. In Proc. 18th International
Conf. on Machine Learning, pages 569–576. Morgan Kaufmann, San Francisco, CA, 2001.

[5703] S. S. Venkatesh. On learning binary weights for majority functions. In Proceedings of
the Fourth Annual Workshop on Computational Learning Theory, pages 257–266. Morgan
Kaufmann, 1991.

[5704] S. S. Venkatesh. Directed drift: A new linear threshold algorithm for learning binary weights
on-line. J. of Comput. Syst. Sci., 46(2):198–217, 1993.

[5705] S. S. Venkatesh, R. R. Snapp, and D. Psaltis. BELLMAN STRIKES AGAIN! The growth
rate of sample complexity with dimension for the nearest neighbor classifier. In Proc. 5th
Annual ACM Workshop on Comput. Learning Theory, pages 93–102, New York, NY, 1992.
ACM Press.

[5706] G. Venturini. SIA: A supervised inductive algorithm with genetic search for learning at-
tributes based concepts. In Machine Learning: ECML-93, European Conference on Machine
Learning, Vienna, Austria, April 5–7, 1993, Proceedings, volume 667 of Lecture Notes in
Artificial Intelligence, pages 280–296. Springer-Verlag, 1993.

415



[5707] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time.
In Proceedings of the Third Annual Workshop on Computational Learning Theory, pages
314–326, San Mateo, CA, 1990. Morgan Kaufmann.

[5708] K. A. Verbeurgt. Learning sub-classes of monotone DNF on the uniform distribution. In
Algorithmic Learning Theory, 9th International Conference, ALT ’98, Otzenhausen, Ger-
many, October 1998, Proceedings, volume 1501 of Lecture Notes in Artificial Intelligence,
pages 385–399. Springer, 1998.

[5709] S. A. Vere. Multilevel counterfactuals for generalizations of relational concepts and produc-
tions. Art. Int., 14:139–164, 1980.

[5710] S. A. Vere. Constrained N-to-1 generalization. preprint, Jet Prop. Lab., 1981.

[5711] N. Verma. Distance preserving embeddings for general n-dimensional manifolds. In S. Man-
nor, N. Srebro, and R. C. Williamson, editors, Proceedings of the 25th Annual Conference on
Learning Theory, volume 23 of Proceedings of Machine Learning Research, pages 32.1–32.28,
Edinburgh, Scotland, 25–27 June 2012. PMLR.

[5712] J.-P. Vert. Classification of biological sequences with kernel methods. In Grammatical Infer-
ence: Algorithms and Applications, 8th International Colloquium, ICGI 2006, Tokyo, Japan,
September 20-22, 2006, Proceedings, volume 4201 of Lecture Notes in Artificial Intelligence,
pages 7–18, Berlin, 2006. Springer.

[5713] S. Verwer, M. de Weerdt, and C. Witteveen. A likelihood-ratio test for identifying probabilis-
tic deterministic real-time automata from positive data. In J. M. Sempere and P. Garćıa,
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