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Abstract. In recent years different classes of mildly context-sensitive
languages, which can handle complex structures beyond context-freeness,
have been discovered that can be identified in the limit from positive
examples efficiently in some sense. The goal of this paper is to convert
those existing learning algorithms into ones that work under a more
practical learning scheme, finite stochastic learning and to discuss the
efficiency of the proposed algorithms.

1 Introduction

Identification in the limit (1IL) from text [8] is a classical paradigm that mod-
els language learning under an environment, where only positive examples are
available. In fact in many real situations like when a child learns his/her first
language, negative examples are hardly available. After Angluin [1] showed that
pattern languages can be learned in this model, the literature has been paying
much attention to IIL from text and obtained many fruitful results. However,
this classical model is sometimes criticized for its inadequacy in practice. One
cannot know when the hypothesis output by the learner has converged. That is,
one cannot trust in the learner’s hypothesis regardless of the quantity of informa-
tion fed to the learner. Moreover, it is hard to define the efficiency of a learning
algorithm due to the “in the limit” nature [4, 12]. We have no established way
to analyze the efficiency of an IIL algorithm.

Reischuk and Zeugmann [13] and Rossmanith and Zeugmann [14] have pro-
posed an alternative learning scheme, called stochastic finite (SF) learning, to
overcome those difficulties of 1IL. In their scheme, positive examples are sequen-
tially given to a learner according to some probability distribution. Differently
from the IIL model, an SF learner must eventually terminate and output a rep-
resentation. One can evaluate a learner’s efficiency by, say the expected number
of examples that the learner needs to terminate. The literature has achieved
positive results on the SF learning [13, 14, 3, 18], yet so far the learning target
languages were limited to (variants of) pattern languages. This paper is con-
cerned with the SF learning of the so-called mildly context-sensitive languages.
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A long-term goal of grammatical inference is to find a reasonable class of
formal languages that are powerful enough for expressing natural languages and
are efficiently learnable under a reasonable scheme. Context-free languages are
fairly expressive, yet natural languages are known to involve non-context-free
structures like multiple agreements, crossed agreements, and duplication struc-
tures [9, 7, 15]. Joshi [10] proposed the notion of mildly context-sensitive lan-
guages in order to define a class of formal languages for modeling natural lan-
guages. They, on the one hand, should be rich enough to model the natural
language phenomena mentioned above. On the other hand, its generative power
should be still simple enough to allow for polynomial time parsing algorithms.

In recent years, several interesting IIL algorithms for different mildly context-
sensitive languages have been proposed. Among these algorithms are the one
discovered by Yoshinaka [16] that learns the class of gD-substitutable multiple
context-free languages, and Becerra-Bonache et al.’s [2] algorithms targeting sim-
ple external contextual languages.

In the present paper we shall focus on these algorithms and translate those
into SF learners. Section 3 shows how polynomial-time SF learning of gD-substi-
tutable multiple context-free languages is possible under certain assumptions. We
also prove that a subclass of simple external contextual languages is SF learnable
in Section 4. In particular, it is shown that the class in concern is efficiently SF
learnable under a certain condition — whether or not the condition holds true
in general is left as an open problem.

2 Preliminaries

For a finite alphabet X let X* denote the set of strings over Y. The empty
string is denoted by A and X" = X*\ {A}. For u € X*, let |u| denotes the length
of u. Any subset L C X* is called a language. For any set S, we use |S| to denote
its cardinality and p(S) to denote its power set. The empty set is denoted by 0.
If L is a finite language over X, its size is defined as ||L|| = [L| + > |ul.

We assume a countably infinite set Z of variables which is disjoint from X.
We use 21, 22, . .., to denote variables. A pattern 7 is an element of (Z U X)*.
A substitution is a homomorphism on (Z U X)* that maps every letter in X
to itself. A homomorphism that maps z; to u; for ¢ = 1,...,m is denoted as
a suffix operator [z1 := u1,...,2m = Uy|. When z and u represent sequences
of variables z1,..., 2, and strings uq,...,u,,, respectively, the substitution is
often denoted as [z := u].

Definition 1. A grammar system on X is a pair (G, L) where G is a class of
representations called grammars and L is a function from G to p(X*) such that
it is decidable whether w € L(G) for any G € G and w € X*. We assume that
every grammar G € G is in some way assigned a positive integer called the size
of G, denoted by ||G]||.

A probabilistic grammar system on X' is a pair (H, Pr) where H is a class of
representations and Pr is a function from H x (X* U {#}) to [0, 1] such that for
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every H € H, we have
> Pr(Huw) =1,
weT U{#}
where # is a special symbol not in X. We call each element of H a probabilis-
tic grammar. The function Pry such that Pry(w) = Pr(H,w) is called the
probabilistic language of H. We define the (non-probabilistic) language of H by

Lp(H) = {we 5" | Pr(w)>0}.

We often describe a probabilistic grammar system H based on a grammar
system G, where each H is defined on G such that Lp,(H) = L(G). Such G is
called a underlying grammar of H and the size of each H is defined to be that
of G.

Definition 2. Let (H, Pr) be a probabilistic grammar system and (G, L) be
its underlying grammar system. A probabilistic text of H € H is an infinite
sequence of elements of Lp,(H) U {#} independently drawn with respect to the
distribution Prpy. A stochastic finite learner (learner, in short) A is an algorithm
that takes strings from a probabilistic text of H one by one. Each time it gets
a string, it may either request a next string or terminate outputting a grammar
G € G. We say that a learner stochastically finitely (SF) learns (H, Pr) if for any
H € H, it terminates in a finite number of steps and the output G satisfies that
L(G) = Lp,(H) with probability at least 1 — §, where § € (0,1) is the so-called
confidence parameter.

Moreover, we say that a learner polynomially stochastically finitely (PSF)
learns (H, Pr) if the expected number of examples that it requests is polynomi-
ally bounded in ||H||§~! where H is the learning target and the total running
time is polynomially bounded in the total size of the given data.

We note that the above definition of SF learning differs from the original [13, 14]
slightly. Our definition of SF learning targets a probabilistic grammar system,
where we assume that a distribution of strings is in some way determined by part
of a probabilistic grammar H. The original definition [13, 14] does not involve
probabilistic grammars, but still they assume that a probabilistic text obeys an
admissible distribution which may be defined in terms of underlying grammars.

When Pr is understood from the context, we let L denote Lp, and simply
say that A (P)sF-learns H by dropping Pr.

Ezxample 1. A pattern can be seen as a grammar, whose language is defined
to be the set of strings of letters that are obtained by substituting arbitrary
nonempty strings for variables. That is, L(7) = {70 | 8 is a A-free substitution }.
For example, m = az1bza21¢ is a pattern whose language is L(w) = { aubvuc |
u,v € Xt }. Let D be a distribution of strings such that D(w) > 0 for all w € X*
and D(X*) = 1, which represents the probability of the substitution of a string
for each variable that occurs in m. We extend the domain of D to tuples of
strings by D((u1,...,ux)) = [[1<;<x P(w;). Then H = (7, D) is a probabilistic
grammar such that Pr(H,w) = }_,cq () D(u), where Sxz(w) = {(u1,...,ux) |
wlz1 == uq,. .., 2K := ug] = w } with the variables 21, ...,z in 7.
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3 Learning multidimensionally substitutable MCFLs

3.1 Probabilistic multiple context-free grammars

A ranked alphabet is a pair of an alphabet V and a map r: ¥ — N, where
N = {0,1,2,...} denotes the set of all natural numbers. Let = be any string
and m € N, then z(™ denotes the m-tuple containing z precisely m many
times, while 2 denotes the usual concatenation of z, e.g., (3 = (x,z,x) and
2% = zzz. Hence (X*)(™) is the set of m-tuples of strings over X, which are
called m-words. Similarly we define (-)*) and (-)(*), where, for instance, (X*){+)
denotes the set of all m-words for all m > 1. For an m-word u = (uy, ..., un),
we write |u| to denote its arity, i.e., ju| = m and we use ||u| to denote its size
M+ cicm Uil

A multiple context-free grammar (MCFG) is a tuple G = (X, Ngym, R, S),
where X' is the alphabet of terminal symbols, Ngim = (N, dim) is the ranked
alphabet of nonterminal symbols, R is the finite set of rules and S € N is the
start symbol. We call the value dim(A) the dimension of A € N. Each rule in R
has the form

AO(alv cee 7aro) <_141(2:1,17 .- '721,7‘1)7 cee aAn(Zn,la c '7zn,rn)

where A; € N and r; = dim(4;) for i =0,1,...,n, z,; € Zfori=1,...,n
and j =1,...,m and ap € (ZU{z,;|1<i<n1<j<r})* for each
k=1,...,79 for some n € N. Furthermore, in this paper we require each z; ;
with¢=1,...,nand j =1,...,r; to occur exactly once through a,...,q.. A
rule of the above form is an Ag-rule and R4, denotes the set of Ag-rules. The
size of the rule is defined to be |ai|+ - -+ |ay,| +n + 1. The size of a grammar
is defined to be the sum of the sizes of its rules.

We represent ordered rooted labeled trees as terms. An A-derivation tree for
A € N is a tree whose nodes are labeled by rules. We inductively define them
as follows:

— the tree consisting of just one node labeled by a rule of the form
A(vy,...,v,)« is an A-derivation tree;

— if t; are A;-derivation trees for all i = 1,...,n and a rule p has the form
Ala) — A1(z1),...,An(zy), then p(t1,...,t,) is an A-derivation tree;

— nothing else is an A-derivation tree.

A derivation tree means an S-derivation tree.

The yield Yq(t) of an A-derivation tree ¢ is a dim(A)-tuple of strings induc-
tively defined by the following: If ¢ = p(ty,...,t,) and p is a rule of the form
Ala) — A1(z1),...,An(zy), then

Yg(t) = a[z1 = Yg(tl), B i Yg(tn)] .

We set Lg(A) = {Y¢g(t) | tis an A-derivation tree }, and refer to it as the
language derived from a nonterminal A. The language of G is L(G) = Lg/(S).
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A probabilistic MCFG is a tuple H = (¥, N, R, S, ), where Gy = (¥, N, R, S)
is an MCFG and 7: R — (0, 1] gives a probability to each rule such that

Zﬂ(p):l,forallAGN.
pPERA

The MCFG Gy is called the underlying grammar of H. The probability of an
A-derivation tree t is defined to be the product of the probabilities assigned to
rules that label nodes of ¢. That is, if ¢ has the form ¢ = p(t1,...,t,), then
the probability of ¢ is defined by 7 (t) = m(p) [[,<,;<,, 7(ti). The probability of a
string u € X* assigned by a probabilistic grammar H is defined by

Prp(u)= Y  #(t),

teTg (u)

where T 4(u) is the set of A-derivation trees ¢ such that Y¢g,, (t) = u. Moreover,
for a language K C X, we let Pry(K) = >, c x Pry(u). Obviously Prg(u) > 0
if and only if u € L(Gg) for any u € X*. Note that we have 7(p) > 0 for
all p € R by definition.

Finally, we define Pry(#) = 1 — Pry(X*). Since H subsumes Gg, we often
substitute H for G like Yy or L(H) instead of Y¢,, or L(Gpr). The size |H|| of
a probabilistic MCFG is defined to be the size of its underlying grammar.

3.2 IIL of multidimensionally substitutable M CFLs

Yoshinaka [16] has defined a subclass of MCFLs that is interesting from its point
of view of learnability. Let O ¢ X be a new symbol, which represents a hole.
If we (XU {0})* contains m occurrences of J, then w is called an m-context.
For an m-context w = ugOu,0. .. Ou,, such that ug,...,u, € X* and an m-
word v = (v1,...,v,) € (%)), we define an operation ® by setting w ® v =
UQUIU] - - . VU, Note that w © v is defined only when w contains exactly |v|
occurrences of [J.

For a positive integer ¢, a language L is said to be gD-substitutable if and

only if

wy © V1, wy © Vg, wy ©® vy € L implies wy ® vo € L
for any wy,wo € X*(OXH)™10X*, vi,vy € ()™ and m < ¢. For nota-
tional convenience, we write Z[Dm] for X*(OXH)m-1Ox~.

We denote by G(g,r) the collection of MCFGs G whose nonterminals are as-
signed a dimension at most g and whose rules have at most r nonterminals on the
right-hand side. Let SIL(gq, ) denote the set of languages that are gD-substitutable
and are generated by a grammar from G(g, 7). The class SLL(2,1) contains non-
context-free languages like { a™bc™de™ | n > 0} and { a™bc™de™ fg™ | m,n > 0},
which can be seen as models of multiple agreements and crossed agreements.

Yoshinaka’s [16] learning algorithm A(g,r) constructs a grammar Gy from
a finite set K of positive examples of the target language L € SL(g,r) in the
following manner. The set of nonterminals is defined as

Vi ={ve (Zh)m |w®vEKf0rsomew€2|[:7r”] and 1 <m < q}U{S},
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where dim(v) = |v|. We shall write [v] instead of v for clarifying that it means
a nonterminal symbol (indexed with v). The set Rx consists of rules of the
following three types:

L [v](a) —[vil(z1), .., [va](zn)
ifn <rand v = afz; := v1,...,2, 1= vy,], where [v],[v1],...,[v.] €
Ve —{S};
II. [v](z)«[v'](2) if there is a w € Zg"] such that w @ v,w OV’ € K;
III. S(z) «[(v)](2) if v e K.

Since the set Vi is finite, the set Ry is also finite. The conjecture made by the
algorithm A(g, ) is then the MCFG G, ,(K) = (X, Vi, Rk, S) € G(g,r).

It is shown in [16] that for any gD-substitutable language L, and any K C L.,
we have L(G, (K)) C L.. Furthermore, there exists also a set K¢, such that
L, =L(G,,(K)) for any K D K., where G, is a grammar generating L.

Proposition 1 (Yoshinaka [16]). One can compute G, (K) from a finite
language K C X* in polynomial time. Assume that K O K¢g, for an MCFG
G, € G(gq,7r). Then we have L(G) C G, (K¢, ). In particular, if L(G.) is gD-
substitutable, then L(G,,(K)) = L(Gy).

3.3 Polynomial stochastic finite learning of substitutable MCFLs

Based on Yoshinaka’s [16] 1IL algorithm, we shall investigate (P)sF-learning of
gD-substitutable MCFGs. Our learner outputs the grammar G, . (K) from a given
positive data set K when a sufficient number of examples is received. Let G =
(X, N, R, S, ) be a probabilistic MCFG of our learning target. This paper gives a
definition of K¢ in a way different from the original one, but still Proposition 1
holds with our definition. For each rule p € R, among derivation trees that have
a node labeled with p, let ¢, be the one with the largest probability. We then
define K¢ = {v, | p € R} where v, = Yg(t,). We estimate Prg(v,) for each
p € R in order to determine how many examples our learner should request.

For each nonterminal A € N, the most probable A-derivation tree has at
most (rIVl —1)/(r — 1) nodes where 7 is the maximum number of nonterminals
that appear on the right-hand side of a rule. Obviously every subtree of ¢, is the
most probable A-derivation tree except the ones rooted by nodes on the path
from the root to a node labeled by p, whose length is at most |V|. Every node
on the path has at most » — 1 siblings and the node labeled with p has at most r
children, all of which are a root node of the most probable A-derivation tree for
some A € N. Therefore, we have

ltol < IVI=14 ((r = DIV + DV =1)/(r = 1) < (V] + Dr!"]

and hence i
Pra(v,) > #(t,) > pVIHI "

where p is the least probability assigned to a rule in R. Let s = p(WH‘l)TM. Let
Z;" denote the event that one does not observe v, among randomly drawn m
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examples. We have P(Z}") < (1 —s)™ < e™™® and thus the probability that we
miss v, for some p € R can be bounded as follows

P(U2zr) <Y Pz < |Re™.

pER pER

where e is Napier’s constant. Thus if we draw more than s~!In|R|6~! examples,
with probability at least 1 —  we obtain v, for all p € R.

This number of required examples is not polynomially bounded in the de-
scription size of the target grammar because of s = p(lvH'l)’"Wl. That is, even
the most probable derivation tree of a grammar appear exponentially rarely.
This is closely related to the well-known problem in the efficient learning of
CFGs and richer formalisms: even the simplest derivation trees of a grammar
may be exponentially large in the size of the grammar itself. Here we assume
the p-observability saying that we have a reasonably enough chance p to ob-
serve the most probable string v, for each p: Prg(v,) > p. This can be seen
as an analogous property to the pi-distinguishability and po-reachability that
Clark [5] has assumed to achieve a PAC-type learnability of a subclass of CFGs.
The p1-distinguishability and po-reachability entails that every nonterminal A
has a string v4 derived by using A whose probability is at least u; puo. We assume
the similar property for each rule. If a rule is hardly used, we have little chance
to learn it. Moreover, this assumption entails that |R| is also bounded by p~!.

Hence, if we draw more than
1 1
i —
[T
examples, our grammar constructed on those examples generates the target lan-

guage exactly with probability at least 1 — 4.

Theorem 1. Let G(q,r, u) be the class of probabilistic MCFGs in G(q,r) whose
languages are gD-substitutable and p-observable. The class G(q,r, 1) is PSF-
learnable.

We remark that the above discussion on the PSF-learning of gD-substitutable
MCFGs apply to other formalisms for which substitutability is accordingly defined
and shown to be learnable: like CFGs [6], simple context-free tree grammars [11]
and abstract categorial grammars [17].

4 Stochastic finite learning of simple external contextual
grammars with one context

Becerra-Bonache et al. [2] have discussed the learnability of subclasses of simple
external contextual grammars (SECGs). A (g, $)-SECG is a pair G = (v, C) where
|v| = ¢, |C| < s and C C (2*0X*){9. We call v and elements of C' the base
and contexts of G, respectively. The language of G, which we call a (g, s)-SECL,
is given by

LG ={"0w ® - 0w, ®v | wy,...,w, €C}
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(note that ©® is associative). An SECG can be seen as a special case of an MCFG.
Becerra-Bonache et al. [2] give an iterative learning algorithm for (g, 1)-SECGs.
This section translates their algorithm into an SF learner. Following them, for
ease of notation, when we say that a language equals {ug,u1, ... }*, we assume
that the u; are listed in length increasing order, that is, |ug| < |u1| < |ug| < ....
For a (g, 1)-sEC language {ug,us,...}, it would be a natural idea to define a
probabilistic distribution of strings by Pr(u;) = p*(1 — p) where 0 < p < 1.

The following theorem is a key ingredient that establishes the result obtained
by Becerra-Bonache et al. [2].

Theorem 2 (Becerra-Bonache et al. [2], Theorem 22).
Let V = {wvg,v1,v2,...} and W = {wp, w1, ws, ...} be (q,1)-SECLs. If vg = wo,
vy = wy and there are m,n with v, = wy, A [v,| > (Jvi] +2)® then V = W.

It is easily seen that there is a polynomial-time algorithm (¢q is fixed) that
for input strings ug, u1,u with |ug] < |ui| < |u| decides whether there is an
(g, 1)-SECL {ug, u1,...,u,...,}, and moreover if it is the case it outputs a (g, 1)-
SECG Hg(uo, u1,u) generating the language. If there is no such a grammar then
Hq(uo, u1,u) is undefined.

Therefore what is important is to identify the two shortest strings in the
learning target. Our SF learner assumes that the two shortest strings wug,uq
amongst examples are indeed the two shortest in the target language when both
strings have been drawn at least n times where n is determined by the confidence
parameter §. When in addition it observes a string u such that |u| > (Jui| +2)3,
it outputs Hgq(uo, u1,u) as its conjecture.

Suppose that the target language is L. = {vo,v1, ..., }. We bound the prob-
ability that the output of our learner is wrong, which happen only when wg
is not the shortest or wu; is not the second shortest in L.. Let Z; denote the
event that v; is drawn n times before none of v; with ¢ < j is drawn. Note
that Pr(vj41) < Pr(v;) for all j > 0. Hence Pr(Z;) < (j+1)~". Thus, the
probability that ug is not the shortest is bounded from above by

1 1 1 3
Pr(Z, < — —dr < —
U I‘( J)<j;(j+1)n<2n+/2 xnx<2n

Jj=1

for n > 2. The probability that u; is not the second shortest is similarly bounded
from above by 2% Therefore, the failure probability is at most TL%, which should
be bounded by 1 — 4. In other words, for n > 1+ log, %, our learner’s conjecture
is exactly correct with probability at least 1 — 4.

Theorem 3. The class of (q,1)-SECGs is SF learnable.

Note that this theorem holds true as long as Pr(v;) > Pr(v,) whenever i < j.
Next we estimate the expected number of examples that the learner requests.
As in the previous section, we assume that the probabilities (p and 1—p) assigned

4 We assume that every (g, 1)-SECG in this paper generates an infinite language; oth-
erwise, its language is only a singleton.
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to rules are bounded from below by a constant. The probability that we draw
v; for some j > k is p*. Taking into account that |vgx| = |vg| + k(|v1| — |vol), for
k> ((Jui| +2)% = |vol|)/(Jv1| = |vo]), we have |vg| > (Jv1] + 2)3. Thus the number
of expected times that we draw positive examples until we find a long enough
one is at most p~* where k = [((|v1] + 2) — |vol)/(Jv1| — |vo|)] + 1, which is
not polynomially bounded by the size of the target grammar if we define the
size of an SECG G = (v, C) to be ||C|| + ||v||, which is equivalent to |w;| modulo
a constant term. On the other hand, it is open whether one can strengthen
Theorem 2 so that wg,w;,w, with n > 2 suffices for ensuring the uniqueness.
If one can answer the open problem in the affirmative, it is not hard to see that
the class of (g,1)-SECGs becomes PSF-learnable.

At least it is the case when ¢ = 1, where (g, 1)-SECGs generate only linear
context-free languages.

Lemma 1. Let Py, be the equation u*vw® = (u/)*v(w')k. Py A Py implies Vk.Py.

Corollary 1. The class of (1,1)-SECGs is PSF-learnable under the assumption
that the probability of drawing each of the shortest three positive example is
bounded from below.

5 Discussion

While language classes targeted by finite stochastic learning have so far been
limited to pattern languages in the literature, this paper has discussed how ex-
isting learning algorithms for mildly context-sensitive languages working under
the identification in the limit paradigm can be translated into finite stochastic
learners. The positive result on ¢D-substitutable substitutable MCFLs can eas-
ily be applied to the “substitutable” subclasses of other formalisms including
context-free string/tree languages [6, 11] and abstract categorial grammars [17]
as well.

On the other hand, while we have established a positive result on the SF
learning of (g, 1)-SECGs, it remains open whether (g, 1)-SECLs are PSF learnable
for ¢ > 2. At last, we remark another open problem related to the learning
algorithm for (g,7)-SECLs from Becerra-Bonache et al.’s paper [2, Theorem 8§].
Translating their algorithm into one for SF learning does not seem easy, since
their learnability proof does not constructively describe a set of positive examples
on which their learner converges to a correct grammar for the learning target.

Acknowledgement

The authors would like to thank Chihiro Shibata for a useful suggestion on part
of our technical discussions.



10

J. Case, R. Yoshinaka and T. Zeugmann

References

[1]
2]
3]

(4]

[5]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

18]

D. Angluin. Finding patterns common to a set of strings. J. of Comput. Syst.
Sci., 21(1):46-62, 1980.

L. Becerra-Bonache, J. Case, S. Jain, and F. Stephan. Iterative learning of simple
external contextual languages. Theoret. Comput. Sci., 411:2741-2756, 2010.

J. Case, S. Jain, R. Reischuk, F. Stephan, and T. Zeugmann. Learning a subclass
of regular patterns in polynomial time. Theoret. Comput. Sci., 364:115-131, 2006.
Special Issue for ALT’03.

J. Case and T. Kotzing. Difficulties in forcing fairness of polynomial time induc-
tive inference. In R. Gavalda, G. Lugosi, T. Zeugmann, and S. Zilles, editors,
Algorithmic Learning Theory, 20th International Conference, ALT 2009, Porto,
Portugal, October 2009, Proceedings, volume 5809 of Lecture Notes in Artificial
Intelligence, pages 263-277, Berlin/Heidelberg, 2009. Springer.

A. Clark. PAC-learning unambiguous NTS languages. In Grammatical Inference:
Algorithms and Applications, 8th International Colloquium, ICGI 2006, Tokyo,
Japan, September 20-22, 2006, Proceedings, volume 4201 of Lecture Notes in Ar-
tificial Intelligence, pages 59—71, Berlin, 2006. Springer.

A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research, 8:1725-1745, 2007.
C. Culy. The complexity of the vocabulary of Bambara. Linguistics and Philoso-
phy, 8:345-351, 1985.

E. M. Gold. Language identification in the limit. Inform. Control, 10(5):447-474,
1967.

S. P. Joan Bresnan, Ronald M. Kaplan and A. Zaenen. Cross-serial dependencies
in dutch. Linguistic Inquiry, 13:613-635, 1982.

A. K. Joshi. Tree adjoining grammars: how much context-sensitivity is required
to provide reasonable structural descriptions? In D. R. Dowty, L. Karttunen,
and A. Zwicky, editors, Natural Language Parsing, pages 206-250. Cambridge
University Press, Cambridge, MA, 1985.

A. Kasprzik and R. Yoshinaka. Distributional learning of simple context-free tree
grammars. In J. Kivinen, C. Szepesvari, E. Ukkonen, and T. Zeugmann, editors,
ALT, volume 6925 of Lecture Notes in Computer Science, pages 398-412. Springer,
2011.

L. Pitt. Inductive inference, DFAs, and computational complexity. In Analogi-
cal and Inductive Inference, Proceedings of the Second International Workshop
(AII’89), volume 397 of Lecture Notes in Artificial Intelligence, pages 18-44.
Springer-Verlag, Berlin, 1989.

R. Reischuk and T. Zeugmann. An average-case optimal one-variable pattern
language learner. J. Comput. Syst. Sci., 60(2):302-335, 2000.

P. Rossmanith and T. Zeugmann. Stochastic finite learning of the pattern lan-
guages. Machine Learning, 44(1/2):67-91, 2001.

S. Shieber. Evidence against the context-freeness of natural language. Linguistics
and Philosophy, 8:333-343, 1985.

R. Yoshinaka. Learning multiple context-free languages with multidimensional
substitutability from positive data. Inform. Comput., 412:1821-1831, 2011.

R. Yoshinaka and M. Kanazawa. Distributional learning of abstract categorial
grammars. In S. Pogodalla and J.-P. Prost, editors, LACL, volume 6736 of Lecture
Notes in Computer Science, pages 251-266. Springer, 2011.

T. Zeugmann. From learning in the limit to stochastic finite learning. Theoret.
Comput. Sci., 364(1):77-97, 2006.



