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Motivation I

Question
Why do we need public key cryptography?

So far, we mainly considered two-way cryptosystems. In such
cryptosystems the security of the communication has been
mainly established by a private key.

This classical key management requires the exchange of the secret
key which may be well imaginable if the number of participants
is small.

Imagine a bank with tens of thousands customers all over the
word who like to access their accounts via their computers at
home. It seems absolutely hopeless to exchange frequently
secret keys with all customers.
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Motivation II

Most customers have a much larger range of applications than
simply accessing their bank accounts over the internet, e.g.;
shopping over the net using a credit card, frequently exchange
of email with varying addressees, or using different computers
over a net.

Another important problem is authentication. The main problem
addressed here is to ensure that a message received indeed
originates from the source it pretends to have been sent out.

In classical communication via letters, this problem has been
solved by using hand written signatures (in the western
hemisphere) or a “hanko,” i.e., a personal seal (e.g., in China,
Japan). Thus, we need something equivalent, i.e., an electronic
signature.
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Motivation III

All those real and potential applications stimulated a huge
amount of research during the last three decades.

The key observation to be made is that a key in classical
two-way cryptosystems has actually two separate tasks, i.e.,
enciphering and deciphering.

Diffie and Hellman (1976) proposed a new approach, i.e., public
key cryptography.

They proposed to replace the secrete key by two keys. One key
is used for encryption, and one key for decryption. The
revolutionary idea, however, was to make the key for
encryption publicly available. The key for decryption is kept
secret by the receiver.
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The General Scheme of Public Key Cryptography I

The general scenario can be described as follows: Assume `

communicating parties P1, . . . , P`. Each party Pi chooses and
publishes its public key ki, and keeps its secret key k̃i private.

Suppose, party Pi wishes to send a message to party Pj.
Then Pi looks for Pj’s public key in the list of all public keys.
Next, Pi enciphers its message using kj and sends it out. The
receiver Pj exploits her private key k̃j and deciphers the
message received from Pi.

The only problem is how to realize this nice idea.
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The General Scheme of Public Key Cryptography II

There must be some connection between the public and the
private key, since otherwise it is very hard to imagine how the
deciphering can be performed. This leads to the following

Requirements:
Given the public key, it must be extremely hard to compute
the private one.
Computing the cipher must be easy, while deciphering has
to remain extremely hard, too, without knowing the
private key.

These requirements directly lead to the idea of one-way
functions.
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One-Way Functions

Definition 1 (One-Way Functions)

Let X, Y be non-empty sets. A one-way function f is an injective
function f : X → Y such that f(x) can be computed in time
polynomial in the length |x| of x for all x ∈ X but there is no
algorithm computing f−1(y) efficiently for any interesting
fraction of arguments y ∈ range(f).

Unfortunately, no one has yet proved the existence of one-way
functions. Complexity theory is still not ready to handle this
extremely difficult problem. Moreover, classical complexity
theory mainly deals with worst-case complexity what is by no
means ideal from the viewpoint of cryptology. The reasons for
this are as follows:
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Points of Concern I
(1) A problem having high worst-case complexity may be

anyway easily solvable for most of its instances. And no
non-linear lower bound for a particular problem is known.

(2) For all practical purposes it is sufficient to possess an
efficient probabilistic algorithm computing f−1. That means,
even if we would know that no deterministic algorithm
computes f−1 for almost all inputs in polynomial time, we
cannot conclude the relevant cryptosystem to be secure.

(3) Even worse, having a proof that no probabilistic algorithm
computes f−1 for almost all inputs in polynomial time is
not sufficient to derive reasonable conclusions concerning
the security of the relevant cryptosystem. Still, it may be
possible to invert f for almost all inputs of practical length;
e.g., given a proved tight lower bound of nlog log n, then for
all inputs y of length |y| 6 2210

the inversion of f can be
performed in time less than or equal to |y|10.
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Points of Concern II

(4) Since all practically appearing inputs are below some
length, even non-uniform families of different algorithms
inverting f may be interesting for a cryptanalyst.

There are, however some functions f which are widely
considered to be good candidates for one-way functions, e.g.;
modular exponentiation (the inverse is computing the discrete
logarithm), computing the product of prime numbers (the
inverse is factoring a given number into its prime factors), and
computing M =

∑m
i=0 xiai, where (a0, . . . , am) ∈Nm+1 and

(x0, . . . , xm) ∈ {0, 1}m+1 (the inverse is the general subset-sum
problem).
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The General Scheme of Public Key Cryptography III

Next we describe how to apply one-way functions to the
solution of public key cryptography.
Clearly, we cannot directly apply one-way functions f for
enciphering messages. Additionally, we have to incorporate an
idea how the receiver can circumvent the difficulty of
inverting f. As outlined above, solely the receiver possesses the
additional information provided by her secret key. This
additional information should enable her to decrypt the
ciphertext.

The following definition formalizes this idea: Furthermore, we
use Kp and Ks to denote the set of public keys and private
(secret) keys, respectively.
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The General Scheme of Public Key Cryptography IV

Definition 2 (Trap-Door Function)

A trap-door function f : Pt× Kp → Ct is a function satisfying the
following requirements:

(i) hkp = f( · , kp) is a one-way function for every kp ∈ Kp;
(ii) there exists a polynomial q such that the time to compute

hkp(x) is uniformly bounded by q(|x|) for all kp ∈ Kp;
(iii) there exist a one-way function d : Ks → Kp and a

polynomial time computable function g : Ks × Ct → Pt
such that y = f(x, kp) implies x = g(d−1(kp), y) for all
x ∈ Pt, kp ∈ Kp, and y ∈ Ct.
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The General Scheme of Public Key Cryptography V

The information d−1(kp) constitutes the trap-door enabling the
receiver to decipher the message obtained. Thus, the general
scenario for public key cryptography outlined above can be
realized as follows:

Each party P1, . . . , P` is equipped with algorithms for
computing f, g, and d. Furthermore, we assume |Ks| > `. Now,
party Pi chooses its private key k̃i ∈ Ks such that k̃i , k̃j for
i , j, where i, j ∈ {1, . . . , `}. How to realize this requirement is
discussed later. Then, she computes ki = d(k̃i) and publishes it.
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The General Scheme of Public Key Cryptography VI

The message exchange is performed using the following
protocol: Suppose Pi wishes to send a message x to Pj.
(1) Pi computes y = f(x, kj) using Pj’s public key kj, and

sends y over a public channel to Pj.

(2) Pj receives y and uses her private key k̃j to compute
x = g(k̃j, y).

We proceed by providing an example for a concrete public key
cryptosystem.
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Merkle and Hellman’s Public Key Cryptosystem I

Within the Merkle and Hellman’s public key cryptosystem
plaintext is encoded into bit-vectors of length n, i.e.,
b = (b0, . . . , bn−1), bi ∈ {0, 1}.

For example, we may encode the 26 letters of the Latin alphabet
by using 00000 for A, 00001 for B, . . . , and 11001 for Z. Thus,
each letter comprises 5 bits. For error detecting, it may be
recommendable to add some check bits using, for example, a
Hamming code. For keeping our examples small, we neglect
the issue of error detecting here and use the bit strings given
above.
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Merkle and Hellman’s Public Key Cryptosystem II

The public key is a knapsack vector a = (a0, . . . , an−1), ai ∈N.
How to choose a is described below. The enciphering c of a
plaintext b is computed by

c = ab> =

n−1∑
j=0

ajbj (1)

(* b> denotes the transpose of b *).

The result is a number c between 0 and
∑n−1

j=0 aj. This number
c is represented as a bit string of length ` = dlog(1 +

∑n−1
j=0 aj)e

including leading zeros.
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Merkle and Hellman’s Public Key Cryptosystem III

We describe the trap-door information and how to choose a. The
trap-door is a pair (w, m) ∈N×Nwhich should be large and has to
satisfy

w < m and gcd(w, m) = 1 , (2)

Next, we choose n values â = (â0, . . . , ân−1) such that

m >

n−1∑
i=0

âi and âj >

j−1∑
i=0

âi for all j = 1, . . . , n − 1 . (3)

So, party P chooses w, m, and â such that Conditions (2) and (3) are
satisfied. Then P computes a = (a0, . . . , an−1), where
ai = (âiw) mod m for all i = 0, . . . , n − 1. The vector a is P’s public
key and the pair (w, m) and the vector â is P’s private key.
The public key is published, and the private key (w, m) is kept secret.

Complexity and Cryptography c©Thomas Zeugmann



Intro General Scheme M–H PKCS The RSA PKCS The D-H PKCS End

Merkle and Hellman’s Public Key Cryptosystem IV

Let c be a ciphertext received. The deciphering is done using
the following procedure dec:
(1) Compute ĉ = (w−1c) mod m,
(2) Compute b = (b0, . . . , bn−1) as follows:

If ĉ > ân−1 then set bn−1 = 1 else set bn−1 = 0

For j = n − 2, n − 3, . . . , 0, if

ĉ −
n−1∑

i=j+1
âibi > âj then set bj = 1 else set bj = 0.
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Merkle and Hellman’s Public Key Cryptosystem V

Example 3

Party P chooses n = 5, (w, m) = (2550, 8443), and
â = (171, 196, 457, 1191, 2410). So Conditions (2) and (3) are
satisfied. The modular inverse of 2550 in Z8443 is 3950. So P’s
public key is a = (5457, 1663, 216, 6013, 7439). Let x = L;
then b = (0, 1, 0, 1, 1); thus c = 1663 + 6013 + 7439 = 15115, and
the message sent is c in binary, i.e., 11101100001011.
Suppose P has received c. So, P computes successively

(1) ĉ = (w−1c) ≡ 3950 · 15115 ≡ 3797 mod 8443.
(2) Since 3797 > 2410 we set b4 = 1.
(3) Next, we compute 3797 − 2410 = 1387 > 1191. So, b3 = 1.

Now, 3797 − (2410 + 1191) = 196 < 457, so b2 = 0.
Since 3797 − (2410 + 1191) = 196 we set b1 = 1.
Finally, 3797 − (2410 + 1191 − 196) = 0, and thus b0 = 0.
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Merkle and Hellman’s Public Key Cryptosystem VI

We continue with some remarks concerning the complexity of
the problems involved. The difficult problem used in the
design of the trap-door function f is the knapsack or
subset-sum problem which is known to be NP-complete.

However, several subclasses of this problem are known for
which it is easy to solve the decision problem. For example, if
ai < ai+1 for all i = 0, . . . , n − 2, then the knapsack problem
can be solved by using at most n subtractions as outlined in our
deciphering procedure. Another subclass consists of all vectors
(a0, . . . , an−1) ∈Nn for which all ai are powers of 2. In the
latter case, one has simply to compute the binary representation
of M. A more sophisticated subclass has been described in
Lagarias and Odlyzko (1983).
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design of the trap-door function f is the knapsack or
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ai < ai+1 for all i = 0, . . . , n − 2, then the knapsack problem
can be solved by using at most n subtractions as outlined in our
deciphering procedure. Another subclass consists of all vectors
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latter case, one has simply to compute the binary representation
of M. A more sophisticated subclass has been described in
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Merkle and Hellman’s Public Key Cryptosystem VII

Thus, special care has to be taken. In particular, Merkle and
Hellman (1978) hoped that the modular transformation of the
trap-door knapsack â will result in almost all cases in a hard
one. But A. Shamir (1982) proposed a polynomial time method
for breaking the Merkle and Hellman (1978) public key
cryptosystem.

Since then, more sophisticated methods have been proposed to
design public key cryptosystem that are based on the difficulty
of the subset-sum problem. Since all proposed systems are not
very satisfying we continue by looking at the most widely used
public key cryptosystems that are based on the difficulty of
number theoretic problems.
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The RSA Public Key Cryptosystem I

This system is based on the difficulty of factoring and/or taking
discrete roots modulo a composite modulus. It has been
invented by by R. Rivest, A. Shamir and L. Adleman in 1977.
Let A (= Alice) be anybody wishing to participate at the RSA
cryptosystem. Then, Alice has to do the following:

(1) Choose randomly two huge primes pA and qA (at least
1000 bits each, and the bigger prime should preferably
have some more digits than the smaller one).

(2) Compute nA = pAqA and calculate ϕ(nA) =

ϕ(pA)ϕ(qA) = (pA − 1)(qA − 1) = nA − pA − qA + 1.
(3) Choose randomly any number eA ∈ {1, . . . , ϕ(nA)} such

that gcd(eA, ϕ(nA)) = 1.
(4) Compute dA = e−1

A mod ϕ(nA). Publish KA = (nA, eA)

and keep pA, qA, and dA secret.
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The RSA Public Key Cryptosystem II

Now, assume any other participant B (=Bob) wishing to
communicate secretly with Alice.

Then, Bob codes his plaintext into a binary number w.

Using Alice’s public key KA = (nA, eA) Bob calculates the
cipher c = weA mod nA and sends c to Alice.

Alice deciphers c by computing cdA mod nA.

The correctness of this protocol ist established by the following
theorem:

Theorem 1

w = cdA mod nA.
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Proof

Proof. By assumption, c = weA mod nA. First, assume
gcd(w, nA) = 1; then applying the Theorem of Euler

cdA ≡ (weA)dA ≡ weAdA ≡ w(eAdA)mod ϕ(nA) ≡ w mod nA ,

since eAdA ≡ 1 mod ϕ(nA).

What can be said if gcd(w, nA) , 1?

Suppose that exactly one of the two primes pA and qA does
divide w, say pA. The Little Theorem of Fermat is telling us

wqA−1 ≡ 1 mod qA .

Since ϕ(nA) = (pA − 1)(qA − 1), we can conclude

wϕ(nA) ≡ (wqA−1)pA−1 ≡ 1pA−1 ≡ 1 mod qA .

Moreover, eAdA ≡ 1 mod ϕ(nA), and thus eAdA = jϕ(nA) + 1
for some positive integer j.
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Proof – continued

Consequently,

weAdA ≡ w mod qA .

But the last congruence is also true modulo pA, since, by
assumption, pA divides w, and thus weAdA − w ≡ 0 mod pA.
Hence, we can conclude weAdA ≡ w mod nA.

Finally, if both pA and qA divide w, then we trivially have
weAdA − w ≡ 0 mod pA as well as weAdA − w ≡ 0 mod qA,
and thus weAdA ≡ w mod nA.
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The RSA Public Key Cryptosystem III

Question
What can be said concerning the security of the RSA
cryptosystem?

By its construction, breaking the RSA cipher is as most as hard
as finding discrete roots modulo the composite number nA.
Computing discrete roots must be judged as feasible if the
prime factorization of nA is known. Therefore, the
cryptanalysis of the RSA cryptosystem is as most as hard as
factoring. However, there is no known efficient algorithm for
factoring a large composite number except for quantum
computers which are currently not available.
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The RSA Public Key Cryptosystem IV

However, some care must be taken be choosing the primes p

and q. Obviously, the chosen primes should be nowhere listed.
Thus, testing primality is such an important problem.

Moreover, one has to avoid primes of special form, e.g.,
p = 2e ± 1.

As mentioned above, the difference between p and q should be
large. For seeing this, we prove the following theorem:

Theorem 2

Let p and q be primes such that p > q and p − q = O((log p)c) for a
“moderate” constant c ∈N. Then, there exists an efficient algorithm
for factoring n = pq.
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The RSA Public Key Cryptosystem V

Proof. Consider

(p + q)2

4
− n =

p2 + 2pq + q2 − 4pq

4
=

(p − q)2

4
(4)

Thus, the left side is a perfect square. Then the following
method may be applied for factoring n:

(1) Compute
√

n within a precision of b(log n + 2)/2c bits.
(2) Check for x = b

√
nc+ 1, b

√
nc+ 2, . . . whether or not

x2 − n is a perfect square.
If it is, output p = x +

√
x2 − n and q = x −

√
x2 − n.
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The RSA Public Key Cryptosystem VI

The correctness of the above algorithm can be shown as
follows: First, assume that

√
n has been computed within a

precision of b(log n + 2)/2c bits. Then we have b
√

nc.
(Exercise). Next, observe that

p + q

2
>
√

pq =
√

n (5)

by applying the well-known inequality between arithmetic and
geometric mean. Consequently, b

√
nc < (p + q)/2 (* note that

(p + q)/2 is always an integer *). Thus, the algorithm must
terminate by finding a perfect square and the first x found must
fulfill x2 6 (p+q)2

4 by (4) and (5). Thus, x 6 p+q
2 .
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The RSA Public Key Cryptosystem VII

Case 1. x =
p + q

2
.

Let z2 = x2 − n. By (4) we directly obtain z = p−q
2 . Hence,

x + z = p and x − z = q.

Case 2. x <
p + q

2
.

Since z2 = x2 − n we obtain n = x2 − z2 = (x + z)(x − z). Thus,
p = x + z and q = x − z, and therefore, (p + q)/2 = x, a
contradiction.
This proves the correctness.

Finally, we show that the algorithm above is efficient.
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The RSA Public Key Cryptosystem VIII

The computation of
√

n up to the desired precision can be
easily performed using the Newton method, i.e.,

x`+1 := x` −
x2

` − n

2x`
for ` = 0, . . . , b(log n + 2)/2c

with x0 = n.

Taking into account that√
n > q = p − (p − q) ≈ p − (log p)c we see by (4) that

p + q

2
= p −

p − q

2
≈ p −

(log p)c

2
>
√

n. (6)

Hence, (p + q)/2 is only “a bit” greater than
√

n. Consequently,
the algorithm has to try at most (log p)c/2 many candidates
until its search terminates. But this is a polynomial in the
length of the input, and hence we are done.
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The Diffie–Hellman Public Key Cryptosystem I

Finally, we take a look at the Diffie–Hellman Public Key
Cryptosystem. It is based on discrete logarithms.
Problem: Discrete Logarithms
Input: Prime number p ∈N, b ∈ Z∗p, and a generator g for Z∗p.
Problem: Compute the index x such that x = dloggb.

So far, there is no known algorithm efficiently computing
discrete logarithms for any standard model of sequential or
parallel computation. On the other hand, a quantum computer
would be able to compute discrete logarithms in polynomial
time.
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The Diffie–Hellman Public Key Cryptosystem II

The Diffie–Hellman Public Key Cryptosystem requires a
system designer. The system designer chooses a huge prime q

(preferably more than 4000 bits) and a generator g for Z∗q.
The prime q and the generator g are global information, and
thus known to everybody participating in this public key
cryptosystem.

Next, we describe how the public and the secret key,
respectively, are chosen by any participant. Subsequently, we
provide the protocol used.
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The Diffie–Hellman Public Key Cryptosystem III

Let A be any participant.
A chooses randomly a number xA ∈ {2, . . . , q − 1} and
computes yA = gxA mod q. That is, xA = dloggyA.
Participant A publishes yA as her public key and keeps xA

secret.

Now, let A and B be any two participants who wish to
communicate. Assume, B likes to send a message to A. Then
the following key is used:
B computes the key KAB = y

xB
A mod q.

Assume, A likes to send a message to B. Then, A computes
KBA = y

xA
B mod q.
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The Diffie–Hellman Public Key Cryptosystem IV

The following theorem shows the usefulness of these keys:

Theorem 3

KAB = KBA

Proof.

KAB = y
xB
A ≡ (gxA)xB ≡ gxAxB

≡ (gxB)xA ≡ y
xA
B ≡ KBA mod q .
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Remarks

Note, however, that A and B compute KBA and KAB,
respectively, using different information. That is, A computes
KBA using her own secret key xA and the public key yB

published by B while Bob calculates KBA from his secret key xB

and Alice’s public key yA.

On the other hand, any cryptanalyst does neither possess xA

nor xB, hence she must compute KBA solely from yA and yB.

Since KAB = y
dloggyB

A mod q this is at most as hard as
computing discrete logarithms. Moreover, so far no easier
method is known for computing KBA from yA and yB.
Therefore, it is widely believed that computing KBA from yA

and yB is hard.
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The Diffie–Hellman Public Key Cryptosystem V

Next, we describe how the parties A and B can communicate.
Taking Theorem 3 into account, two possibilities are
imaginable. First, the system designer additionally provides
any sufficiently advanced classical two-way cryptosystem, for
example the AES. Then, any pair of users wishing to secretly
communicate may use the key KBA. Thus, no key exchange is
required in advance.

Note that public key cryptosystems are relatively slow
compared to classical cryptosystems (at least to our present
stage of technology and theoretical knowledge). Thus, it is
sometimes more realistic to use them in the limited role in
conjunction with a classical cryptosystem in which the actual
messages are transmitted as described above.
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The Diffie–Hellman Public Key Cryptosystem VI

Second, the communication is performed by using directly the
Diffie–Hellman system. The underlying idea is best explained
using a bag having two locks.

Each partner possesses exclusively one key for one of the two
locks. Initially, both locks are unlocked. Now, A puts the
message w into the bag and locks her lock with her key. The bag
is taken by a messenger who delivers the bag to B. Obviously, B

is not able to unlock the bag right now, since he possesses only
the key for the other lock. Therefore, B locks his lock using his
key, and returns the bag to the messenger who is returning it to
A. Now, A may unlock her lock, but the bag remains anyway
locked. Finally, the messenger delivers the bag again to B. Now,
B may unlock the bag using his key, and thus, he finally has
access to the secret message w.
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The Diffie–Hellman Public Key Cryptosystem VII

The protocol described above has the following advantage: The
public messenger always delivered a locked bag. On the other
hand, A and B could exchange a secret message without
exchanging any key.

The impact of this method can be hardly overestimated.
Looking back into the history of cryptography, we see that the
cryptography community unanimously agreed, for thousands
of years, that the only way for two parties to establish secure
communications was to first exchange a secret key. This was so
much common wisdom that nobody questioned it. If the
recipient did not have a secret key giving her the information
needed to decrypt the message efficiently, how could she be in
a better position than an eavesdropper?
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The Diffie–Hellman Public Key Cryptosystem VIII

Now, we outline the formal realization of the idea described
above to use a bag with two locks. For that purpose, a small
modification of the choices for xA and xB, respectively, has to
be made. Again, A and B randomly choose a number xA

and xB between 2 and q − 1.

Additionally, they must ensure
that gcd(xA, q − 1) = 1 and gcd(xB, q − 1) = 1, respectively.
This can be easily done by using the Euclidean algorithm, i.e., if
the randomly chosen number does not fulfill this requirement a
new number is randomly chosen until one is found that is
relatively prime to q − 1. Moreover, as shown previously the
Euclidean algorithm can be also used for computing
x−1

A mod (q − 1) and x−1
B mod (q − 1), respectively.
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The Diffie–Hellman Public Key Cryptosystem IX

Suppose, A wishes to send B a message, and let w be A’s
plaintext.

(i) A sends wxA mod q to B,
(ii) B returns wxAxB mod q to A,

(iii) A computes ŵ ≡ (wxAxB)x−1
A mod q and sends the result ŵ

to B,
(iv) B deciphers ŵ by calculating ŵx−1

B mod q.
The correctness of the above algorithm is an immediate
consequence of the Theorem of Euler.
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Thank you!
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Complexity and Cryptography c©Thomas Zeugmann



Intro General Scheme M–H PKCS The RSA PKCS The D-H PKCS End

Adi Shamir, Ron Rivest, Leonard Adleman

Complexity and Cryptography c©Thomas Zeugmann



Intro General Scheme M–H PKCS The RSA PKCS The D-H PKCS End

Whitfield Diffie Martin Hellman

Complexity and Cryptography c©Thomas Zeugmann


	Intro
	

	General Scheme
	

	M–H PKCS
	

	The RSA PKCS
	

	The D-H PKCS
	

	End
	


