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These notes deal with the first deterministic, polynomial time algorithm for testing
primality which has been found by Agrawal, Kayal and Saxena [1].

We start by recalling some basic facts from group theory. We consider here finite
multiplicative groups G and denote the neutral element by 1. We write |G| to denote the
cardinality of G.

Fact 1.

(1.1) For every element a ∈ G we have: The order d of a divides |G|.

(1.2) If G is a cyclic group then every subgroup of U of G is also cyclic.

(1.3) If G is a cyclic group and g is any generator for it then we have: gi = gj if and only
if |G| divides i− j.

We also need the following lemmata.

Lemma 1. Let p be a prime and let a ∈ ZZ∗p, and let d be the order of a. Then we have

(1) d divides p− 1.

(2) If q is a prime such that q|(p−1) but q2 does not divide p−1, then, for s = (p−1)/q
we have that

q|d if and only if as 6≡ 1 mod p .

Proof. Of course, (1) is a direct consequence of Fact 1 above. But we also provide a
direct proof here. Since d is the order of a, we know that ad ≡ 1 mod p. Now, suppose
p− 1 = kd + `, where 0 < ` < d. Then, by Fermat’s Little Theorem and construction, we
get

1 ≡ ap−1 ≡ akd+` ≡
(
ad
)k

a` ≡ a` 6≡ 1 mod p ,

a contradiction. Thus, we must have ` = 0, and hence d|(p− 1). This proves (1).

For showing (2), we first note that p−1 = qs and that q does not divide s. Next, assume
d|s. Then we can write s = ed, and thus as ≡ 1 mod p. Conversely, if as ≡ 1 mod p, then
we must have s ≥ d. A similar argument as in the proof of Assertion (1) directly yields
d|s. Summarizing, we have

as ≡ 1 mod p if and only if d|s .

Finally, if q would divide d, then we could conclude q|s, too, since d|s. But this is
impossible, since we know that q does not divide s. Hence, we arrive at q does not divide
d if and only if d|s if and only if as ≡ 1 mod p. This proves Assertion (2), and we are
done.
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Lemma 2. Let n ∈ N, n ≥ 2, and a ∈ N+ be such that gcd(n, a) = 1. Then we have:

n is prime if and only if (X + a)n ≡ (Xn + a) mod n .

Proof. By the Binomial theorem we have

(X + a)n =
n∑

i=0

(
n

i

)
aiXn−i . (1)

If n is prime then for all 1 ≤ i ≤ n− 1 we get that(
n

i

)
=

n(n− 1) · · · (n− i + 1)

i!

has a numerator that is divisible by n but its denominator is not. Thus, n|
(

n
i

)
for all

1 ≤ i ≤ n− 1. Hence, we have

(X + a)n ≡ Xn + an ≡ Xn + a mod n ,

where an ≡ a mod n is due to Fermat’s Little Theorem. This proves the necessity.

For the sufficiency, suppose that n is not prime. Let p be any prime dividing n and let
s ≥ 1 be such that ps|n but ps+1 6 | n. Now, we look at the coefficient with index p in (1),
i.e., at (

n

p

)
· ap =

n(n− 1) · · · (n− p− 1)

p!
· ap .

The numerator is divisible by ps but not divisible by ps+1 and the denominator is divisible
by p. Since gcd(n, a) = 1 we also know that p does not divide a and thus p 6 | ap, too.
Consequently,

n(n− 1) · · · (n− p− 1)

p!
· ap

is not divisible by ps and thus not by n. So, the coefficient of Xn−p is not congruent 0
modulo p. Therefore,

(X + a)n 6≡ (Xn + a) mod p ,

and the lemma is shown.

The Algorithm

Lemma 2 directly yields a primality test. Let n be any odd number. Then one chooses
any a < n with gcd(n, a) = 1. Clearly, if we have chosen an a < n such that gcd(n, a) 6= 1,
then we already know that n is not prime. Next, we have to check whether or not all
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coefficients of (X + a)n taken modulo n do vanish except the coefficients of Xn and of an.
If this is the case, then n is prime; otherwise it is not.

However, this means that we have to check n + 1 many terms and thus the running
time is not polynomial in log n. It is even worse than checking all odd possible factors
less than

√
n. So, we need at least one more idea. This idea has been found by Agrawal,

Kayal and Saxena. Here is there algorithm.

Algorithm AKS

Input: Odd integer n > 1

1. if ( n is of the form ab, b > 1 ) output COMPOSITE;

2. r := 2;

3. while ( r < n ) {

4. if ( gcd(n, r) 6= 1 ) output COMPOSITE;

5. if ( r is prime ) then

6. let q be the largest prime factor of r − 1;

7. if ( q ≥ 4
√

r log n )

8. and ( n
r−1

q 6≡ 1 mod r ) then

9. break;

10. r := r + 1;

11. }

12. for a = 1 to b2
√

r log nc do

13. if ( (X + a)n 6≡ (Xn + a) mod (Xr − 1, n) ) then

14. output COMPOSITE;

15. output PRIME;

Looking at the algorithm we see that instead of testing the equivalence

(X + a)n ≡ (Xn + a) mod n

directly, they figured out that it suffices to check

(X + a)n mod (n, Xr − 1) and (Xn + a) mod (n, Xr − 1) ,
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where Xr − 1 is a suitably chosen polynomial. Suitably chosen means that the degree r
can be kept small enough. So the coefficients are still calculated modulo n but the
polynomials Xs are taken modulo (Xr − 1). For example, Xr ≡ 1 mod (Xr − 1) and
thus Xs ≡ Xs mod r mod (Xr − 1).

If n is prime, then the check is clearly satisfied. For the opposite direction, it turned
out that one has to perform the check for several values of a. If all these tests are fulfilled
then either n is a prime or a prime power. But the case that n is a power of some number
can be handled easily.

It remains to show the correctness of the Algorithm AKS and to analyze its running
time. We start with the running time.

1.1. Analyzing the Running Time

In [5] we have already presented the algorithm EXP. This algorithm is easily modi-
fied to compute (X + a)n mod (n, Xr − 1) within O(log n) multiplications of polynomials
having degree at most r and coefficients from ZZn.

We continue by going through the algorithm. In line 1, one has to check whether
or not n = ab. Obviously, the possible b’s can be bounded by 2 ≤ b log n. For each
such b the following computation is performed. If an a < n is given, one can check
by fast exponentiation if ab < n or ab = n or ab > n. Therefore, we can use binary
search in {1, . . . , n} to look for an a such that ab = n. Such a binary search needs
O(log n) exponentiations and thus O ((log n)2) arithmetic operations. Thus, the overall
time needed to execute line 1 is O ((log n)3).

If n is given, a prime r < n is said to be n-good if r does not divide n and if the
biggest prime divisor q of r − 1 satisfies

(i) q ≥ 4
√

r log n, and

(ii) n
r−1

q 6≡ 1 mod r.

Note that the fulfillment of Condition (ii) means that q is a divisor of the order d of n
in ZZ∗r (cf. Lemma 1). This means in particular that q ≤ d. Together with (i) this yields
a lower bound for d.

Next, the loop in lines 3 through 11 checks for r = 2, 3, . . . whether or not gcd(n, r) 6= 1
(in this case n is not prime) and then if r is n-good. How many times this loop is executed
does depend on

%(n) =df min{r | gcd(n, r) 6= 1 or r is n-good or r = n} .

As we shall see below, %(n) = O ((log n)6). Here, we estimate the running time in depen-
dence of %(n). The gcd computation is done by using the procedure ECL from [5]. Thus,
for one r we need time O(log n) and thus the overall time is O(%(n) log n).
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For checking primality of r in line 5 one maintains a prime table by the sieve of
Eratosthenes up to 2dlog re. This needs time O(%(n) log log(%(n))).

Using the same table, one can check in line 6 if the greatest prime factor q of r − 1
satisfies q ≥ 4

√
r log n. For doing this, we have to check all prime factors q′ of r− 1 with

q′ <
√

r. This clearly requires one division per possible prime factor. Thus the overall
time needed here is O((%(n))3/2).

In line 8, we apply EXP. Thus the time needed here is O(%(n) log n). Hence, the overall
time needed for executing the loop in lines 3 through 11 is O((%(n))3/2 + %(n) log n).

For the previously computed r, in lines 12, 13, 14 for each a, 1 ≤ a ≤ 2
√

r log n,
one computes (X + a)n mod (Xr − 1, n) and compares it with Xn + a ≡ Xn mod r + r.
Since a multiplication of polynomials with coefficients from ZZn of degree less than r
takes (in näıve implementation) time O(r2), the time for one step of fast exponentiation
is O((%(n))2 log n). Thus, the time needed to execute lines 12, 13, 14 for all a is

O
(√

%(n) log n · (%(n))2 log n
)

= O
(
(%(n))5/2(log n)2

)
.

Therefore, the running time of Algorithm AKS is O((log n)k) for some constant k
provided we can show that %(n) = O ((log n)6).

For doing this, we need some more knowledge from number theory. First we define for
all real numbers x > 0,

π(x) =df |{p | p ≤ x, p is prime}| .

Then, the famous prime number theorem is telling us the following.

Theorem 1 (Prime Number Theorem)

lim
x→∞

π(x)

x/ ln x
= 1

The proof of the prime number theorem is beyond the scope of this course. Actually, for
our purposes we only need a weaker version of the Prime Number Theorem which is also
much easier to prove.

Theorem 2. For all x > 2 we have

x

6 log x
≤ π(x) ≤ 8x

log x
.

Among all prime numbers r ≤ x, in particular we are interested in those for which
r − 1 has a large prime factor. We write P (a) to denote the largest prime dividing a.
Furthermore, we define

π∗∗(x) =df |{r | r is prime, r ≤ x, P (r − 1) > x2/3}|



Analyzing the Running Time 6

Then, the following theorem holds.

Theorem 3 (Fouvry’s [3] Theorem) There are a constant c > 0 and a real x0 such
that for all x ≥ x0 we have π∗∗(x) ≥ c x

log x
.

So, for a constant fraction of all primes r ≤ x we have P (r − 1) > x2/3. Now, we are
ready to prove the following lemma.

Lemma 4. There exists an n0 such that for all n ≥ n0 there is a prime r satisfying

(1) r ≤ 4096 · (log n)6

(2) either r divides n or r is n-good.

Proof. We set y = 4096 · (log n)6 and consider the product

Π =

y1/3∏
j=1

(nj − 1) .

Since Π <
(
ny1/3

)y1/3

= ny2/3
and since every prime is greater than or equal to 2 we can

estimate the number N of factors in the prime factorization of Π as follows:

N < log
(
ny2/3

)
= y2/3 log n = 256 · (log n)5 .

Therefore, by Theorem 3 there exist a c > 0 and an n0 such that for all n ≥ n0 we
have

256 · (log n)5 < c · 4096 · (log n)6

log(4096 · (log n)6)

= c · 4096 · (log n)6

12 + 6 log log n

≤ π∗∗(4096 · (log n)6) .

Consequently, for all n ≥ n0 there is a prime r such that r < y and P (r − 1) ≥ y2/3

and r 6 | Π. This prime obviously fulfills Assertion (1).

Now, if r|n we are done. It remains to show that r is n-good provided it does not
divide n. By construction,

P (r − 1) ≥ y2/3 = y1/2 · y1/6 ≥ r1/2 · y1/6

=
√

r(4096 · (log n)6)1/6

= 4
√

r log n .

This shows (i) of the definition of n-goodness.
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Since r 6 | Π we directly get r 6 | (nj−1) for all 1 ≤ j ≤ y1/3. Thus, we have nj 6≡ 1 mod r
for all these j. Hence, it suffices to show that

r − 1

q
∈ {1, . . . , y1/3} .

This can be seen as follows.

r − 1

q
<

r

q
≤ y

y2/3
= y1/3 ,

and the lemma is proved.

Thus, we have shown that the Algorithm AKS is leaving its while-loop always
with an r = O ((log n)6). Putting it all together, we can summarize:

Theorem 5. The running time of Algorithm AKS is O ((log n)17).

1.2. Correctness

Next, we show the correctness Algorithm AKS. All material needed for the correct-
ness proof that we should already know is summarized in the appendix of this lecture.
So, please check this appendix.

The main part of original proof of Agrawal, Kayal and Saxena is summarized in the
following theorem. Here, we follow Bernstein [2].

Theorem 6. Assume the following conditions to be satisfied:

(α) n ≥ 2 is an odd natural number,

(β) r < n is a prime number such that r 6 | n,

(γ) q is a prime number such that q|(r − 1), q ≥ 4
√

r log n and

(δ) n
r−1

q 6≡ 1 mod n.

Furthermore, let L = b2
√

r log nc and assume that

(ε) gcd(a, n) = 1 for all a, 1 ≤ a ≤ L

(ζ) (X + a)n ≡ (Xn + a) mod (n, Xr − 1) for all a, 1 ≤ a ≤ L.

Then n = pi for a prime number p and an i ≥ 1.

Proof. The proof is done by a series of lemmata.

Lemma 7. n possesses a prime factor p such that q | ordr(p).
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Proof. By (δ) we have n
r−1

q 6≡ 1 mod n. This implies that n must have a prime factor p
satisfying

p
r−1

q 6≡ 1 mod r . (2)

For seeing this, suppose the converse, i.e., all prime factors p of n satisfy

p
r−1

q ≡ 1 mod r .

Then we can multiply all prime factors and obtain

n
r−1

q ≡ 1 mod r ,

a contradiction.

By (β) we know that r 6 | n and since r is prime we get gcd(n, r) = 1. Hence, d = ordr(p)
exists and must divide (r − 1) (cf. Lemma 1). Thus, we have kd = r − 1 for some k ∈ N.
Therefore, (r − 1)/q = (kd)/q ∈ N. Since q is prime this implies q|k or q|d. If q|k, then
p(r−1)/q ≡ 1 mod r, a contradiction to (2). Thus, we conclude q|d and the lemma is shown.

(Lemma 7)

In the following we shall work extensively with this prime factor p of n as well as with
ZZp and ZZp[X]. If p = n, then we are already done. Thus, from now on we assume p ≤ 1

2
n.

Next, we observe that

p > L . (3)

For seeing this, suppose the converse, i.e., p ≤ L. Since p is a prime factor of n, we
directly obtain gcd(n, p) = p, a contradiction to (ε).

Consequently, the primality of p together with (3) implies that gcd(a, p) = 1 for all
1 ≤ a ≤ L. That is, 1, 2, . . . , L ∈ ZZ∗p and all pairwise different. Moreover, we can conclude
that all polynomials

X + a for 1 ≤ a ≤ L

are pairwise different in ZZp[X].

Lemma 8. (X + a)n ≡ (Xn + a) mod (p, Xr − 1) for all a, 1 ≤ a ≤ L.

Proof. By (ζ) we know that

(X + a)n ≡ (Xn + a) mod (n, Xr − 1) for all a, 1 ≤ a ≤ L .

Therefore, there are polynomials f, g ∈ ZZ[X] such that

(X + a)n − (Xn + a) = (Xr − 1) · f(X) + n · g(X) .

Since p|n, we have ` =: n/p ∈ ZZ and thus

(X + a)n − (Xn + a) = (Xr − 1) · f(X) + p · ` · g(X) .

The latter equality directly yields (X + a)n ≡ (Xn + a) mod (p, Xr − 1) (Lemma 8)
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We can generalize Lemma 8 to exponents of the form ni, i ≥ 0.

Lemma 9. (X +a)ni ≡ (Xni
+a) mod (p, Xr − 1) for all a, 1 ≤ a ≤ L and all i ∈ N.

Proof. The proof is done inductively. For i = 0 the assertion is trivial and for i = 1
we have it already shown in Lemma 8. Thus, we assume the induction hypothesis for i
and perform the induction step to i + 1. Let a with 1 ≤ a ≤ L be arbitrarily fixed. By
Lemma 8 we have (X+a)n ≡ (Xn+a) mod (p, Xr − 1). This means there are polynomials
f, g ∈ ZZ[X] such that

(X + a)n − (Xn + a) = (Xr − 1) · f(X) + p · g(X) .

For X we substitute Xni
and obtain

(Xni

+ a)n −
(
(Xni

)n + a
)

=
(
(Xni

)r − 1
)
· f(Xni

) + p · g(Xni

) .

Recall that for any m ≥ 1 we have

(Xm − 1) = (X − 1)(Xm−1 + Xm−2 + · · ·+ X + 1) .

Substituting X by Xr thus yields

(Xrm − 1) = (Xr − 1)(Xr(m−1) + Xr(m−2) + · · ·+ Xr + 1) .

Thus, we see that (Xr − 1) divides (Xrni − 1) and therefore

(Xni

+ a)n ≡
(
(Xni

)n + a
)
≡ (Xni+1

+ a) mod (p, Xr − 1) (4)

Finally, the induction hypothesis is

(X + a)ni ≡ (Xni

+ a) mod (p, Xr − 1)

and thus we can raise both sides to the nth power yielding

(X + a)ni+1 ≡ (Xni

+ a)n mod (p, Xr − 1)

Now, using (4) and the transitivity of ≡ we arrive at

(X + a)ni+1 ≡ (Xni+1

+ a) mod (p, Xr − 1)

which completes the induction step. (Lemma 9)

We can generalize even further.

Lemma 10. (X + a)nipj ≡ (Xnipj
+ a) mod (p, Xr − 1) for all a, 1 ≤ a ≤ L and

all i, j ∈ N.

Proof. Let a number a with 1 ≤ a ≤ L be arbitrarily fixed. By Lemma 9 there is a
polynomial f ∈ ZZ[X] such that

(X + a)ni ≡ (Xni

+ a) + (Xr − 1)f(X) mod p .
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Next, we take the pjth power on both sides and apply Theorem 18, Assertion (b). Thus,
we obtain:

(X + a)nipj ≡
(
(Xni

+ a) + (Xr − 1)f(X)
)pj

≡ (Xnipj

+ a) + (Xpjr − 1)f(Xpj

) mod p

Using a similar argumentation as in the proof of (4) we see that (Xr−1) divides (Xpjr−1)
and thus, the lemma follows. (Lemma 10)

Moreover, Theorem 19 is telling us, in particular, that there is an irreducible polynomial
h ∈ ZZp[X] with deg(h) = ordr(p) dividing Xr − 1. Thus, Lemma 10 directly implies

(X + a)nipj ≡ (Xnipj

+ a) mod (p, h(X)) . (5)

Furthermore, by Theorem 15, we know that the structure F =df ZZp[X]/h(X) is a finite
field (of order pdeg(h)). Thus, in F we can rewrite Equation (5) simply as

(X + a)nipj

= Xnipj

+ a . (6)

Next, we consider all pairs (i, j) with 0 ≤ i, j ≤ b
√

rc. Note that there are more than r
such pairs . Thus, by the pigeonhole principle there must be tow different pairs (i, j)
and (k, `) such that

nipj ≡ nkp` mod r .

We set t := nipj and u := nkp`. Without loss of generality we can assume that t ≤ u. By
(6) we have (X + a)t = X t + a and (X + a)u = Xu + a. Furthermore, t ≡ u mod r by
construction and thus

X t ≡ Xu mod (Xr − 1) .

Since h(X) divides Xr−1 we also have X t ≡ Xu mod (p, h(X)) and hence X t = Xu in F.
Consequently, we can conclude

(X + a)t = X t + a = Xu + a = (X + a)u in F .

But the latter equation means

(X + a)u−t = 1 in F . (7)

Now, we aim to show that t = u. Suppose we have already shown it. Then, we know that

nipj = nkp` and therefore pj−` = nk−i .

If i = k then also j = `, a contradiction to (i, j) 6= (k, `). Hence, n is a power of p and we
are done.
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Therefore, we finally show t = u. This proof is done indirectly. Suppose the converse,
i.e., t 6= t. So, we have t < u and thus u− t ≥ 1. Consider the multiplicative subgroup G
of F∗ generated by the polynomials (X + a), a = 1, . . . , L.

Claim 1. |G| < (1/2)n2
√

r − 1.

Equation (7) is true for polynomials (X + a) and u− t ≥ 1. Thus, the assumptions of
Lemma 20 are fulfilled and we conclude |G| ≤ u − t ≤ u − 1. Taking into account that
p ≤ n/2 and that k, ` ≤

√
r, we can estimate u as follows:

u = nkp` ≤ nk
(p

2

)`

≤
(

n2

2

)√
r

<
1

2
· n2

√
r .

Consequently, |G| ≤ u− 1 < (1/2)n2
√

r − 1 and Claim 1 is shown.

Claim 2. |G| ≥ (1/2)n2
√

r − 1.

It suffices to show that |G| ≥ 2L − 1, since then

2L = 2b2
√

r log nc ≥ 22
√

r log n−1 =
1

2
n2

√
r .

For any subset M ⊂ {1, . . . , L} we define the polynomial pM(X) =
∏

a∈M(X + a). By
definition, pM is a polynomial from G and deg(pM) < L. There are 2L − 1 possibilities
to choose M and thus there are 2L − 1 many polynomials pM . These polynomials are all
different over ZZp[X], since they have different roots (cf. (3). Since deg(h) = ordr(p) ≥ L,
these polynomials are also all different over ZZp[X]/h(X). Consequently, |G| ≥ 2L − 1.
This proves Claim 2.

Together, Claim 1 and 2 yield a contradiction, and we can thus conclude u = t. As
seen above u = t implies n = pi for some i ≥ 1. Thus, the theorem follows.

Theorem 11. Algorithm AKS returns PRIME if and only if n is prime.

Proof. Sufficiency. Let n be a prime number. Then n is not of the form ab, b > 1,
and hence the condition in line 1 will never happen. The tests in line 4 will always
return gcd(n, r) = 1. Furthermore, it does not matter why the while-loop is finished, by
Lemma 2 we know that the test in line 13 cannot be fulfilled for all a with n 6 | a. If n|a,
then we have a ≡ 0 mod n and the test is also not fulfilled. Hence, the algorithm reaches
line 15 and outputs PRIME.

Necessity. It suffices to show that n is indeed prime if the Algorithm AKS returns in
line 15 PRIME. We distinguish the following cases.

Case 1. The while-loop in lines 3 through 11 is executed to its end.

Then, after leaving the while-loop the variable r has value n. By the test in line 4 we
have that for all r < n the condition gcd(r, n) = 1 has been verified. Thus, for all r < n
we get r 6 | n, and thus n is prime.

Case 2. The while-loop in lines 3 through 11 is left via the break in line 9.

Then the variable r has a value r < n. Now, we observe
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(β) r < n and r is prime (checked in line 5),

(γ) the largest prime factor q of r − 1 satisfies q ≥ 4
√

r log n (checked in line 7),

(δ) n
r−1

q 6≡ 1 mod r (checked in line 8).

Furthermore, for all a, 1 ≤ a ≤ L = b2
√

r log nc we have:

(ε) gcd(a, n) = 1. This is true, since L < 4
√

r log n ≤ q < r (checked in line 7). Hence,
in all previous executions of the while-loop in line 4 it has been checked whether
or not gcd(n, a) 6= 1. If this test would have been fulfilled ones, then the algorithm
would have returned COMPOSITE.

(ζ) (X + a)n − (Xn + a) ≡ 0 mod (Xr − 1, n) (checked in the loop of lines 12 through
14).

Therefore, n, r, and q satisfy the assumptions of Theorem 6. Consequently, we get that
n = pi for a prime number p and an i ∈ N+. Finally, the test in line 1 ensures that i = 1,
and thus n is prime.
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1.3. Appendix

Within this appendix we summarize the basic material needed for a proper under-
standing of the Agrawal, Kayal, Saxena algorithm.

Let R be a commutative ring with 1. Then we define

R[x] = the set of all polynomials with coefficients from R .

That is, if f ∈ R[x] then we can write f(x) =
m∑

i=0

aix
i, where ai ∈ R for i = 0, . . . ,m.

The degree of polynomial is defined to be the largest i such that the coefficient ai of
xi satisfies ai 6= 0, where 0 denotes the neutral element with respect to addition in the
ring R. We write deg(f) to denote the degree of the polynomial f . The degree of the
zero polynomial is defined to be −∞.

Next, we define addition and multiplication of polynomials. Let f(x) =
m∑

i=0

aix
i and

g(x) =
n∑

i=0

bix
i. Then we define

(f + g)(x) =
m∑

i=0

aix
i +

n∑
i=0

bix
i =df

max{m,n}∑
i=0

(ai + bi)x
i ,

where ai = 0 for all i > m and bi = 0 for all i > n. Furthermore, we set

(f · g)(x) =

(
m∑

i=0

aix
i

)(
n∑

i=0

bix
i

)
=df

m+n∑
k=0

(
k∑

j=0

ajbk−j

)
xk .

Note that R[x] is also ring with 1. If a ring R has no divisors of 0, then we call R an
integral domain. If R is an integral domain, then R[x] is an integral domain, too. The
latter assertion allows the following corollary.

Corollary 12. If R is an integral domain, then deg(f · g) = deg(f) + deg(g).

Moreover, the following holds.

Theorem 13. Let R be an integral domain with 1, and let f, h ∈ R[x] such that h 6= 0.
Then there exists uniquely determined polynomials q, r ∈ R[x] such that

(i) f(x) = q(x)h(x) + r(x),

(ii) deg(r) < deg(h).

Polynomials are very useful for constructing finite fields. As we already know, ZZp is
field provided p is prime. To see how finite fields of order pα, α ≥ 2, are constructed, we
need the following definition.
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Definition 1. Let R be an integral domain with 1. A polynomial h ∈ R[x] with
h(x) 6= 0 is said to be irreducible if h(x) = f(x) · g(x) implies deg(f) = 0 or deg(g) = 0
for all f, g ∈ ZZp[x].

That is, an irreducible polynomial allows only a trivial decomposition into factors. We
can also characterize irreducible polynomials in the following way.

Definition 2. Let R be an integral domain with 1, and let f ∈ R[x]. An element a ∈ R
is said to be a root of f if f(a) = 0.

Then we have the following theorem.

Theorem 14. Let R be an integral domain with 1, let f ∈ R[x] and let a be a root
of f . Then f is divisible by (x− a).

Proof. By Theorem 13 there exists a polynomial q ∈ R[x] and an r ∈ R such that
f(x) = q(x)(x− a) + r. But f(a) = 0 = (a− a) + r. Therefore, we have r = 0.

An immediate consequence of Theorem 14 is the following. If a1, . . . , ak are pairwise
different roots of f then f is divisible by (x− a1) · · · (x− ak).

Thus, an irreducible polynomial does not have any root in the underlying integral
domain with 1.

Next, we turn our attention to ZZp[x], where p is prime. Then one can easily generalize
the definition of congruence to polynomials. That is, we write f ≡ g mod h if h divides
f − g, where f, g, h ∈ ZZp[x]. Then we denote by ZZp[x]/h(x) the set of all polynomials
with coefficients from ZZp that are reduced modulo h(x). We should prove the following
theorem as an exercise.

Theorem 15. Let p be a prime and let h ∈ ZZp[x] be an irreducible polynomial of
degree d ≥ 1. Then ZZp[x]/h(x) is a finite field of order pd.

We often denote any finite field of order n by Fn. Next, we exemplify the construction
of a finite field having pd many elements, where p is prime and d ≥ 2. As a matter of
fact, all finite fields are either isomorphic to some ZZp or to some ZZp[x]/h(x). Thus, our
constructions also provides a very efficient way to perform calculations in any finite field.

Example 1. We take p = 3 and d = 2. That is, we want to construct a finite
field having 9 elements and provide the multiplication table for it. Thus, we need a
polynomial h of degree 2 which is irreducible over ZZ3. For that purpose we can take
the polynomial h(x) = x2 − x + 2 which is irreducible over ZZ3, since f(0) ≡ 2 mod 3,
f(1) ≡ 2 mod 3, and f(2) ≡ 1 mod 3. Now, the elements of F9 can be expressed as aϑ+b,
where a, b ∈ ZZ3, using an element ϑ satisfying ϑ2 − ϑ + 2 = 0. That is, we obtain the 9
elements: 0, 1, 2, ϑ, 2ϑ, ϑ + 1, ϑ + 2, 2ϑ + 1, and 2ϑ + 2. The computation with these
elements is performed in the same way as computations with polynomials mod (ϑ2−ϑ+2)
thereby reducing the coefficients modulo 3. Thus, we obtain the following multiplication
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table:

· 1 2 ϑ 2ϑ ϑ + 1 ϑ + 2 2ϑ + 1 2ϑ + 2

1 1 2 ϑ 2ϑ ϑ + 1 ϑ + 2 2ϑ + 1 2ϑ + 2
2 2 1 2ϑ ϑ 2ϑ + 2 2ϑ + 1 ϑ + 2 ϑ + 1
ϑ ϑ 2ϑ ϑ + 1 2ϑ + 2 2ϑ + 1 1 2 ϑ + 2
2ϑ 2ϑ ϑ 2ϑ + 2 ϑ + 1 ϑ + 2 2 1 2ϑ + 1

ϑ + 1 ϑ + 1 2ϑ + 2 2ϑ + 1 ϑ + 2 2 ϑ 2ϑ 1
ϑ + 2 ϑ + 2 2ϑ + 1 1 2 ϑ 2ϑ + 2 ϑ + 1 2ϑ
2ϑ + 1 2ϑ + 1 ϑ + 2 2 1 2ϑ ϑ + 1 2ϑ + 2 ϑ
2ϑ + 2 2ϑ + 2 ϑ + 1 ϑ + 2 2ϑ + 1 1 2ϑ ϑ 2

As an example, we provide the computation of the entry in row 2ϑ+2 and column 2ϑ+1.
We multiply the polynomials 2ϑ+2 and 2ϑ+1, reduce the result modulo ϑ2−ϑ+2, and
the coefficients modulo 3. Thus, we obtain:

(2ϑ + 2)(2ϑ + 1) = 4ϑ2 + 2ϑ + 2 + 4ϑ + 2

= ϑ2 + 2

and
(ϑ2 + 2): (ϑ2 − ϑ + 2) = 1
ϑ2 − ϑ + 2

ϑ

Thus, the remainder is ϑ as already displayed in the multiplication table.

Corollary 16. If F is a finite field, then its multiplicative group F∗ is cyclic.

Again, the proof is left as an exercise.

Moreover, the following property of polynomials from ZZp[x] is needed for proving
Algorithm AKS to be correct. In order to prove this property, we also have to recall
the multinomial theorem.

Theorem 17 (Multinomial Theorem)

(x1 + x2 + · · ·+ xk)
n =

∑
n1+···+nk=n

ni≥0

(
n

n1, n2, . . . , nk

)
xn1

1 xn2
2 · · ·xnk

k .

Proof. We present here an informal proof only. First observe that each of the summands
on the right hand side is a result of different ways of choosing xi’s from the product on
the left hand side. This is obvious, since there are n factors in the product and we choose
one xi from each factor. But still, before we can go any further, we have to clarify what
the multinomial coefficient (

n

n1, n2, . . . , nk

)
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is supposed to denote. For finding the intuitive meaning, recall that the binomial coef-
ficient

(
n
n1

)
expresses the number of different ways to split n in two parts of size n1 and

n− n1, i.e., setting n2 = n− n1, then we have n1 + n2 = n. So, it looks to be a good idea
to set (

n

n1, n2

)
=

(
n

n1

)
=

n!

n1!n2!

Now, the generalization is fairly obvious. The multinomial coefficient(
n

n1, n2, . . . , nk

)
is the number of ways of splitting n into k parts of sizes n1, n2, . . . , nk, i.e., n1 +n2 + · · ·+
nk = n. Next, we try to find a simple formula for it. We start with n objects and choose
n1 of them for the first part. This gives us

(
n
n1

)
choices. For the second part we choose n2

from the remaining n−n1 objects. For this we have
(

n−n1

n2

)
choices. For the third part we

choose n3 from the remaining n−n1−n2 objects, etc. Hence the total number of choices
we have is(

n

n1, n2, . . . , nk

)
=

(
n

n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(

n− n1 − n2 − · · · − nk −1

nk

)
=

n!

n1!(n− n1)!
· (n− n1)!

n2!(n− n1 − n2)!
· (n− n1 − n2)!

n3!(n− n1 − n2 − n3)!
· · ·

· · · (n− n1 − n2 − · · · − nk−1)!

nk!

=
n!

n1!n2! · · ·nk!

Thus, we have collected evidence for Theorem 17 to be true. The formal proof is left as
an exercise.

Theorem 18. Let p be a prime and let f ∈ ZZp[x]. Then we have

(a) f(x)p ≡ f(xp) mod p, and

(b) f(x)pj ≡ f(xpj
) mod p for all j ≥ 0.

Proof. Let f ∈ ZZp[x]; then we can write f(x) =
∑k

i=0 aix
i, where all ai ∈ ZZp. Then we

can express f(x)p mod p as follows:

f(x)p mod p =

pk∑
i=0

bix
i ,

where, by the multinomial theorem,

bi =
∑

i0+···+ik=p
i1+2i2+···+kik=i

p!

i0! · · · ik!
· ai0

0 · · · a
ik
k mod p
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Clearly, p!/(i0! · · · ik!) is divisible by p provided none of the is is equal to p. So, these
summands are all congruent 0 modp. If some is = p, then, by i0 + · · · + ik = p we can
conclude ij = 0 for all j 6= s. This and i1 + 2i2 + · · · + kik = i additionally implies
sis = i, i.e., sp = i and thus s = i/p. Hence, in this case we have p!/(i0! · · · ik!) = 1 and
bia

p
s ≡ as mod p by Fermat’s Little Theorem. Putting it all together yields

f(x)p ≡
k∑

s=0

bspx
sp

≡
k∑

s=0

as(x
p)s

≡ f(xp) mod p .

This proves (a).

Assertion (b) follows from (a) by a simple induction.

For the correctness prove of Algorithm AKS we further need the decomposition of
a very special polynomial, i.e., of the polynomial Xr − 1.

In the following, we use ordn(z) to denote the order of z in ZZ∗n. Next, we provide the
wanted decomposition of Xr − 1.

Theorem 19. Let p and r be primes such that p 6= r. Then, in ZZp[x] we have

xr − 1

x− 1
= xr−1 + xr−2 + · · ·+ x + 1 = h1(x) · · ·hs(x) ,

where for all i = 1, . . . , s, all polynomials hi ∈ ZZp[x] are irreducible and deg(hi) =
ordr(p).

Proof. Note that s = (r − 1)/ordr(p). We set q(x) = xr−1 + xr−2 + · · · + x + 1. Let
h ∈ ZZp[x] be an irreducible factor of q with k = deg h ≥ 1. We show that k = d = ordr(p).

First, we show that deg(h) ≤ ordr(p).

Note that F = ZZp[x]/h(x) is a finite field of order pk (cf. Theorem 15). By Corollary 16
we know F∗ is cyclic. Thus, there is a generator g ∈ F∗. By Theorem 18 we have in ZZp[x]
and thus in F , too,

g(x)pd

= g(xpd

) . (8)

Furthermore, xr− 1 is a multiple of h(x) and thus we have xr = 1 in F. Since d = ordr(p)
we also have pd ≡ 1 mod r. Thus, pd = mr + 1 for some m ∈ ZZ. Consequently, xpd

=
xmr+1 = x in F. By (8) we therefore conclude

g(x)pd

= g(xpd

) = g(x) and thus g(x)pd−1 = 1 in F .

So, pd − 1 must be a multiple of pk − 1 (the order of g in F). Hence, k ≤ d.

Next, we show that ordr(p) ≤ deg(h). In F we have xr = 1. Since r is prime, the order
of x in F∗ is thus r. Hence, r must divide |F∗| = pk − 1. Consequently, pk ≡ 1 mod r and
thus k is a multiple of d.



Appendix 18

Finally, we also need the following properties of groups.

Lemma 20. Let G be a cyclic group and let g1, . . . , gm be elements from G, and let 1
be the neutral element of G. Let G′ be the subgroup generated by g1, . . . , gm. Then we
have:

If there is a t ≥ 1 such that gt
i = 1 for all i = 1, . . . ,m then |G′| ≤ t.

Proof. By Fact 1 at the beginning of these notes, we already know that every subgroup
of a cyclic group is cyclic, too. Thus, G′ is cyclic and has a generator g. Since g ∈ G′

there are indices i1, . . . , im such that

g = gi1
1 · · · gim

m .

Furthermore, we can calculate

gt =
(
gi1
1 · · · gim

m

)t
= gi1·t

1 · · · gim·t
m = 1i1 · · · 1im = 1 .

Thus t is a multiple of |G′| and since t ≥ 1 we also have t ≥ |G′|. Hence, the lemma
follows.


