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Introduction I

We deal with the inductive inference of recursively enumerable
languages from positive data (also called text). If L is a language
then every sequence of strings T = (si)i∈N and a special
symbol # such that L = {si | i ∈N} \ {#} is called a text for L.
Evidence about the target language is then given by growing
initial segments of a text. On these segments the learner
outputs a number (grammar), which is interpreted w.r.t. a
hypothesis space.

We always assume a Gödel numberingW0,W1,W2, . . . of all
r.e. languages as hypothesis space. The sequence of hypotheses
has then to converge to a correct hypothesis for the target
language.
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Introduction II

We distinguish explanatory learning (syntactical convergence),
behaviourally correct learning (semantical convergence), and finite
learning (just one hypothesis, also called 1-shot learning).

Variations
Standardisation: evidence is provided by an index i
(programme) for the target language L from the target class L.
Then there must be an index k such that L = Wk and the
standardiser has to map any iwith L = Wi to k.

This can be done in the limit and/or with a restricted number of
shots. If the standardiser is 1-shot, then we call it finite
standardisation.

Verifiability: evidence is provided by an index e and a text T for
the language L. The verifier has to decide whether or not the
index input is correct for L. So, the verifier outputs yes, no, or ?.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Introduction II

We distinguish explanatory learning (syntactical convergence),
behaviourally correct learning (semantical convergence), and finite
learning (just one hypothesis, also called 1-shot learning).

Variations
Standardisation: evidence is provided by an index i
(programme) for the target language L from the target class L.
Then there must be an index k such that L = Wk and the
standardiser has to map any iwith L = Wi to k.

This can be done in the limit and/or with a restricted number of
shots. If the standardiser is 1-shot, then we call it finite
standardisation.

Verifiability: evidence is provided by an index e and a text T for
the language L. The verifier has to decide whether or not the
index input is correct for L. So, the verifier outputs yes, no, or ?.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Introduction II

We distinguish explanatory learning (syntactical convergence),
behaviourally correct learning (semantical convergence), and finite
learning (just one hypothesis, also called 1-shot learning).

Variations
Standardisation: evidence is provided by an index i
(programme) for the target language L from the target class L.
Then there must be an index k such that L = Wk and the
standardiser has to map any iwith L = Wi to k.

This can be done in the limit and/or with a restricted number of
shots. If the standardiser is 1-shot, then we call it finite
standardisation.

Verifiability: evidence is provided by an index e and a text T for
the language L. The verifier has to decide whether or not the
index input is correct for L. So, the verifier outputs yes, no, or ?.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Introduction II

We distinguish explanatory learning (syntactical convergence),
behaviourally correct learning (semantical convergence), and finite
learning (just one hypothesis, also called 1-shot learning).

Variations
Standardisation: evidence is provided by an index i
(programme) for the target language L from the target class L.
Then there must be an index k such that L = Wk and the
standardiser has to map any iwith L = Wi to k.

This can be done in the limit and/or with a restricted number of
shots. If the standardiser is 1-shot, then we call it finite
standardisation.

Verifiability: evidence is provided by an index e and a text T for
the language L. The verifier has to decide whether or not the
index input is correct for L. So, the verifier outputs yes, no, or ?.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Introduction III

Comparability: The comparator receives two indices of languages
from the target class L as input and has to decide in the limit
whether or not these indices generate the same language. So, the
comparator also outputs yes, no, or ?.

For verifiers and comparators we mainly consider a bounded
number of shots, e.g., 1-shot, 2-shot, or 3-shot. Note that the
special symbol ? does not count, e.g., ?, ?, yes is a 1-shot
sequence.
Also, in all models we ask for for one learner which can fulfil
the task for all languages in the target class L.

The main question studied is to what extent verifiability,
comparability, and standardisability are useful for the inductive
inference of classes of recursively enumerable languages.
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Introduction IV

For example, we are interested in learning whether or not a
verifiable class is also explanatorily learnable, and if it is,
whether or not the number of mind changes is preserved.

We distinguish between r.e. classes, one-one r.e. classes (of r.e.
languages), and indexed families (of recursive languages). A
class is said to be an indexed family if there is a recursive
function f such that for all i ∈N and all strings x ∈N,
f(i, x) = 1 if x ∈Wi and f(i, x) = 0, otherwise.

The paper provides an almost complete picture concerning
(1) comparison of learnability with 1-shot verifiability, 1-shot

comparability, and 1-shot standardisability;
(2) ∼ with 2-shot verifiability, 1-shot comparability, and 2-shot

standardisability;
(3) ∼ with 3 or more shot verifiability, comparability, and

standardisability.
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Results I

Let K =df {e | e ∈N, ϕe(e) is defined}, where ϕ0,ϕ1, . . . is any
fixed Gödel numbering of all partial recursive functions
mappingN toN. We call K the halting set.

Theorem 1

The class K consisting of K and all singleton languages {x} with
x < K is finitely learnable but not finitely verifiable.

Proof. A finite verification algorithm on an index e for K and a
text x, x, x, x, . . . would have to eventually output “no” iff x < K
and that would, combined with the enumeration procedure
of K, lead to a decision procedure of K.
Let ψ(x,y) = 0, if y = x; ψ(x,y) = ϕx(x) ·ϕy(y), otherwise.
Now, if x < K, then ψ(x,y) diverges for all y , x, and thus
domain(ψ(x, · )) = {x}. If x ∈ K, then for all y , x, ψ(x,y)
converges iff y ∈ K, and thus domain(ψ(x, · )) = {x} ∪ K = K.
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Results II

Now, the finite learner outputs the canonical index of domain
of ψ(x, · ) in the acceptable numberingW0,W1,W2, . . . on input
of any text T , if the first non-# symbol in the text T is x (that is,
for some i, T(i) = x, and T(i ′) = # for all i ′ < i). It is easy to
verify that the above learner finitely learns the class K.

Remark. The second part of the proof of Theorem 1 also shows
that K is an r.e. class.

Theorem 2

The uniformly r.e. class K is neither finitely comparable nor finitely
standardisable.

Proof. Suppose the converse, and let k ∈N be any fixed index
of K, i.e.,Wk = K. Then one can design an algorithm
deciding K.
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Results III

This algorithm uses the numbering ψ constructed in the second
part of the proof of Theorem 1. Since the numbering of the sets
W0,W1,W2, . . . is acceptable, there is a recursive function c ∈ R

such that ψx = ϕc(x) for all x ∈N. HenceWc(x) is equal to K
iff x ∈ K and equal to {x} iff x < K.

Consequently, for every x ∈N one runs the finite comparator
on input c(x) and k. Note that by construction,Wk,Wc(x) ∈ K

for all x ∈N, and thus the finite comparator must be defined
on all these inputs. Also, it must return “yes” iffWc(x) = K and
“no” otherwise; a contradiction to the undecidability of the
set K.
The second part is shown mutatis mutandis. First, we run the
finite standardiser on input k to find out to which index k is
finitely standardised, say to s.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Results III

This algorithm uses the numbering ψ constructed in the second
part of the proof of Theorem 1. Since the numbering of the sets
W0,W1,W2, . . . is acceptable, there is a recursive function c ∈ R

such that ψx = ϕc(x) for all x ∈N. HenceWc(x) is equal to K
iff x ∈ K and equal to {x} iff x < K.
Consequently, for every x ∈N one runs the finite comparator
on input c(x) and k. Note that by construction,Wk,Wc(x) ∈ K

for all x ∈N, and thus the finite comparator must be defined
on all these inputs. Also, it must return “yes” iffWc(x) = K and
“no” otherwise; a contradiction to the undecidability of the
set K.

The second part is shown mutatis mutandis. First, we run the
finite standardiser on input k to find out to which index k is
finitely standardised, say to s.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Results III

This algorithm uses the numbering ψ constructed in the second
part of the proof of Theorem 1. Since the numbering of the sets
W0,W1,W2, . . . is acceptable, there is a recursive function c ∈ R

such that ψx = ϕc(x) for all x ∈N. HenceWc(x) is equal to K
iff x ∈ K and equal to {x} iff x < K.
Consequently, for every x ∈N one runs the finite comparator
on input c(x) and k. Note that by construction,Wk,Wc(x) ∈ K

for all x ∈N, and thus the finite comparator must be defined
on all these inputs. Also, it must return “yes” iffWc(x) = K and
“no” otherwise; a contradiction to the undecidability of the
set K.
The second part is shown mutatis mutandis. First, we run the
finite standardiser on input k to find out to which index k is
finitely standardised, say to s.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Results IV

In order to decide K one executes the finite standardiser on
input c(x) for any given x ∈N. If it returns s, then x ∈ K and
otherwise x < K. Hence, if there would exist a finite
standardiser then Kwould be decidable, a contradiction.

Remark. Theorem 2 shows that finite learnability does not
imply finite standardisability if learning classes of r.e.
languages is considered.
In contrast, for function learning, every finitely learnable
function class is also finitely standardisable as shown by
Freivalds and Wiehagen (1979).

Next, we consider any finite number of shots, say n, and
compare standardisability and comparability. The following
theorem can be shown:
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Results V

Theorem 3

Every n-shot standardisable class L is (2n− 1)-shot comparable.

Proof. Let d and e be two indices such that bothWd andWe are
in L. Then the algorithm runs two instances of the standardiser
in parallel on the two inputs d and e, respectively, and waits
until each of them has produced an output. Then, if the current
outputs of the two instances are equal, then the algorithm
outputs “yes”, and if the two outputs are different, then it
outputs “no”.
Hence, every mind change of the comparator requires that at
least one of the standardisers makes another shot and so one
can bound the number of shots of the comparator
by 1 + 2 · (n− 1) = 2n− 1.
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Results VI

A class L is said to be inclusion-free if there are no two
languages A and B in the class such that A ⊂ B.

Theorem 4
Any class which is 2-shot comparable must be inclusion-free. Thus,
any class which is finitely standardisable must be inclusion-free.

Proof. If the class contains two sets A and Bwith A ⊂ B, and has
a 2-shot comparator F, then using Smullyan’s double recursion
theorem, one can construct two grammars i and j such that
Wi = Wj = A, if the comparator never outputs “yes” on input
(i, j). If the comparator outputs “yes” on input (i, j) at some
point, and then never outputs “no” after that, thenWi = A and
Wj = B. Otherwise,Wi = Wj = B. So it follows that the
comparator is wrong on input (i, j).
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Results VII

Theorem 5

Let L be any r.e. class. Then we have
(1) If L is finitely verifiable, then L is also finitely learnable.
(2) If L is finitely comparable then L is also finitely learnable.
(3) If L is finitely standardisable then L is also finitely learnable.

Proof. If a class L has a recursively enumerable list e0, e1, e2, . . .
of indices, then a finite verifier can be turned into a finite
learner by dovetailing the enumeration of the indices e0, e1, . . .
and by simulating the verifier on e0 versus T , e1 versus T , . . .
until one of them outputs “yes”. The finite learner then
conjectures the first index ek, where the simulation gives the
answer “yes”, i.e., Assertion (1) is shown.
Assertion (2) is more difficult (see the paper). Assertion (3) is
then a direct consequence of Assertion (2) and Theorem 3.
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Results VIII

Remark. The requirement that L is an r.e. class in Theorem 5 is
important, since we have the following:

Theorem 6
There is a class F of r.e. languages such that L is finitely
standardisable but neither finitely learnable nor finitely verifiable.

Proof. Here we consider a class of functions, i.e., any
enumeration of the graph of a function f is then a text for f.
We define f0(x) := 0 for all x ∈N, and for n > 1 we set
fn(x) := 0 for all x ∈N \ {n} and fn(n) := 1. Furthermore, we
use minϕ f to denote the least index i such that ϕi = f. Next,
consider the class F := {fn | n ∈N, n 6 minϕ fn}. Then F is
finitely standardisable. Here we need the condition
that n 6 minϕ fn.
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Results VIII

Remark. The requirement that L is an r.e. class in Theorem 5 is
important, since we have the following:

Theorem 6
There is a class F of r.e. languages such that L is finitely
standardisable but neither finitely learnable nor finitely verifiable.

Proof. Here we consider a class of functions, i.e., any
enumeration of the graph of a function f is then a text for f.
We define f0(x) := 0 for all x ∈N, and for n > 1 we set
fn(x) := 0 for all x ∈N \ {n} and fn(n) := 1. Furthermore, we
use minϕ f to denote the least index i such that ϕi = f. Next,
consider the class F := {fn | n ∈N, n 6 minϕ fn}. Then F is
finitely standardisable. Here we need the condition
that n 6 minϕ fn.
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Results IX

To see that F is not finitely verifiable let e ∈N be an index
for f0, and let T be a text for f0 such that
T = ((0, f0(0)), (1, f0(1)), (2, f0(2)) . . .). Then, on input e and T , a
finite verifier would have to eventually output “yes”, since
otherwise it could not verify that T is a text for the function f0.
Let this happen when the verifier has seen T [m]. Consequently,
for every n > m and a text T ′ in the same order
(0, fn(0)), (1, fn(1)), (2, fn(2)) . . . for fn it must, on input e and
T ′, also output “yes”, a contradiction to the fact that T ′ is not a
text for f0.

Mutatis mutandis one shows that F is not finitely learnable.
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Results X

Remark. Note that f0 is an accumulation point of the class F

(since F is infinite). That is, for every n ∈N there is is a
function f ∈ F such that f(x) = f0(x) for all 0 6 x 6 n but f , f0.
So, if a class is finitely learnable or finitely verifiable, then it
cannot contain an accumulation point.

Corollary 7
The collection of finitely learnable classes is incomparable to the
collections of finitely standardisable classes and to the collection of
finitely verifiable classes.

Theorem 8
If a class L is finitely standardisable then L is explanatorily learnable.
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Results XI

Theorem 9
If a class has a 2-shot standardiser and has a one-one r.e. numbering,
then it is explanatorily learnable.
If a class L has a 2-shot comparator and a one-one r.e. numbering,
then L is explanatorily learnable.

Proof. difficult, see the paper.

Theorem 10
There is 2-shot standardisable indexed family which is not
conservatively learnable.

Remark. A learner is said to be conservative if it performs
exclusively justified mind changes. In particular, it can never
overgeneralise.
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Results XII

There are additional results in the paper to complete the overall
picture, e.g., we have the following:

Theorem 11
There is an r.e. 2-shot comparable class which is not explanatorily
learnable.

Theorem 12
If a uniformly r.e. class L is 2-shot verifiable, then it is conservatively
learnable.

Note that there are more results in the paper which are omitted
here due to the available time.
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Conclusions I

Learning models have been introduced, where at least one
input is an index, and the second input is a text or another
index, resulting in verifiability and comparability, respectively.
We obtained modifications of standardisability, a learning model
which has been around for quite some time.

Variations: restricting the number of shots the learner is
allowed to make.

Comparisons to standard models (e.g., explanatory inference,
behaviourally correct learning).
In depth study of the learning capabilities of these learning
models in dependence on the classes to be learnt: arbitrary
classes of r.e. languages, uniformly r.e. classes of r.e. languages,
1–1 r.e. classes of r.e. languages, and indexed families.
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Conclusions II
In particular, we showed the following:
(1) comparators, standardisers, and verifiers are different with

respect to their help for the inductive inference of the
respective classes, i.e., verifiability always implies
explanatory learning, but conservative learning is out of
reach in general. Only 2-shot verifiers can always be used
to achieve conservative learning.

(2) 2-shot standardisability implies explanatory learning but
not conservative learning if the target classes are indexed
families or 1–1 r.e. classes. For indexed families any 2-shot
comparator and any 2-shot verifier can be used to obtain a
conservative learner. In contrast, a 3-shot standardiser
cannot be used to obtain even an explanatory learner.

(3) Studies revealed some topological constraints for
2-comparability and finite standardisability, i.e., the
respective classes must be inclusion-free.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Conclusions II
In particular, we showed the following:
(1) comparators, standardisers, and verifiers are different with

respect to their help for the inductive inference of the
respective classes, i.e., verifiability always implies
explanatory learning, but conservative learning is out of
reach in general. Only 2-shot verifiers can always be used
to achieve conservative learning.

(2) 2-shot standardisability implies explanatory learning but
not conservative learning if the target classes are indexed
families or 1–1 r.e. classes. For indexed families any 2-shot
comparator and any 2-shot verifier can be used to obtain a
conservative learner. In contrast, a 3-shot standardiser
cannot be used to obtain even an explanatory learner.

(3) Studies revealed some topological constraints for
2-comparability and finite standardisability, i.e., the
respective classes must be inclusion-free.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Conclusions II
In particular, we showed the following:
(1) comparators, standardisers, and verifiers are different with

respect to their help for the inductive inference of the
respective classes, i.e., verifiability always implies
explanatory learning, but conservative learning is out of
reach in general. Only 2-shot verifiers can always be used
to achieve conservative learning.

(2) 2-shot standardisability implies explanatory learning but
not conservative learning if the target classes are indexed
families or 1–1 r.e. classes. For indexed families any 2-shot
comparator and any 2-shot verifier can be used to obtain a
conservative learner. In contrast, a 3-shot standardiser
cannot be used to obtain even an explanatory learner.

(3) Studies revealed some topological constraints for
2-comparability and finite standardisability, i.e., the
respective classes must be inclusion-free.

Verifiers, Comparators and Standardisers Gao, Jain, Stephan, Zeugmann



Introduction, Definitions Results Conclusions End

Thank you!
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