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(Abstract) Recently, Binary Decision Diagrams
(BDDs) are widely used for efficiently manipulat-
ing large-scale Boolean function data. BDDs are
also applied for handling combinatorial item set
data. Zero-suppressed BDDs (ZBDDs) are special
type of BDDs which are suitable for implicitly han-
dling large-scale combinatorial item set data. In
this paper, we present VSOP program developed
for calculating combinatorial item set data speci-
fied by symbolic expressions based on ZBDD tech-
niques. Our program supports not only combina-
torial set operations but also numerical arithmetic
operations based on Valued-Sum-Of-Products alge-
bra, such as addition, subtraction, multiplication,
division, numerical comparison, etc. We discuss
the data structures and algorithms in our program,
and show some typical applications. VSOP calcu-
lator will be useful for solving many problems in
Computer Science.

1 Introduction

Manipulation of Boolean functions is a funda-
mental techniques for handling various prob-
lems in computer science. Binary Decision
Diagrams(BDDs)[4] are efficient graph-based rep-
resentation of Boolean functions, intensively stud-
ied in 1990’s, and now widely used in digital sys-
tem design and many other areas. Zero-suppressed
BDDs (ZBDD)[10, 15] are a special type of BDDs
for efficient manipulation of combinatorial item

set data. ZBDD-based method have been applied
for many algorithmic problems such as minimizing
sum-of-products forms[14] , database analysis[16],
and many kinds of graph optimization problems[6].

In this paper, we present VSOP calculator de-
veloped for calculating combinatorial item sets
specified by symbolic expressions. Based on ZBDD
techniques, VSOP can efficiently handle large-scale
sum-of-products expressions with a number of item
symbols. Our program supports not only Boolean
set operations but also numerical arithmetic oper-
ations based on Valued-Sum-Of-Products algebra,
such as addition, subtraction, multiplication, divi-
sion, numerical comparison, etc.

The author has a past result of developing an
arithmetic Boolean expression manipulator ”BEM-
II”[9] based on (ordinary) BDDs, and the program
was utilized for many works[17, 18, 8]. VSOP deal
with the arithmetic and numerical operations as
well as BEM-II, and extends the data model from
Boolean functions to combinatorial sets. The in-
terface of VSOP is very flexible and customizable
for solving many kinds of combinatorial problems,
and it will facilitate research and development for
knowledge processing.

This paper is organized as follows: First, we
briefly review BDDs and ZBDDs in Section 2. We
then describe the representation method of Valued-
Sum-Of-Products forms based on ZBDDs in Sec-
tion 3. We present algorithms of arithmetic oper-
ations in Section 4, and several display formats of
VSOP are shown in Section 5. Finally we show
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Figure 1: Reduced and non-reduced BDDs for F =
(a ∧ b) ∨ c.
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Figure 2: Conventional BDD reduction rules.

some typical applications of VSOP calculator fol-
lowed by concluding remarks.

2 BDDs and ZBDDs

BDD is a directed graph representation of the
Boolean function, as illustrated in Fig. 1(a). It
is derived by reducing a binary tree graph repre-
senting recursive Shannon’s expansion, indicated in
Fig. 1(b). The following reduction rules yield a
Reduced Ordered BDD (ROBDD), which can effi-
ciently represent the Boolean function. (see [4] for
details.)

• Delete all redundant nodes whose two edges
point to the same node. (Fig. 2(a))

• Share all equivalent sub-graphs. (Fig. 2(b))

ROBDDs provide canonical forms for Boolean
functions when the variable order is fixed. Most
research on BDDs are based on the above reduction
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rules. In the following sections, ROBDDs will be
referred to as BDDs (or ordinary BDDs) for the
sake of simplification.

As shown in Fig. 3, a set of multiple BDDs can
be shared each other under the same fixed variable
ordering. In this way, we can handle a number of
Boolean functions simultaneously in a monolithic
memory space.

Using BDDs, we can uniquely and compactly
represent many practical Boolean functions includ-
ing AND, OR, parity, and arithmetic adder func-
tions. Using Bryant’s algorithm[4], we can effi-
ciently construct a BDD for the result of a binary
logic operation (i.e. AND, OR, XOR), for given a
pair of operand BDDs. This algorithm is based on
hash table techniques, and the computation time
is almost linear to the data size unless the data
overflows the main memory. (see [13] for details.)

BDDs are originally developed for handling
Boolean function data, however, they can also be
used for implicit representation of combinatorial
sets. Here we call “combinatorial item set” for
a set of elements each of which is a combination
out of n items. This data model often appears in
real-life problems, such as combinations of switch-
ing devices, Boolean item sets in the database, and
combinatorial sets of edges or nodes in the graph
data model.

A combinatorial item set can be mapped into
Boolean space of n input variables. If we choose
any one combination of items, a Boolean function
determines whether the combination is included in
the combinatorial item set. Such Boolean functions
are called characteristic functions. The set opera-
tions such as union, intersection, and difference can
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Figure 5: Effect of ZBDDs.

Figure 6: ZBDD for
(a+b+c)(d+e+f)(g+
h + i)

Figure 7: Explicit
representation with
ZBDD.

be performed by logic operations on characteristic
functions.

By using BDDs for characteristic functions, we
can manipulate combinatorial item set efficiently.
They can be generated and manipulated within a
time roughly proportional to the BDD size. When
we handle many combinations including similar
patterns (sub-combinations), BDDs are greatly re-
duced by node sharing effect, and sometimes an
exponential reduction benefit can be obtained.

Zero-suppressed BDD (ZBDD)[10, 15] is a
special type of BDDs for efficient manipulation of
combinatorial item set. ZBDDs are based on the
following special reduction rules.

• Delete all nodes whose 1-edge directly points
to the 0-terminal node, and jump through to
the 0-edge’s destination, as shown in Fig. 4.

• Share equivalent nodes as well as ordinary
BDDs.

Notice that we do not delete the nodes whose two
edges point to the same node, which used to be
deleted by the original rule. The zero-suppressed
deletion rule is asymmetric for the two edges, as
we do not delete the nodes whose 0-edge points
to a terminal node. It is proved that ZBDDs are
also gives canonical forms as well as ordinary BDDs
under a fixed variable ordering.

Here we summarise the features of ZBDDs.

• In ZBDDs, the nodes of irrelevant items (never
chosen in any combination) are automatically
deleted by ZBDD reduction rule. In ordi-
nary BDDs, irrelevant nodes still remain and
they may spoil the reduction benefit of sharing
nodes. (An example is shown in Fig. 5.)

• ZBDDs are especially effective for represent-
ing sparse combinations. For instance, sets of
combinations selecting 10 out of 1000 items
can be represented by ZBDDs up to 100 times
more compact than ordinary BDDs.

• Each path from the root node to the 1-terminal
node corresponds to each combination in the
set. Namely, the number of such paths in the
ZBDD equals to the number of combinations
in the set. In ordinary BDDs, this property
does not always hold.

• When no equivalent nodes exist in a ZBDD,
that is the worst case, the ZBDD structure
explicitly stores all items in all combinations,
as well as using an explicit linear linked list
data structure. Namely, (the order of) ZBDD
size never exceeds the explicit representation.
An example is shown in Fig. 7. If more nodes
are shared, the ZBDD is more compact than
linear list. Ordinary BDDs have larger over-
head to represent sparser combinations while
ZBDDs have no such overhead.

Figure 8 shows the most of primitive operations
of ZBDDs. In these operations, ∅, 1, P.top are
executed in a constant time, and the others are
almost linear to the size of graph. We can describe
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“∅” Returns empty set. (0-termial node)
“1” Returns the set of only null-

combination.
(1-terminal node)

P .top Returns the item-ID at the root node of P .
P .offset(v) Selects the subset of combinations

each of which does not include item v.
P .onset(v) Selects the subset of combinations in-

cluding item v, and then delete v from
each combination.

P .change(v) Inverts existence of v (add / delete)
on each combination.

P ∪Q Returns union set.
P ∩Q Returns intersection set.
P −Q Returns difference set. (in P but not in Q.)
P .count Counts number of combinations.

Figure 8: Primitive ZBDD operations

Figure 9: ZBDD vector for (5abc+3ab+2bc+
c).

various processing on combinatorial item sets by
composing of these primitive operations.

3 VSOP Expressions Using ZB-
DDs

In this paper, we call VSOP (Valued-Sum-Of-
Products) for a combinatorial item set (or a sum-
of-products form) such that each product term has
a value. This value can also be considered as a co-
efficient or a weight for each term. So far, we deal
with only integer values. We define the value as
zero for a product term not included in the VSOP.

For example, the formula (5abc + 3ab + 2bc +
c) represents a VSOP with four terms abc, ab, bc,
and c, each of which is valued as 5, 3, 2, and 1,
respectively. This meas that a pattern abc appears
five times in a same database. Another meaning is

that five times cost is needed to obtain a pattern
abc in a certain process.

Not only enumerating combinations but also as-
signing such values (coefficients or weights) for each
product term, we can represent a simple but fun-
damental knowledge data, which can be used for
various problems in computer science. That is a
motivation for us to develop a program to efficiently
calculate VSOP expressions based on ZBDD tech-
niques.

In the VSOP algebra, the addition follows the
ordinary rule: 1 + 1 = 2 and x + x = 2x. However,
multiplication rule is not conventional: 2× 2 = 4,
x× y = xy, but x× x = x, because we only handle
combinatorial item sets, not considering higher de-
gree of item symbols. Notice that the same algebra
is also used in calculating expressions of probabilis-
tic variables.

Here we discuss the way to compactly repre-
sent VSOP data by using ZBDDs. Since ZBDDs
are representation of combinatorial item sets, a
simple ZBDD distinguishes only existence of each
product term in the set. Thus we need some ex-
tended data structure to represent numerical num-
bers using ZBDDs. Two methods are known on
this issue, the one is using BMDs (Binary Mo-
ment Diagrams)[5] handling not only 0- and 1-
terminal nodes but also numerical valued terminal
nodes. The other method is using vector of ordi-
nary ZBDDs to represent binary coding of numer-
ical values[12]. In our program, we use the latter
method. We decompose the integer number into m-
digits of ZBDD vector {F0, F1, . . . , Fm−1} to repre-
sent integers up to (2m − 1), as shown in Fig. 9.
Namely, F0 represents a set of terms whose val-
ues are odd numbers, F1 represents a set of terms
whose values have ‘1’ at the second digit of binary
coding, and listing such ZBDDs until Fm−1, we can
implicitly represent a VSOP data.

When dealing with integer values in binary cod-
ing, we have to consider the expression of negative
numbers. There are two well-known methods, one
of which is using 2’s complement representation,
and the other is using the absolute value with sign;
however, both method have drawbacks. When us-
ing 2’s complement, it yields many non-zero digits
for small negative numbers (typically, −1 is “all
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one”), and the ZBDD reduction rule is not effec-
tive to those non-zero bits. On the other hand,
when using absolute value, the operation of addi-
tion become complicated since we have to classify
the product terms to choose addition or subtrac-
tion depending on magnitude of values.

To solve the above problems, we adopted an-
other binary coding[12] based on (−2), namely,
each bit represents 1,−2, 4,−8, 16, . . .. For exam-
ple, −12 can be decomposed into (−2)5 + (−2)4 +
(−2)2 = −2 · 24 + 24 + 22. In this encoding we can
also uniquely represent the integer numbers. Using
binary coding with (−2), the higher digits become
zero both for positive and negative numbers, and
the ZBDD reduction rule works effectively to elim-
inate the meaningless nodes of higher digits.

In our implementation, we define the special
item symbols to combine the ZBDD vector into
a single ZBDD. By using 20 special item symbols
with higher variable order (near to the root node),
up to 220 (about one million) digits of ZBDD vec-
tor can be combined into one ZBDD. This means
that practically unlimited long digital numbers are
representable in our program.

4 Algorithms for Arithmetic Op-
erations

VSOP expressions are manipulated by arithmetic
operations, such as addition, subtraction, multi-
plication, and division. We first generate ZB-
DDs for trivial VSOP expressions which are single
item symbols or integer constants, and then ap-
ply those arithmetic operations to construct more
complicated VSOP expressions. In this section, we
present efficient algorithms for the arithmetic op-
erations of VSOPs based on ZBDDs.

(Multiplication by an item) Multiplication of
a VSOP F and an item symbol v can be done
by simply attach v to all product terms in F .
This is easily written by the basic operations
Onset, Offset, and Change of ZBDDs. Com-
putation time is linear to the number of nodes
which are ordered lower than v in the ZBDD.

procedure (F + G)
{ C ← (F ∩G) ;

S ← (F ∪G)− C ;
if (C = 0) return S ;
else return S−(−2·C);
}

procedure (F −G)
{ B ← (F ∩G) ;

D ← (F ∩G) ;
if (B = 0) return D ;
else return D+(−2·B);
}

Figure 10: Algorithm for addition and subtraction.

procedure(F ×G)
{ if (F.top < G.top) return (G× F ) ;

if (G = 0) return 0 ;
if (G = 1) return F ;
H ← cache(“F ×G”) ;
if (H exists) return H ;
v ← F.top ; /* the highest item in F */
(F0, F1)← factors of F by v ;
(G0, G1)← factors of G by v ;
H ← ((F1×G1)+ (F1×G0)+ (F0×G1))× v

+(F0 ×G0) ;
cache(“F ×G”) ← H ;
return H ;

}
Figure 11: Algorithm for multiplication.

(Multiplication by a constants)
Multiplication of F by an integer constant c

means that each value of term is multiplied c

times. If c is exactly exponential number of
(−2), this operation is just shifting each digits
of ZBDD vectors, so computation time is
linear to the number of digits, not depending
on the number of ZBDD nodes. For general
integer c, we decompose c into a bit-vector
c0, c1, . . . , cm and compute F × (−2)ici for
each i. After that we calculate total of them
by using addition operation, described as
follows.

(Addition and Subtraction) Addition of the
two VSOPs F + G is defined as generating a
new VSOP expression such that each value of
product term is sum of values of the same item
combinations in F and G. For example, When
F = ab + 2bc− 3c and G = 3ac− 2bc + c, then
(F + G) = ab + 3ac− 2c.

Figure 10 shows the algorithms for addition
and subtraction based on ZBDD operations.
If (F ∩ G) is empty, that means there are no
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common combinations at any digit, in such
case we do not need any carry up, so the addi-
tion (F +G) can be completed by just merging
them (F ∪G). On the other hand, if (F ∩G)
contains some common combinations, it repre-
sents the set of carries of respective digits. We
then make twice of the set of carries and call
addition operation again to sum up the carries.
By repeating this process, common combina-
tions are eventually exhausted and the proce-
dure is completed.

Since we use the binary coding based on (−2),
the one-bit shift corresponds to not twice, but
(−2) times, so the carry up formula becomes
S − (−2 · C). Namely, we call a subtraction
from the addition procedure. Similarly, a bor-
row of subtraction calls an addition operation.
We can implement the both operations with a
dual structure.

(Multiplication of two VSOPs) Here we de-
fine the multiplication (or product) of two
VSOPs (F ×G) as generating all possible con-
catenations of two product terms in respective
F and G.

Using the multiplication by items or constants,
we can compose the multiplication algorithm
for the general VSOPs, as shown in Fig. 11.
This algorithm is based on the divide-and-
conquer idea. Suppose v is the highest-ordered
item, F and G are then factored into two parts:
F = v · F1 ∪ F0, G = v ·G1 ∪G0.
Under this factorization, the product (F ×G)
can be written as:
((F1×G1)+(F1×G0)+(F0×G1))×v+(F0×
G0).
Each sub-product term can be computed re-
cursively. The expressions are eventually bro-
ken down into trivial ones and the result is
obtained. In the worst case, this algorithm
would require exponential number of recur-
sive calls for the number of items; however,
we can accelerate them by using a hash-based
cache memory which stores the results of re-
cent operations. By referring to the cache be-
fore each recursive call, we can avoid duplicate
executions for equivalent sub-formulas. Conse-

procedure(F/G)
{ if (G =constant:c) return (F/c) ;

if (F =constant:c) return 0 ;
Q← cache(“F/G”) ; if (Q exists) return Q ;
v ← G.top ; /* the highest variable in G */
(F0, F1)← factors of F by v ;
(G0, G1)← factors of G by v ;
Q← F1/G1 ;
if (G0 �= 0 and Q �= 0 )

Q0 ← F0/G0 ;
Q← (choose value from Q or Q0

absolutely smaller one) ;
cache(“F/G”) ← Q ;
return Q ;

}
Figure 12: Algorithm for division.

quently, the execution time depends on ZBDD
size, not on the number of terms.

(Division by an item) Division of a VSOP by
an item, the quotient (F/v) and the remain-
der (F%v) are defined as classification of the
product terms into the two subset, including or
excluding v in the item combinations. These
operations are exactly same as Onset and Off-
set operations of ZBDDs.

(Division by a constant) Division of a VSOP
by a constant, (F/c) and (F%c), are simply
defined as integer division (quotient and re-
minder) for each value of product terms in
F . For example, computing (F/30) can delete
all product terms whose values are less than
30. Oppositely, (F%30) extracts such product
terms valued less than 30. We can implement
this numerical operation by using arithmetic
shift and addition/subtraction operations.

(Division of VSOPs) In the VSOP algebra, we
have the non-linear multiplication rule v×v =
v, and this rule leads that the result of arith-
metic division (F/G) is not decided uniquely
in general. Thus, we must define our division
rule to make a unique result.

In the model of ”Boolean” sum-of-products
expressions without integer values, Weak-
division method[3] has been known for long



VSOP (Valued-Sum-Of-Products) Calculator Based on Zero-Suppressed BDDs 7

time and widely used in VLSI logic optimiza-
tion problems. This division method is based
on the following rule:
If the divisor G consists of multiple product
terms Ti, the quotient Q(= F/G) is defined
as the sum of product terms included in every
Qi = F/Ti for all i.

Now we propose here the new division method,
named Valued weak division, which is natu-
ral extension of (boolean) weak division. This
new method is the same as conventional one
until calculating Qi. After that, we do not ex-
tract common product terms, but calculating
values absolutely minimum in all Qi. For ex-
ample, assume that F = 2ab+4ac+ad−2bc+
3bd and G = a + b, then
Q1 = (F/a) = 2b + 4c + d,
Q2 = (F/b) = 2a− 2c + 3d

and we obtain Q = −2c + d.

If the given F and G have only boolean val-
ues in every terms, our division method gives
completely same results as conventional weak
division, so it is a natural extension of conven-
tional method.

Figure 12 shows the algorithm of this division
methods using ZBDDs. This is an extension of
ZBDD-based fast weak division method[11] to
the VSOP model. As well as the multiplication
algorithm, we can accelerate the execution by
using a hash-based cache memory to avoid du-
plicate executions for equivalent sub-formulas,
and the computation time depends on ZBDD
size, not on the number of terms.

The remainder of division (F%G) can be ob-
tained by computing F − (F/G)×G.

(Comparison) VSOP program supports the op-
erators ( == != > >= < <= ) to com-
pare the numerical values of the two VSOPs.
Each of those operators extracts all the prod-
uct terms included at least in the left or the
right expressions and satisfying the arithmetic
relation of the operator. For example, suppose
F = 3ab + 2bc− c and G = 2ab− 2b + 3c, and
then we can get (F > G) = ab+bc+b. On the
same case, (F != 0) becomes ab + bc + c, and
this is regarded as the regularization of all non-

zero values to 1 (Boolean). Those compari-
son operations can be executed in almost same
computation time as addition/subtraction op-
erations.

(Other operations) We also implemented the If-
Then-Else operator F ? G : H, which extracts
the product terms from G such that the item
combinations included in F , and also extracts
the terms from H for the item combinations
not included in F . Using this operations with
arithmetic comparisons, we can specify various
nonlinear functions. For instance, (F > G)?
F : G generates a VSOP choosing the terms
with larger values between F and G.

In addition, we implemented Restrict and Per-
mit operations proposed in [19], which are ba-
sically same as SupSet and Subset operations
in [6]. F .Restrict(G) extracts the product
terms from F such that the item combination
is a superset of at least one item combination
in G. On the other hand, F .Permit(G) ex-
tracts the product terms from F such that the
item combination is a subset of at least one
item combination in G. The computation time
is almost linear to ZBDD size. These two op-
erations are useful for solving constraint satis-
faction problems[19] by describing restrictive
or permissive conditions with VSOP expres-
sions.

5 Display Formats for Computa-
tion Results

VSOP program provides several helpful display for-
mats to show the calculation results to the user.
We explain typical formats as follows.

(Sum-of-products form with coefficients)
The most basic method is to enumerate all
product terms with their values. For example,
the formula 3abc + 2bc − c shows all product
terms with coefficients. The order of product
terms is a lexicographical manner of item
combinations. This format is easy to see if
the number of terms is not so many. In our
program, one VSOP data may have millions
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a b : c d
| 00 01 11 10

00 | 0 0 0 3
01 | 1 25 2 0
11 | 0 0 -4 -2
10 | 1 0 -1 0

Figure 13: Integer Karnaugh map.

of terms, and in such cases, we cannot finish
the output in a practical time.

(Integer Karnaugh map) As shown in Fig. 13,
using a matrix indexing item combinations,
and display the integer value on each element.
We call this an Integer Karnaugh map. It is
useful to understand the behavior of the VSOP
data, but they are practical only for fewer than
five or six items.

(Sorting by values) In some cases, it is useful
to make sorting of the product terms in terms
of their values. For example, the expression
2ab+3ac+2b− bc+3 can be listed as follows.

3: ac + 1
2: ab + b
−1: bc

(Bit-wise listing) We can list the respective dig-
its of the internal ZBDD vector representa-
tion. It is used for observing the relationship of
VSOP data and the internal data structures.

(Statistical information) To know the total
number of product terms in a VSOP expres-
sion corresponds to compute the number of so-
lutions for a combinatorial problem. Although
the number may become an exponential to the
number of items, we can quickly count it only
in a linear time to the ZBDD size. In addi-
tion, we can get other statistical information
such as the density of the solutions, and the
number of ZBDD nodes.

(Any satisfiable solutions) Sometimes we do
not have to display all the solutions, just
needed to see any one solution (or a counter
example). If a ZBDD for the VSOP data has
been constructed, it is easy (in a time linear
to number of items) to show any one product

***** VSOP calculator <v0.95> *****
vsop> symbol a b c d e
vsop> F = (a + 2 b)(c + d)
vsop> print F

a c + a d + 2 b c + 2 b d
vsop> print /rmap F

a b : c d
| 00 01 11 10

00 | 0 0 0 0
01 | 0 2 0 2
11 | 0 0 0 0
10 | 0 1 0 1

vsop> G = (2 a - d)(c - e)
vsop> print G

2 a c - 2 a e - c d + d e
vsop> H = F * G
vsop> print H

4 a b c d - 4 a b c e + 4 a b c - 4 a b
d e + a c d e - 2 a c e + 2 a c - a d
e + 2 b c d e - 4 b c d + 2 b d e

vsop> print /count H
11

vsop> print /size H
24 (35)

vsop> quit

Figure 14: Example of execution

term, even if the VSOP data is too compli-
cated to display all at once.

When each item has a cost to use in a combi-
nation, we can also find the minimum (or max-
imum) cost combinations in the VSOP data.
This operation can be executed in a linear time
to the ZBDD size.

Our program can also display the maximum
(or minimum value) in the VSOP data. In
addition, the set of items used in the given
VSOP data can be listed.

6 Applications

Based on ZBDD techniques, we developed an
arithmetic calculator to handle large-scale sum-of-
products expressions with a number of item sym-
bols. Here we briefly present the specification of
VSOP and some typical applications.

6.1 VSOP Calculator

This program, called VSOP, has a C-shell-like in-
terface, both for interactive keyboard inputs and
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batch style execution from a script file. The pro-
gram is written in C, C++, and yacc, executable
on 32bit Linux PCs.

In VSOP scripts, we can use two kind of sym-
bols, item symbols and program variables. Item
symbols, denoted by strings starting with a lower-
case letter, represent the items used in the set of
combinations. Program variables, starting with an
upper-case letter, are used to identify the memory
to which a computation result to be stored tem-
porarily. We can describe multi-level expressions
by using these two type of symbols. Calculation re-
sults are displayed in expressions of including item
symbols only, not using program variables. VSOP
allows up to 65,510 different item symbols to be
used, and no limit for program variables, as long
as the ZBDD nodes are handled in the main mem-
ory.

VSOP calculator supports not only set oper-
ations but also numerical arithmetic operations
based on Valued-Sum-Of-Products algebra, as pre-
sented in the previous sections. The program
parses the script only from left to right. Neither
branches nor loop controls are supported. How-
ever, using another script processor such as C-shell
or Perl, we can generate a straight VSOP script
file by unrolling the complicated control structures,
and feed it to the VSOP calculator by pipelined
manner.

Our program need a few seconds to calculate
VSOP expressions which are the size of human-
readable or writable. More than ten millions of
ZBDD nodes can be handled according to main
memory capacity. Our ZBDD package uses about
30 byte memory per node. Calculation results are
displayed in various formats as shown previously.
Figure 14 shows a simple execution example.

6.2 Basic Performances

To evaluate our method, we constructed VSOP ex-
pressions of large number of product terms with
large values. In this experiments, we used a
Pentium-4 PC (800MHz, 512MB, SuSE Linux 9).
We can deal with up to about 10,000,000 ZBDD
nodes in this machine.

Table 1: Generating VSOPs for Πn
k=1(xk + k)

n #Terms Max.value #Nodes Time(s)
4 16 24 16 0.002
8 256 40,320 199 0.007

12 4,096 479,001,600 1,866 0.108
16 65,536 20,922,789,888,000 9,383 0.689
20 1,048,576 (2.43× 1018) 76,705 14.399
24 16,777,216 (6.20× 1023) 530,308 276.993

We first generated ZBDDs for large constant
numbers. 100 !, which becomes as much as a 160
digits of decimal number, can be represented with
only 121 nodes of ZBDD, in 0.2 second to compute
it. Next we tried calculating Πn

k=1(xk + k). As
shown in Table 1, within a feasible time and space,
we can generate ZBDDs for extremely large-scale
expressions, some of which consist of millions of
terms.

6.3 Database Analysis

Here we consider the following example of transac-
tion database. In this data, one line corresponds
to one record, and the numbers represents IDs of
items included in the record.

1 3 9 13 23 25 34 36 38 40 52 54 59 63 67
2 3 9 14 23 26 34 36 39 40 52 55 59 63 67
...

In this database, the similar item combinations
(sub patterns) appear many times in multiple
records. To count the frequency (number of ap-
pearances) of the patterns is an important and
fundamental problem in data mining techniques[2],
which is regarded as the basis of knowledge pro-
cessing. Using VSOP calculator, we can efficiently
construct the pattern histogram and applying var-
ious analysis operations to the histogram data. At
first, we transform the above database file into the
following VSOP script.

P = 0
P = P + (1+x1)(1+x3)(1+x9)(1+x13)(1+x23)
(1+x25)(1+x34)(1+x36)(1+x38)(1+x40)



10 Shin-ichi Minato

(1+x52)(1+x54)(1+x59)(1+x63)(1+x67)
P = P + (1+x2)(1+x3)(1+x9)(1+x14)(1+x23)
(1+x26)(1+x34)(1+x36)(1+x39)(1+x40)
(1+x52)(1+x55)(1+x59)(1+x63)(1+x67)

P = P + ...

Each line represents the set of all sub-patterns con-
tained in one record. After execution of this script
for all records, the variable P holds the histogram
for all sub-patterns included in the database.

Once the histogram is generated, various queries
can be applied as a sequence of VSOP operations.
For example,

print /count (P/30)
displays the number of product terms with the val-
ues more than 29, which mean the number of fre-
quent patterns included in more than 29 records in
the database. For another example,

print /count (P/(x1 x2))
shows the number of patterns including both x1
and x2.

Here we will show an experimental result for one
of the data mining benchmark “mushroom”[7] to
compute the pattern-histogram. This dataset con-
sists of 8,124 records each of which is a combination
chosen from 119 items. VSOP calculator required
about 4 minutes to generate the pattern-histogram
of this dataset. 513,762 nodes of ZBDD is gener-
ated for the histogram, and totally 5,574,930,438
patterns are stored in the histogram. Such ZBDD-
based database analysis method is presented in [16]
for more detail.

6.4 Solving Constraint Satisfaction
Problems

Okuno et al.[19] presented the way to solve var-
ious constraint satisfaction problems (CSP) using
BDDs or ZBDDs. In this paper, they consider N-
queens problems and magic square problems as ex-
amples of CSPs. Those problems can be described
by arithmetic Boolean expressions handling logic
variables and numerical numbers.

Previously, there is an arithmetic Boolean ex-
pression manipulator ”BEM-II”[9] based on (or-
dinary) BDDs, and the program was utilized for
many works[17, 18, 8]. However, there have not

p (0.5)

q (0.5)

1-pq (0.75)

1-p+pq (0.75)

1-q+pq (0.75)

p+q-2pq (0.5)

Figure 15: Probabilistic symbolic logic simulation.

been a good arithmetic calculator based on ZBDDs,
so the research of ZBDD applications for CSPs have
not been active as well as ordinary BDDs. Our
VSOP calculator will extend the data model from
Boolean functions to combinatorial sets.

For example, to describe constraints for a magic
square, we can write the number for each square
A,B,C . . . as:
A = a1 + 2 a2 + 3 a3 + 4 a4 + ...
B = b1 + 2 b2 + 3 b3 + 4 b4 + ...
C = ...

We then compute the following formula.
S = A (B != 0) + B (A != 0)

This result becomes as:

2 a1 b1 + 3 a1 b2 + 4 a1 b3 + 5 a1 b4 +
3 a2 b1 + 4 a2 b2 + 5 a2 b3 + 6 a2 b4 +
4 a3 b1 + 5 a3 b2 + 6 a3 b3 + 7 a3 b4 ...

We can see this expression enumerates the sum of
two numbers at A and B for all possible combina-
tions. Next, the formula
S = S (C != 0) + C (S != 0)

produces the total number of A,B, and C for all
possible combinations, and it is stored in S. After
that, the formula
C = (S == 15 (S != 0))

generates the constraint C such that the total S

equals to 15. In similar manner, we can generate
VSOP data representing the constraints of all hor-
izontal, vertical, and diagonal lines.

In this way, we can describe various CSPs by
using VSOP scripts, and easily try solving it by
VSOP calculator.
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6.5 Probabilistic Symbolic Simulation

VSOP calculator is based on the arithmetic opera-
tion rules as x+x = 2x, x×x = x, and x×y = xy.
These rules are the same as the probabilistic cal-
culation that the variables x and y represent prob-
abilities. If the two events occur independently,
the logical AND becomes arithmetic products of
two variables, but if the two event are based on a
same probabilistic variable, the logical AND does
not become x2 but just x. Consequently, VSOP
calculator can be used for probabilistic analysis of
systems in various areas.

One good application is computing signal prob-
ability in logic circuits. As illustrated in Fig. 15,
on each primary input of the circuit, we assign a
variable representing the probability that the sig-
nal is ‘1’. Then, the probability at primary out-
puts and internal nets can be expressed exactly in
VSOP expressions using those probabilistic vari-
ables. On each logic gate with input A,B and out-
put Y , we can compute Y = A×B for AND gate,
Y = A + B − (A×B) for OR gate, and Y = 1−A

for NOT gate.

This technique is applicable for various kinds of
statistic analysis, such as probabilistic fault simu-
lation, estimating power consumption, and timing
hazard analysis.

7 Conclusion

We have presented a method of computing com-
binatorial item sets with numerical values. This
method consists of an efficient data structure, ma-
nipulation algorithms, and helpful display formats.
VSOP calculator, implemented based on the above
techniques, is customizable for various applica-
tions. We expect it to be utilized as a helpful tool
in solving many problems in computer science. In
future, we will release our program as open software
to facilitate research and development for various
area.
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