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Abstract

Inductive inference can be considered as one of the fundamental paradigms
of algorithmic learning theory. We survey results recently obtained and show
their impact to potential applications.

Since the main focus is put on the efficiency of learning, we also deal with
postulates of naturalness and their impact to the efficiency of limit learners. In
particular, we look at the learnability of the class of all pattern languages and
ask whether or not one can design a learner within the paradigm of learning in
the limit that is nevertheless efficient.

For achieving this goal, we deal with iterative learning and its interplay
with the hypothesis spaces allowed. This interplay has also a severe impact to
postulates of naturalness satisfiable by any learner.

Furthermore, since a limit learner is only supposed to converge, one never
knows at any particular learning stage whether or not the learner did already
succeed. The resulting uncertainty may be prohibitive in many applications. We
survey results to resolve this problem by outlining a new learning model, called
stochastic finite learning. Though pattern languages can neither be finitely
inferred from positive data nor PAC-learned, our approach can be extended to
a stochastic finite learner that exactly infers all pattern languages from positive
data with high confidence.

Finally, we apply the techniques developed to the problem of learning con-
junctive concepts.

1. Introduction

Inductive inference can be considered as one of the fundamental paradigms of

algorithmic learning theory. In particular, inductive inference of recursive functions

and of recursively enumerable languages has been studied intensively within the last
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four decades (cf., e.g., [3, 4, 30, 16]). The basic model considered within this framework

is learning in the limit which can be informally described as follows. The learner

receives more and more data about the target and maps these data to hypotheses. Of

special interest is the investigation of scenarios in which the sequence of hypotheses

stabilizes to an accurate and finite description (e.g. a grammar, a program) of the

target. Clearly, then some form of learning must have taken place. Here by data we

mean either any infinite sequence of pairs argument-value (in case of learning recursive

functions) such that all arguments appear eventually or any infinite sequence of all

members of the target language (in case of language learning from positive data).

Alternatively, one can also study language learning from both positive and negative

data.

Most of the work done in the field has been aimed at the following goals: showing

what general collections of function or language classes are learnable, characterizing

those collections of classes that can be learned, studying the impact of several postu-

lates on the behavior of learners to their learning power, and dealing with the influence

of various parameters to the efficiency of learning. However, defining an appropriate

measure for the complexity of learning in the limit has turned out to be quite difficult

(cf. Pitt [31]). Moreover, whenever learning in the limit is done, in general one never

knows whether or not the learner has already converged. This is caused by the fact

that it is in general undecidable whether or not convergence already occurred. But

even if it is decidable, it is practically infeasible to do so. Thus, there is always an

uncertainty which may be prohibitive in many applications of learning.

Therefore, different learning models have been proposed. In particular, Valiant’s

[46] model of probably approximately correct (abbr. PAC) learning has been very in-

fluential. As a matter of fact, this model puts strong emphasis on the efficiency of

learning and avoids the problem of convergence at all. In the PAC model, the learner

receives a finite labeled sample of the target concept and outputs, with high probabil-

ity, a hypothesis that is approximately correct. The sample is drawn with respect to

an unknown probability distribution and the error of as well as the confidence in the

hypothesis are measured with respect to this distribution, too. Thus, if a class is PAC

learnable, one obtains nice performance guarantees. Unfortunately, many interesting

concept classes are not PAC learnable.

Consequently, one has to look for other models of learning or one is back to learning

in the limit. So, let us assume that learning in the limit is our method of choice. What

we would like to present in this survey is a rather general way to transform learning

in the limit into stochastic finite learning. It should also be noted that our ideas may

be beneficial even in case that the considered concept class is PAC learnable.

Furthermore, we aim to outline how a thorough study of limit learnability of con-

cept classes may nicely contribute to support our new approach. We exemplify the

research undertaken by looking at the class of all pattern languages introduced by An-

gluin [1]. As Salomaa [37] has put it “Patterns are everywhere” and thus we believe

that our research is worth the effort undertaken.
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There are several problems that have to be addressed when dealing with the learn-

ability of pattern languages. First, the nice thing about patterns is that they are

very intuitive. Therefore, it seems desirable to design learners outputting patterns

as their hypotheses. Unfortunately, membership is known to be NP -complete for

the pattern languages (cf. [1]). Thus, many of the usual approaches used in machine

learning will directly lead to infeasible learning algorithms. As a consequence, we

shall ask what kind of appropriate hypothesis spaces can be used at all to learn the

pattern languages, and what are the appropriate learning strategies.

In particular, we shall deal with the problem of redundancy in the hypothesis space

chosen, with consistency, conservativeness, and iterative learning. Here consistency

means that the intermediate hypotheses output by the learner do correctly reflect the

data seen so far. Conservativeness addresses the problem to avoid overgeneralization,

i.e., preventing the learner from guessing a proper superset of the target language.

These requirements are naturally arising desiderata, but this does not mean that they

can be fulfilled. With iterative learning, the learning machine, in making a conjecture,

has access to only its previous conjecture and the latest data item coming in. Iterative

learning is also a natural requirement whenever learning in the limit is concerned, since

no practical learner can process at every learning stage all examples provided so far,

it may even not be able to store them.

Then, we address the question how efficient the overall learning process can be

performed, and how we can get rid of the uncertainty of not knowing whether or not

the learner has already converged.

Finally, we show our ideas to be beneficial for a class known to be PAC learnable by

looking at the class of all concepts describable by a monomial. A concept is describable

by a monomial m if its elements are precisely the assignments satisfying m .

2. Preliminaries

Unspecified notation follows Rogers [35]. By N = {0, 1, 2, . . .} we denote the set

of all natural numbers. We set N+ = N \ {0} . The cardinality of a set S is denoted

by |S| . Let ∅, ∈, ⊂, ⊆ , ⊃ , and ⊇ denote the empty set, element of, proper subset,

subset, proper superset, and superset, respectively.

Let ϕ0, ϕ1, ϕ2, . . . denote any fixed acceptable programming system for all (and

only) the partial recursive functions over N (cf. Rogers [35]). Then ϕk is the partial

recursive function computed by program k .

In the following subsection we define the main learning models considered within

this paper.

2.1. Learning in the Limit

Gold’s [12] model of learning in the limit allows one to formalize a rather general

class of learning problems, i.e., learning from examples. For defining this model we
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assume any recursively enumerable set X and refer to it as the learning domain. By

℘(X ) we denote the power set of X . Let C ⊆ ℘(X ) , and let c ∈ C be non-empty;

then we refer to C and c as a concept class and a concept, respectively. Let c be

a concept, and let t = (xj)j∈N be any infinite sequence of elements xj ∈ c such

that range(t) := {xj j ∈ N} = c . Then t is said to be a positive presentation or,

synonymously, a text for c . By text(c) we denote the set of all positive presentations

for c . Moreover, let t be a positive presentation, and let y ∈ N . Then, we set ty =

x0, . . . , xy , i.e., ty is the initial segment of t of length y+1 , and t+y := {xj j ≤ y} .

We refer to t+y as the content of ty .

Furthermore, let σ = x0, . . . , xn−1 be any finite sequence. Then we use |σ| to

denote the length n of σ , and let σ+ denote the content of σ . Additionally, let t

be a text and let τ be a finite sequence; then we use σ � t and σ � τ to denote the

sequence obtained by concatenating σ onto the front of t and τ , respectively.

Alternatively, one can also consider complete presentations or, synonymously, in-

formants. An informant for a concept c is an infinite sequence of all elements of

the underlying learning domain that are classified with respect to their contain-

ment in c . More formally, we define informants as follows. Let c be a concept;

then any sequence i = (xj, bj)j∈N of labeled examples, where bj ∈ {0, 1} such

that {xj j ∈ N} = X and i+ = {xj (xj, bj) = (xj, 1), j ∈ N} = c and

i− = {xj (xj, bj) = (xj, 0), j ∈ N} = X \ c is called an informant for c . For

the sake of presentation, the following definitions are only given for the text case, the

generalization to the informant case should be obvious. We sometimes use the term

data sequence to refer to both text and informant, respectively.

An inductive inference machine (abbr. IIM) is an algorithm that takes as input

larger and larger initial segments of a text and outputs, after each input, a hypothesis

from a prespecified hypothesis space H = (hj)j∈N . The indices j are regarded as

suitable finite encodings of the concepts described by the hypotheses. A hypothesis

h is said to describe a concept c iff c = h .

A sequence (jn)n∈N of natural numbers is said to converge to number j if jn = j

for all but finitely many n ∈ N .

Definition 1. Let C be any concept class, and let H = (hj)j∈N be a hypothesis

space for it. C is called learnable in the limit from text with respect to H iff there is

an IIM M such that for every c ∈ C and every text t for c ,

(1) for all n ∈ N+ , M (tn) is defined,

(2) there is a j such that c = hj and the sequence (M (tn))n∈N converges to j .

The set of all concepts classes that are learnable in the limit with respect to H is

denoted by LimTxtH . By LimTxt we denote the collection of all concepts classes C
for which there is a hypothesis space H such that C is learnable in the limit from

text1 with respect to H .

1If learning from informant is considered we use LimInf H and LimInf in an analogous way.
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Note that instead of LimTxt sometimes TxtEx is used. In our notation, Lim stands

for “limit.” Suppose, an IIM learns some concept c . That means, after having seen

only finitely many data of c the IIM reached its (unknown) point of convergence and

it computed a correct and finite description of the target concept. Hence, some form

of learning must have taken place.

Note that Definition 1 does not contain any requirement concerning efficiency. Be-

fore we are going to deal with efficiency, we want to point to another crucial parameter

of our learning model, i.e., the hypothesis space H . Since our goal is algorithmic learn-

ing, we can consider the special case that X = N and let C be any subset of the

collection of all recursively enumerable sets over N . Let Wk = domain(ϕk) , where

ϕk is the partial recursive function computed by program k in the fixed acceptable

programming system. In this case, (Wk)k∈N is the most general hypothesis space.

Within this setting many learning problems can be described. Moreover, this set-

ting has been used to study the general capabilities of different learning models which

can be obtained by suitable modifications of Definition 1. There are numerous papers

performing studies along this line of research (cf., e.g., [16, 30] and the references

therein). On the one hand, the results obtained considerably broaden our general

understanding of algorithmic learning. On the other hand, one has also to ask what

kind of consequences one may derive from these results for practical learning problems.

This is a non-trivial question, since the setting of learning recursively enumerable lan-

guages is very rich. Thus, it is conceivable that several of the phenomena observed

hold in this setting due to the fact that too many sets are recursively enumerable and

that there are no counterparts within the world of efficient computability.

As a first step to address this question we mainly consider the scenario that in-

dexable concept classes with uniformly decidable membership have to be learned (cf.

Angluin [2]). A class of non-empty concepts C is said to be an indexable class

with uniformly decidable membership provided there are an effective enumeration

c0, c1, c2, ... of all and only the concepts in C and a recursive function f such that

for all j ∈ N and all elements x ∈ X we have

f(j, x) =

{
1, if x ∈ cj,
0, otherwise.

In the following we refer to indexable classes with uniformly decidable membership

as to indexable classes for short. Furthermore, we call any enumeration (cj)j∈N of C
with uniformly decidable membership problem an indexed family.

Since the paper of Angluin [2], learning of indexable concept classes has attracted

much attention (cf., e.g., Zeugmann and Lange [52]). Let us shortly provide some-

well known indexable classes. Let Σ be any finite alphabet of symbols, and let X
be the free monoid over Σ , i.e., X = Σ∗ . We set Σ+ = Σ∗ \ {λ} , where λ denotes

the empty string. As usual, we refer to subsets L ⊆ X as languages. Then the set

of all regular languages, context-free languages, and context-sensitive languages are

indexable classes.
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Next, let Xn = {0, 1}n be the set of all n -bit Boolean vectors. We consider

X =
⋃
n≥1Xn as learning domain. Then, the set of all concepts expressible as a

monomial, a k -CNF, a k -DNF, and a k -decision list form indexable classes.

When learning indexable classes C , it is generally assumed that the hypothesis

space H has to be an indexed family, too. We distinguish class preserving learning

and class comprising learning defined by C = range(H) and C ⊆ range(H) , respec-

tively. When dealing with class preserving learning, one has the freedom to choose as

hypothesis space a possibly different enumeration of the target class C . In contrast,

when class comprising learning is concerned, the hypothesis space may enumerate,

additionally, languages not belonging to C . Note that, in general, one has to allow

class comprising hypothesis spaces to obtain the maximum possible learning power

(cf. Lange and Zeugmann [20, 22]). Finally, we call an hypothesis space redundant

if it is larger than necessary, i.e., there is at least one hypothesis in H not describ-

ing any concept from the target class or one concept possesses at least two different

descriptions in H . Thus, non-redundant hypothesis spaces are as small as possible.

Formally, a hypothesis space H = (hj)j∈N is non-redundant for some target concept

class C iff range(H) = C and hi 6= hj for all i, j ∈ N with i 6= j . Otherwise, H is

a redundant hypothesis space for C .

Next, let us come back to the issue of efficiency. Looking at Definition 1 we see

that an IIM M has always access to the whole history of the learning process, i.e.,

in order to compute its actual guess M is fed all examples seen so far. In contrast

to that, next we define iterative IIMs. An iterative IIM is only allowed to use its

last guess and the next element in the positive presentation of the target concept for

computing its actual guess. Conceptionally, an iterative IIM M defines a sequence

(Mn)n∈N of machines each of which takes as its input the output of its predecessor.

Definition 2 (Wiehagen [47]). Let C be a concept class, let c be a concept, and

let H = (hj)j∈N be a hypothesis space. An IIM M ItLimTxtH -learns c iff for every

t = (xj)j∈N ∈ text(c) the following conditions are satisfied:

(1) for all n ∈ N , Mn(t) is defined, where M0(t) := M (x0) and for all n ≥ 0 :

Mn+1(t) := M (Mn(t), xn+1) ,

(2) the sequence (Mn(t))n∈N converges to a number j such that c = hj .

Finally, M ItLimTxtH -learns C iff, for each c ∈ C , M ItLimTxtH -learns c . By

ItLimTxt we denote the collection of all concept classes for which there are an IIM

M and a hypothesis space H such that M ItLimTxtH -learns C .

In the latter definition Mn(t) denotes the (n+1) st hypothesis output by M when

successively fed the text t . So, it is justified to make the following convention. Let

σ = x0, . . . , xn be any finite sequence of elements from X . Moreover, let C be any

concept class over X , and let M be any IIM that iteratively learns C . Then we

denote by My(σ) the (y + 1) st hypothesis output by M when successively fed σ
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provided y ≤ n , and there exists a concept c ∈ C with σ+ ⊆ c . Furthermore, we let

M∗(σ) denote M|σ|−1(σ) .

Moreover, when learning a concept class from text, a major problem one has to

deal with is avoiding or detecting overgeneralization. An overgeneralization occurs if

the learner is guessing a superconcept of the target concept. Clearly, such an overgen-

eralized guess cannot be detected by using the incoming positive data only. Hence,

one may be tempted to disallow overgeneralized guesses at all. Learners behaving thus

are called conservative. Intuitively speaking a conservative IIM maintains its actual

hypothesis at least as long as it has not seen data contradicting it. More formally, an

IIM M is said to be conservative iff for all concepts c in the target class C , all texts

t for c and all y, z ∈ N the condition “if M (ty) 6= M (ty+z) then t+y+z 6⊆ hM (ty) ” is

fulfilled.

Another property of learners quite often found in the literature is consistency (cf.,

e.g., Wiehagen and Zeugmann [48, 49] and the references therein). A learner is called

consistent if all its intermediate hypotheses correctly reflect the data seen so far.

Formally, an IIM M is said to be consistent iff t+x ⊆ hM (tx) for all x ∈ N and every

text t for every concept c in the target class C .

Whenever one talks about the efficiency of learning besides the storage needed by

the learner one has also to consider the time complexity of the learner. When talking

about the time complexity of learning, it does not suffice to consider the time needed

to compute the actual guess. What really counts in applications is the overall time

needed until successful learning. Therefore, following Daley and Smith [10] we define

the total learning time as follows.

Let C be any concept class, and let M be any IIM that learns C in the limit.

Then, for every c ∈ C and every text t for c , let

Conv(M , t) := the least number m ∈ N+

such that for all n ≥ m, M (tn) = M (tm)

denote the stage of convergence of M on t (cf. [12]). Moreover, by TM (tn) we denote

the time to compute M (tn) . We measure this time as a function of the length of the

input and call it the update time. Finally, the total learning time taken by the IIM

M on successive input t is defined as

TT (M , t) :=

Conv(M ,t)∑
n=1

TM (tn).

Clearly, if M does not learn the target concept from text t then the total learning

time is infinite.

Two more remarks are in order here. First, it has been argued elsewhere that

within the learning in the limit paradigm a learning algorithm is invoked only when

the current hypothesis has some problem with the latest observed data. However, such
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a viewpoint implicitly assumes that membership in the target concept is decidable

in time polynomial in the length of the actual input. This may be not the case.

Therefore, directly testing consistency would immediately lead to a non-polynomial

update time provided membership is not known to be in P .

Second, Pitt [31] addresses the question with respect to what parameter one should

measure the total learning time. In the definition given above this parameter is the

length of all examples seen so far. Clearly, now one could try to play with this

parameter by waiting for a large enough input before declaring success. However,

when dealing with the learnability of non-trivial concept classes, in the worst-case

the total learning time will be anyhow unbounded. This effect is caused by the

requirement to learn from all input sequences. Clearly, there are input sequences that

start with many repetitions of data not containing enough information for successful

learning. Thus, it does not make much sense to deal with the worst-case. Instead, we

shall study the expected total learning time. In such a setting one cannot simply wait

for long enough inputs. We shall then restrict ourselves to probability distributions

that generate data sequences from which the target can be learned. Therefore, using

the definition of total learning time given above seems to be reasonable.

Next, we define important concept classes which we are going to consider through-

out this survey.

2.2. The Pattern Languages

Following Angluin [1] we define patterns and pattern languages as follows. Let

A = {0, 1, . . .} be any finite alphabet containing at least two elements. Let X =

{xi i ∈ N} be an infinite set of variables such that A ∩X = ∅ . Patterns are non-

empty strings over A∪X , e.g., 01, 0x0111, 1x0x00x1x2x0 are patterns. The length

of a string s ∈ A∗ and of a pattern π is denoted by |s| and |π| , respectively. A

pattern π is in canonical form provided that if k is the number of different variables

in π then the variables occurring in π are precisely x0, . . . , xk−1 . Moreover, for every

j with 0 ≤ j < k − 1 , the leftmost occurrence of xj in π is left to the leftmost

occurrence of xj+1 . The examples given above are patterns in canonical form. In the

sequel we assume, without loss of generality, that all patterns are in canonical form.

By Pat we denote the set of all patterns in canonical form.

If k is the number of different variables in π then we refer to π as to a k -variable

pattern. By Patk we denote the set of all k -variable patterns. Furthermore, let

π ∈ Patk , and let u0, . . . , uk−1 ∈ A+ ; then we denote by π[x0/u0, . . . , xk−1/uk−1] the

string w ∈ A+ obtained by substituting uj for each occurrence of xj , j = 0, . . . , k−
1 , in the pattern π . For example, let π = 0x01x1x0 . Then π[x0/10, x1/01] =

01010110 . The tuple (u0, . . . , uk−1) is called a substitution. Furthermore, if |u0| =

· · · = |uk−1| = 1 , then we refer to (u0, . . . , uk−1) as to a shortest substitution. Let

π ∈ Patk ; we define the language generated by pattern π by

L(π) = {π[x0/u0, . . . , xk−1/uk−1] u0, . . . , uk−1 ∈ A+} .
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By PAT k we denote the set of all k -variable pattern languages. Finally, PAT =⋃
k∈N PAT k denotes the set of all pattern languages over A .

Furthermore, we let Q range over finite sets of patterns and define L(Q) =⋃
π∈Q L(π) , i.e., the union of all pattern languages generated by patterns from Q .

Moreover, we use Pat(k) and PAT (k) to denote the family of all unions of at

most k canonical patterns and the family of all unions of at most k pattern lan-

guages, respectively. That is, Pat(k) = {Q Q ⊆ Pat , |Q| ≤ k} and PAT (k) =

{L(Q) Q ∈ Pat(k)} . Finally, let L ⊆ A+ be a language, and let k ∈ N+ ; we define

Club(L, k) = {Q |Q| ≤ k, L ⊆ L(Q), (∀Q′)[Q′ ⊂ Q ⇒ L 6⊆ L(Q′)]} . Club stands

for consistent least upper bounds.

The pattern languages and variations thereof have been intensively investigated

(cf., e.g., Salomaa [37, 38], and Shinohara and Arikawa [43] for an overview). Nix [29]

as well as Shinohara and Arikawa [43] outlined interesting applications of pattern

inference algorithms. For example, pattern language learning algorithms have been

successfully applied for solving problems in molecular biology (cf., e.g., Shimozono et

al. [39], Shinohara and Arikawa [43]).

As it turned out, pattern languages and finite unions of pattern languages are

subclasses of Smullyan’s [45] elementary formal systems (abbr. EFS). Arikawa et al. [5]

have shown that EFS can also be treated as a logic programming language over strings.

Recently, the techniques for learning finite unions of pattern languages have been

extended to show the learnability of various subclasses of EFS (cf. Shinohara [42]).

The investigations of the learnability of subclasses of EFSs are interesting because

they yield corresponding results about the learnability of subclasses of logic programs.

Hence, these results are also of relevance for Inductive Logic Programming (ILP)

[28, 23, 8, 24]. Miyano et al. [26] intensively studied the polynomial-time learnability

of EFSs.

Therefore, we may consider the learnability of pattern languages and of unions

thereof as a nice test bed for seeing what kind of results one may obtain by considering

the corresponding learning problems within the setting of learning in the limit.

3. Results Concerning Patterns

Within this section we ask whether or not the pattern languages and finite unions

thereof can be learned efficiently. The principal learnability of the pattern languages

from text with respect to the hypothesis space Pat has been established by An-

gluin [1]. However, her algorithm is based on computing descriptive patterns for the

data seen so far. Here a pattern π is said to be descriptive (for the set S of strings

contained in the input provided so far) if π can generate all strings contained in S

and no other pattern with this property generates a proper subset of the language

generated by π . Since no efficient algorithm is known for computing descriptive pat-

terns, and finding a descriptive pattern of maximum length is NP -hard, its update

time is practically intractable.
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There are also serious difficulties when trying to learn the pattern languages within

the PAC model introduced by Valiant [46]. In the original model, the sample com-

plexity depends exclusively on the VC dimension of the target concept class and the

error and confidence parameters ε and δ , respectively. Recently, Mitchell et al. [25]

have shown that even the class of all one-variable pattern languages has infinite VC

dimension. Consequently, even this special subclass of PAT is not uniformly PAC

learnable. Moreover, Schapire [40] has shown that pattern languages are not PAC

learnable in the generalized model provided P /poly 6= NP /poly with respect to

every hypothesis space for PAT that is uniformly polynomially evaluable. Though

this result highlights the difficulty of PAC learning PAT it has no clear application

to the setting considered in this paper, since we aim to learn PAT with respect to

the hypothesis space Pat . Since the membership problem for this hypothesis space

is NP -complete, it is not polynomially evaluable (cf. [1]).

In contrast, Kearns and Pitt [18] have established a PAC learning algorithm for the

class of all k -variable pattern languages. Positive examples are generated with respect

to arbitrary product distributions while negative examples are allowed to be generated

with respect to any distribution. In their algorithm the length of substitution strings

is required to be polynomially related to the length of the target pattern. Finally, they

use as hypothesis space all unions of polynomially many patterns that have k or fewer

variables2. The overall learning time of their PAC learning algorithm is polynomial in

the length of the target pattern, the bound for the maximum length of substitution

strings, 1/ε , 1/δ , and |A| . The constant in the running time achieved depends

doubly exponential on k , and thus, their algorithm becomes rapidly impractical when

k increases.

Finally, Lange and Wiehagen [19] have proposed an inconsistent but iterative and

conservative algorithm that learns PAT with respect to Pat . We shall study this

algorithm below in some more detail.

But before doing it, we aim to figure out under which circumstances iterative

learning of PAT is possible at all. A first answer is given by the following theorems

from Case et al. [9]. Note that Pat is a non-redundant hypothesis space for PAT .

Theorem 1 (Case et al. [9]). Let C be any concept class, and let H = (hj)j∈N

be any non-redundant hypothesis space for C . Then, every IIM M that ItLimTxtH -

learns C is conservative.

Proof. Recall that we use M∗(σ) to denote M|σ|−1(σ) for any finite sequence σ =

x0, . . . , xn of elements from X (cf. Definition 2).

Suppose the converse, i.e., there are a concept c ∈ C , a text t = (xj)j∈N ∈ text(c) ,

and a y ∈ N such that, for j = M∗(ty) and k = M∗(ty+1) = M (j, xy+1) , both

j 6= k and t+y+1 ⊆ hj are satisfied. The latter implies xy+1 ∈ hj , and thus we may

2More precisely, the number of allowed unions is at most poly(|π|, s, 1/ε, 1/δ, |A|) , where π is
the target pattern, s the bound on the length on substitution strings, ε and δ are the usual error
and confidence parameter, respectively, and A is the alphabet of constants over which the patterns
are defined.
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consider the following text t̃ ∈ text(hj) . Let t̂ = (x̂j)j∈N be any text for hj and

let t̃ = x̂0, xy+1, x̂1, xy+1, x̂2, . . . . Since M has to learn hj from t̃ there must be a

z ∈ N such that M∗(t̃z+r) = j for all r ≥ 0 . But M∗(t̃2z+1) = M (j, xy+1) = k , a

contradiction.

Next, we point to another peculiarity of PAT , i.e., it meets the superset condition

defined as follows. Let C be any indexable class. C meets the superset condition if,

for all c, c′ ∈ C , there is some ĉ ∈ C being a superset of both c and c′ .

Theorem 2. (Case et al. [9]). Let C be any indexable class meeting the superset

condition, and let H = (hj)j∈N be any non-redundant hypothesis space for C . Then,

every consistent IIM M that ItLimTxtH -learns C may be used to decide the inclusion

problem for H .

Proof. Let X be the underlying learning domain, and let (wj)j∈N be an effective

enumeration of all elements in X . Then, for every i ∈ N , ti = (xij)j∈N is the following

computable text for hi . Let z be the least index such that wz ∈ hi . Recall that, by

definition, hi 6= ∅ , since H is an indexed family, and thus wz must exist. Then, for

all j ∈ N , we set xij = wj , if wj ∈ hi , and xij = wz , otherwise.

We claim that the following algorithm Inc decides, for all i, k ∈ N , whether or

not hi ⊆ hk .

Algorithm Inc: “On input i, k ∈ N do the following:

Determine the least y ∈ N with i = M∗(t
i
y) . Test whether or not ti,+y ⊆ hk .

In case it is, output ‘Yes,’ and stop. Otherwise, output ‘No,’ and stop.”

Clearly, since H is an indexed family and ti is a computable text, Inc is an algorithm.

Moreover, M learns hi on every text for it, and H is a non-redundant hypothesis

space. Hence, M has to converge on text ti to i , and therefore Inc has to terminate.

It remains to verify the correctness of Inc . Let i, k ∈ N .

Clearly, if Inc outputs ‘No,’ a string s ∈ hi \ hk has been found, and hi 6⊆ hk
follows.

Next, consider the case that Inc outputs ‘Yes.’ Suppose to the contrary that

hi 6⊆ hk . Then, there is some s ∈ hi \ hk . Now, consider M when fed the text

t = tiy � tk . Since ti,+y ⊆ hk , t is a text for hk . Since M learns hk , there is

some r ∈ N such that k = M∗(t
i
y � tkr) . By assumption, there are some ĉ ∈ C with

hi∪hk ⊆ ĉ , and some text t̂ for ĉ having the initial segment tiy�s�tkr . By Theorem 1,

M is conservative. Since s ∈ hi and i = M∗(t̂y) , we obtain M∗(t̂y+1) = M (i, s) = i .

Consequently, M∗(t
i
y �s� tkr) = M∗(t

i
y � tkr) . Finally, since s ∈ t̂+y+r+2 , k = M∗(t

i
y � tkr) ,

and s /∈ hk , M fails to consistently learn ĉ from text t̂ , a contradiction. This proves

the theorem.
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Taking into account that the inclusion problem for Pat is undecidable (cf. Jiang

et al. [17]) and that PAT meets the superset condition, since L(x0) = A+ , by

Theorem 2, we immediately arrive at the following corollary.

Corollary 3 (Case et al. [9]). If an IIM M ItLimTxtPat -learns PAT then

M is inconsistent.

As a matter of fact, the latter corollary generalizes to all non-redundant hypothesis

spaces for PAT . All the ingredients to prove this can be found in Zeugmann et

al. [53]. Consequently, if one wishes to learn the pattern languages or unions of

pattern languages iteratively, then either redundant hypothesis spaces or inconsistent

learners cannot be avoided.

As for unions, the first result goes back to Shinohara [41] who proved the class

of all unions of at most two pattern languages to be in LimTxtPat(2) . Wright [50]

extended this result to PAT (k) ∈ LimTxtPat(k) for all k ≥ 1 . Moreover, Theorem

4.2 in Shinohara and Arimura’s [44] together with a lemma from Blum and Blum [6]

shows that
⋃
k∈N PAT (k) is not LimTxtH -learnable for every hypothesis space H .

The iterative learnability of PAT (k) has been established by Case et al. [9]. Our

learner is also consistent. Thus, the hypothesis space used had to be designed to be

redundant. We only sketch the proof here.

Theorem 4.

(1) Club(L, k) is finite for all L ⊆ A+ and all k ∈ N+ ,

(2) If L ∈ PAT (k) , then Club(L, k) is non-empty and contains a set Q , such that

L(Q) = L .

Proof. Part (2) is obvious. Part (1) is easy for finite L . For infinite L , it follows

from the lemma below.

Lemma 1. Let k ∈ N+ , let L ⊆ A+ be any language, and suppose t = (sj)j∈N ∈
text(L). Then,

(1) Club(t+0 , k) can be obtained effectively from s0 , and Club(t+n+1, k) is effectively

obtainable from Club(t+n , k) and sn+1

(* note the iterative nature *).

(2) The sequence Club(t+0 , k), Club(t+1 , k), . . . converges to Club(L, k).

Putting it all together, one directly gets the following theorem.

Theorem 5. For all k ≥ 1 , PAT (k) ∈ ItLimTxt .

Proof. Let can(·) , be some computable bijection from finite classes of finite sets

of patterns onto N . Let pad be a 1–1 padding function such that, for all x, y ∈ N ,

Wpad(x,y) = Wx . For a finite class S of sets of patterns, let g(S) denote a grammar

obtained, effectively from S , for
⋂
Q∈S L(Q) .
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Let L ∈ PAT (k) , and let t = (sj)j∈N ∈ text(L) . The desired IIM M is defined as

follows. We set

M0(t) = M (s0) = pad(g(Club(t+0 , k)), can(Club(t+0 , k))) , and for all n > 0 ,

Mn+1(t) = M (Mn(t), sn+1)

= pad(g(Club(t+n+1, k)), can(Club(t+n+1, k))) .

Using Lemma 1 it is easy to verify that Mn+1(t) = M (Mn(t), sn+1) can be obtained

effectively from Mn(t) and sn+1 . Therefore, M ItLimTxt -identifies PAT (k) .

So far, the general theory provided substantial insight into the iterative learnability

of the pattern languages. But still, we do not know anything about the number of

examples needed until successful learning and the total amount of time to process

them. Therefore, we address this problem in the following subsection.

3.1. Stochastic Finite Learning

As we have already mentioned, it does not make much sense to study the worst-

case behavior of learning algorithms with respect to their total learning time. The

reason for this phenomenon should be clear, since an arbitrary text may provide

the information needed for learning very late. Therefore, in the following we always

assume a class D of admissible probability distributions over the relevant learning

domain. Ideally, this class should be parameterized. Then, the data fed to learner

are generated randomly with respect to one of the probability distributions from

the class D of underlying probability distributions. Furthermore, we introduce a

random variable CONV for the stage of convergence. Note that CONV can be also

interpreted as the total number of examples read by the IIM M until convergence.

We therefore also refer to CONV as to the sample complexity. The first major step

to be performed consists now in determining the expectation E[CONV ] . Clearly,

E[CONV ] should be finite for all concepts c ∈ C and all distributions D ∈ D .

Second, one has to deal with tail bounds for E[CONV ] . The easiest way to perform

this step is to use Markov’s inequality, i.e., we always know that

Pr(CONV ≥ t · E[CONV ]) ≤ 1

t
for all t ∈ N+ .

However, quite often one can obtain much better tail bounds. If the underlying

learner is known to be conservative and rearrangement-independent we always get

exponentially shrinking tail bounds. A learner is said to be rearrangement-independent

if its output depends exclusively on the range and length of its input (cf. [21] and the

references therein). These tail bounds are established by the following theorem.

Theorem 6 (Rossmanith and Zeugmann [36]). Let CONV be the sample

complexity of a conservative and rearrangement-independent learning algorithm. Then

Pr(CONV ≥ 2t · E[CONV ]) ≤ 2−t for all t ∈ N .
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Proof. First, recall the definition of median. If X is a random variable then µX

is a median of X iff

Pr(X ≥ µX) ≥ 1/2 and Pr(X ≤ µX) ≥ 1/2.

A nonempty set of medians exists for each random variable and consists either of a

single real number or of a closed real interval. We will denote the smallest median of

X by µX , since this choice gives the best upper bounds.

Now, we can establish the following claim.

Claim 1. Let X be the sample complexity of a conservative and rearrangement-

independent learning algorithm. Then Pr(X ≥ t · µX) ≤ 2−t for all t ∈ N .

We divide the text s0, s1, . . . into blocks of length µX . The probability that the

algorithm converges after reading any of the blocks is then at least 1/2 . Since the

algorithm is rearrangement-independent the order of the blocks does not matter and

since the algorithm is conservative it does not change its hypothesis after computing

once the right hypothesis. This proves Claim 1.

Claim 2. µX ≤ 2E[X] for every positive random variable X .

Claim 2 is a direct consequence of the Markov inequality and the definition of

median.

Putting Claims 1 and 2 together directly yields the theorem.

Theorem 6 puts the importance of rearrangement-independent and conservative

learners into the right perspective. As long as the learnability of indexed families

is concerned, these results have a wide range of potential applications, since ev-

ery conservative learner can be transformed into a learner that is both conservative

and rearrangement-independent provided the hypothesis space is appropriately chosen

(cf. Lange and Zeugmann [21]).

Furthermore, since the distribution of CONV decreases geometrically for all con-

servative and rearrangement-independent learning algorithms, all higher moments of

CONV exist in this case, too. Thus, instead of applying Theorem 6 directly, one

can hope for further improvements by applying even sharper tail bounds using, for

example, Chebyshev’s inequality.

Additionally, the learner takes a confidence parameter δ as input. But in contrast

to learning in the limit, the learner itself decides how many examples it wants to read.

Then it computes a hypothesis, outputs it and stops. The hypothesis output is correct

for the target with probability at least 1− δ .

The explanation given so far explains how it works, but not why it does. Intu-

itively, the stochastic finite learner simulates the limit learner until an upper bound

for twice the expected total number of examples needed until convergence has been

met. Assuming this to be true, by Markov’s inequality the limit learner has now
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converged with probability 1/2 . All what is left, is to decrease the probability of

failure. This is done by using the tail bounds for CONV . Applying Theorem 6, one

easily sees that increasing the sample complexity by a factor of O(log 1
δ
) results in

a probability of 1 − δ for having reached the stage of convergence. If Theorem 6 is

not applicable, one can still use Markov’s inequality but then the sample complexity

needed will increase by a factor of 1/δ .

It remains to explain how the stochastic finite learner can calculate the upper

bound for E[CONV ] . This is precisely the point where we need the parameterization

of the class D of underlying probability distributions. Since in general, it is not

known which distribution from D has been chosen, one has to assume a bit of prior

knowledge or domain knowledge provided by suitable upper and/or lower bounds for

the parameters involved. A more serious difficulty is to incorporate the unknown

target concept into this estimate. This step depends on the concrete learning problem

on hand, and requires some extra effort. We shall exemplify it below.

Now we are ready to formally define stochastic finite learning.

Definition 3 ([33, 34, 36]). Let D be a set of probability distributions on the

learning domain, C a concept class, H a hypothesis space for C , and δ ∈ (0, 1) .

(C,D) is said to be stochastically finitely learnable with δ -confidence with respect to

H iff there is an IIM M that for every c ∈ C and every D ∈ D performs as follows.

Given any random data sequence θ for c generated according to D , M stops after

having seen a finite number of examples and outputs a single hypothesis h ∈ H .

With probability at least 1− δ (with respect to distribution D ) h has to be correct,

that is c = h .

If stochastic finite learning can be achieved with δ -confidence for every δ > 0 then

we say that (C,D) can be learned stochastically finite with high confidence.

Note that there are subtle differences between our model and PAC learning. By

its definition, stochastic finite learning is not completely distribution independent.

A bit of additional knowledge concerning the underlying probability distributions is

required. Thus, from that perspective, stochastic finite learning is weaker than the

PAC-model. On the other hand, we do not measure the quality of the hypothesis with

respect to the underlying probability distribution. Instead, we require the hypothesis

computed to be exactly correct with high probability. Note that exact identification

with high confidence has been considered within the PAC paradigm, too (cf., e.g.,

Goldman et al. [13]). Conversely, we also can easily relax the requirement to learn

probably exactly correct but whenever possible we shall not do it.

Furthermore, in the uniform PAC model as introduced in Valiant [46] the sample

complexity depends exclusively on the VC dimension of the target concept class and

the error and confidence parameters ε and δ , respectively. This model has been

generalized by allowing the sample size to depend on the concept complexity, too

(cf., e.g., Blumer et al. [7] and Haussler et al. [15]). Provided no upper bound for the

concept complexity of the target concept is given, such PAC learners decide themselves
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how many examples they wish to read (cf. [15]). This feature is also adopted to our

setting of stochastic finite learning. However, all variants of PAC learning we are

aware of require that all hypotheses from the relevant hypothesis space are uniformly

polynomially evaluable. Though this requirement may be necessary in some cases to

achieve (efficient) stochastic finite learning, it is not necessary in general as we shall

see below.

Next, let us exemplify our model by looking at the concept class of all pattern

languages. The results presented below have been obtained by Zeugmann [51] and

Rossmanith and Zeugmann [36]. Our stochastic finite learner uses Lange and Wieha-

gen’s [19] pattern language learner as a main ingredient. We consider here learning

from positive data only.

Recall that every string of a particular pattern language is generated by at least one

substitution. Therefore, it is convenient to consider probability distributions over the

set of all possible substitutions. That is, if π ∈ Patk , then it suffices to consider any

probability distribution D over A+ × · · · × A+︸ ︷︷ ︸
k−times

. For (u0, . . . , uk−1) ∈ A+×· · ·×A+

we denote by D(u0, . . . , uk−1) the probability that variable x0 is substituted by u0 ,

variable x1 is substituted by u1 , . . . , and variable xk−1 is substituted by uk−1 .

In particular, we mainly consider a special class of distributions, i.e., product distri-

butions. Let k ∈ N+ , then the class of all product distributions for Patk is defined as

follows. For each variable xj , 0 ≤ j ≤ k−1 , we assume an arbitrary probability distri-

bution Dj over A+ on substitution strings. Then we call D = D0×· · ·×Dk−1 prod-

uct distribution over A+×· · ·×A+ , i.e., D(u0, . . . , uk−1) =
∏k−1

j=0 Dj(uj) . Moreover,

we call a product distribution regular if D0 = · · · = Dk−1 . Throughout this paper,

we restrict ourselves to deal with regular distributions. We therefore use d to denote

the distribution over A+ on substitution strings, i.e, D(u0, . . . , uk−1) =
∏k−1

j=0 d(uj) .

We call a regular distribution admissible if d(a) > 0 for at least two different ele-

ments a ∈ A . As a special case of an admissible distribution we consider the uniform

distribution over A+ , i.e., d(u) = 1/(2 · |A|)` for all strings u ∈ A+ with |u| = ` .

Note that here only strings of equal length have the same probability and not each

elementary event.

We will express all estimates with the help of the following parameters: E[Λ] , α

and β , where Λ is a random variable for the length of the examples drawn. α and β

are defined below. To get concrete bounds for a concrete implementation one has to

obtain c from the algorithm and has to compute E[Λ] , α , and β from the admissible

probability distribution D . Let u0, . . . , uk−1 be independent random variables with

distribution d for substitution strings. Whenever the index i of ui does not matter,

we simply write u or u′ .

The two parameters α and β are now defined via d . First, α is simply the

probability that u has length 1, i.e.,

α = Pr(|u| = 1) =
∑
a∈A

d(a).
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Second, β is the conditional probability that two random strings that get substituted

into π are identical under the condition that both have length 1 , i.e.,

β = Pr (u = u′ | |u| = |u′| = 1) =
∑
a∈A

d(a)2
/(∑

a∈A

d(a)

)2

.

Note that we have omitted the assumption of a text to exhaust the target language.

Instead, we only demand the data sequence fed to the learner to contain “enough”

information to recognize the target pattern. The meaning of “enough” is mainly

expressed by the parameter α .

The model of computation as well as the representation of patterns we assume is

the same as in Angluin [1]. In particular, we assume a random access machine that

performs a reasonable menu of operations each in unit time on registers of length

O(log n) bits, where n is the input length.

Lange and Wiehagen’s [19] algorithm (abbr. LWA) works as follows. Let hn be

the hypothesis computed after reading s0, . . . , sn , i.e., hn = M (s0, . . . , sn) . Then

h0 = s0 and for all n ≥ 1 :

hn =


hn−1, if |hn−1| < |sn|
sn, if |hn−1| > |sn|
hn−1 ∪ sn, if |hn−1| = |sn|

The algorithm computes the new hypothesis only from the latest example and the

old hypothesis. If the latest example is longer than the old hypothesis, the example

is ignored, i.e., the hypothesis does not change. If the latest example is shorter than

the old hypothesis, the old hypothesis is ignored and the new example becomes the

new hypothesis. If, however, |hn−1| = |sn| the new hypothesis is the union of hn−1

and sn . In order to explain the union, we need the following notation. Let π ∈ Pat ,

1 ≤ i ≤ |π| ; we use π(i) to denote the i -th symbol in π . Now, the union % = π ∪ s
of a canonical pattern π and a string s of the same length is defined as

%(i) =


π(i), if π(i) = s(i)

xj, if π(i) 6= s(i) & ∃k < i : [%(k) = xj, s(k) = s(i),
π(k) = π(i)]

xm, otherwise, where m = #var(%(1) . . . %(i− 1))

where %(0) = λ for notational convenience. Note that the resulting pattern is

again canonical.

If the target pattern does not contain any variable then the LWA converges after

having read the first example. Hence, this case is trivial and we therefore assume

in the following always k ≥ 1 , i.e., the target pattern has to contain at least one

variable.
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Figure 1 displays the union operation for π = 01x0x121x0x201x0x1 and s =

120021010212 . Since the letters in the first column are different and there is no

previous column, %(1) = x0 . The letters in the second column are different, and

the second column is not equal to the first column, so %(2) = x1 . Next, π(3) = x0

and π(4) = x1 , and thus % must also contain different variables at positions 3 and

4 . Consequently, these variables get renamed, i.e., %(3) = x2 and %(4) = x3 . The

letters in the 5th and 6th column are identical, hence %(5) = 2 and %(6) = 1 (cf.

the first case in the definition of the union operation). In the 7th column, we have

x0 and 0 and this column is equal to the third column. Therefore, the second case

in the definition of the union operation applies and %(7) = x2 . Now, %(8) = x4

and %(9) = 0 are obvious. The 10th column is identical to the second one, thus

%(10) = x1 . Next, we have x0 and 1 while both the third and 7th column contain

x0 and 0 . Therefore, a new variable has to be introduced and %(11) = x5 (cf. the

third case in the definition of the union operation). Analogously, the x1 in the 12th

column has to be distinguished from the x1 in 4th column resulting in %(12) = x6 .

π 0 1 x0 x1 2 1 x0 x2 0 1 x0 x1

s 1 2 0 0 2 1 0 1 0 2 1 2
% = π ∪ s x0 x1 x2 x3 2 1 x2 x4 0 x1 x5 x6

Figure 1

Our next theorem analyzes the complexity of the union operation.

Theorem 7 (Rossmanith and Zeugmann [36]). The union operation can be com-

puted in linear time.

Furthermore, the following bound for the stage of convergence for every target

pattern from Patk can be shown.

Theorem 8 (Rossmanith and Zeugmann [36]).

E[CONV ] = O

(
1

αk
· log1/β(k)

)
for all k ≥ 2 .

Hence, by Theorem 7, the expected total learning time can be estimated by

E[TT ] = O

(
1

αk
E[Λ] log1/β(k)

)
for all k ≥ 2 .

For a better understanding of the bound obtained we evaluate it for the uniform

distribution and compare it to the minimum number of examples needed for learning

a pattern language via the LWA.

Theorem 9 (Rossmanith and Zeugmann [36]). To learn a pattern π ∈ Patk ,

k ≥ 2 , from texts randomly generated with respect to the uniform distribution, the

LWA has the expected total learning time E[TT ] = O
(
2k|π| log|A|(k)

)
.

Theorem 10 (Zeugmann [51]). To learn a pattern π ∈ Patk the LWA needs

exactly blog|A|(|A|+ k − 1)c+ 1 examples in the best case.
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The main difference between the two bounds just given is the factor 2k which

precisely reflects the time the LWA has to wait until it has seen the first shortest string

from the target pattern language. Moreover, in the best-case the LWA is processing

shortest examples only. Thus, we introduce MC to denote the number of minimum

length examples read until convergence. Then, one can show that

E[MC ] ≤ 2 ln(k) + 3

ln(1/β)
+ 2 .

Note that Theorem 8 is shown by using the bound for E[MC ] just given. More

precisely, we have E[CONV ] =
(
1/αk

)
E[MC ] . Now, we are ready to transform the

LWA into a stochastic finite learner.

Theorem 11 (Rossmanith and Zeugmann [36]). Let α∗, β∗ ∈ (0, 1) . Assume D
to be a class of admissible probability distributions over A+ such that α ≥ α∗ , β ≤ β∗
and E[Λ] is finite for all distributions D ∈ D . Then (PAT ,D) is stochastically

finitely learnable with high confidence from text.

Proof. Let D ∈ D , and let δ ∈ (0, 1) be arbitrarily fixed. Furthermore, let

t = s0, s1, s2, . . . be any randomly generated text with respect to D for the target

pattern language. The wanted learner M uses the LWA as a subroutine. Additionally,

it has a counter for memorizing the number of examples already seen. Now, we

exploit the fact that the LWA produces a sequence (τn)n∈N of hypotheses such that

|τn| ≥ |τn+1| for all n ∈ N .

The learner runs the LWA until for the first time C many examples have been

processed, where

C =

(
1

α∗

)|τ |
·
(

2 ln(|τ |) + 3

ln(1/β∗)
+ 2

)
(A)

and τ is the actual output made by the LWA.

Finally, in order to achieve the desired confidence, the learner sets γ = dlog 1
δ
e

and runs the LWA for a total of 2 · γ · C examples. This is the reason we need the

counter for the number of examples processed. Now, it outputs the last hypothesis τ

produced by the LWA, and stops thereafter.

Clearly, the learner described above is finite. Let L be the target language and

let π ∈ Patk be the unique pattern such that L = L(π) . It remains to argue that

L(π) = L(τ) with probability at least 1− δ .

First, the bound in (A) is an upper bound for the expected number of examples

needed for convergence by the LWA that has been established in Theorem 8 (via the

reformulation using E[MC ] given above). On the one hand, this follows from our

assumptions about the allowed α and β as well as from the fact that |τ | ≥ |π| for

every hypothesis output. On the other hand, the learner does not know k , but the

estimate #var(π) ≤ |π| is sufficient. Note that we have to use in (A) the bound
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for E[MC ] given above, since the target pattern may contain zero or one different

variables.

Therefore, after having processed C many examples the LWA has already con-

verged on average. The desired confidence is then an immediate consequence of The-

orem 6.

The latter theorem allows a nice corollary which we state next. Making the same

assumption as done by Kearns and Pitt [18], i.e., assuming the additional prior knowl-

edge that the target pattern belongs to Patk , the complexity of the stochastic finite

learner given above can be considerably improved. The resulting learning time is linear

in the expected string length, and the constant depending on k grows only exponen-

tially in k in contrast to the doubly exponentially growing constant in Kearns and

Pitt’s [18] algorithm. Moreover, in contrast to their learner, our algorithm learns from

positive data only, and outputs a hypothesis that is correct for the target language

with high probability.

Again, for the sake of presentation we shall assume k ≥ 2 . Moreover, if the prior

knowledge k = 1 is available, then there is also a much better stochastic finite learner

for PAT 1 (cf. [34]).

Corollary 12. Let α∗, β∗ ∈ (0, 1) . Assume D to be a class of admissible

probability distributions over A+ such that α ≥ α∗ , β ≤ β∗ and E[Λ] is finite for

all distributions D ∈ D . Furthermore, let k ≥ 2 be arbitrarily fixed. Then there

exists a learner M such that

(1) M learns (PAT k,D) stochastically finitely with high confidence from text, and

(2) The running time of M is O
(
(1/αk∗)E[Λ] log1/β∗(k) log2(1/δ)

)
.

(* Note that 1/αk∗ and log1/β∗(k) now are constants. *)

This finishes our exposition concerning the pattern languages and unions thereof.

In the following section we show our ideas to be beneficial for a class known to be

PAC learnable by looking at the class of all concepts describable by a monomial.

4. Learning Conjunctive Concepts

In this section we exemplify the general approach outlined above by using the class

of all concepts describable by a monomial. For all details omitted the reader is referred

to Reischuk and Zeugmann [33].

For defining the classes of concepts we shall deal with in this section, let Ln =

{x1, x̄1, x2, x̄2 . . . , xn, x̄n} be a set of literals. xi is a positive literal and x̄i a negative

one. A conjunction of literals defines a monomial. For a monomial m let #(m)

denote its length, that is the number of literals in it.

A monomial m describes a subset L(m) of Xn , in other words a concept, in

the obvious way: the concept contains exactly those binary vectors for which the
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monomial evaluates to 1, that is L(m) := {b ∈ Xn m(b) = 1} . The collection

of objects we are going to learn is the set Cn of all concepts that are describable

by monomials over Xn . There are two trivial concepts, the empty subset and Xn
itself. Xn , which will also be called “TRUE”, can be represented by the empty

monomial. The concept “FALSE” has several descriptions. To avoid ambiguity, we

always represent “FALSE” by the monomial x1x̄1 . . . xnx̄n . Furthermore, we often

identify the set of all monomials over Ln and the concept class Cn . Note that

|Cn| = 3n + 1 .

For the concept class Cn we choose as hypothesis space the set of all monomials

over Ln and denote this hypothesis space by Hn . We shall distinguish learning

from positive data only and learning from both positive and negative data. Note

that when considering learning from positive data only, one cannot decide whether

or not the learner has already converged. When learning from positive and negative

data is considered, the stage of convergence is decidable, but one would have to read

the data sequence until all Boolean vectors did appear. Thus, for any interesting n ,

decidability is practically infeasible.

The learner used is essentially Haussler’s [14] Wholist algorithm. We present it

here as an iterative learner. The iterative learner is defined in stages, where Stage `

conceptually describes M` .

Algorithm IML: “Let c ∈ Cn , let i = (b0,m(b0)), (b1,m(b1)), . . . be any infor-

mant for c . Go to Stage 0.

Stage 0. IML receives as input (b0,m(b0)) .

Initialize hini = x1x̄1 . . . xnx̄n .

If m(b0) = 0 then hini remains unchanged; else

for j := 1 to n do

if bj0 = 1 then delete x̄j in hini else delete xj in hini .

Denote the result by h0 , output h0 and go to Stage 1.

Stage ` , ` ≥ 1 . IML receives as input h`−1 and the (` + 1) th element

(b`,m(b`)) of i .

If m(b`) = 0 then set h` = h`−1 ; else

for j := 1 to n do

if bj` = 1 then delete x̄j in h`−1 else delete xj in h`−1 .

Denote the result by h` , output h` and go to Stage `+ 1 .

By convention, if all literals have been removed, then h` = ∅ , and h`(b) = 1

for all b ∈ Xn .

end.”
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The following example illustrates Algorithm IML . Let n = 7 , and let m =

x1x̄2x4x7 be the target monomial. Suppose the input sequence to start as follows:

〈1001111, 1, 0110110, 0, 1011101, 1, 1011001, 1, . . .〉 . In Stage 0 the loop is executed

and all literals that do not evaluate to 1 are removed from hini . Thus, the hypothesis

computed is h0 = x1x̄2x̄3x4x5x6x7 . Next, h0 and 0110110, 0 are read and since

the label is 0, the hypothesis output is again x1x̄2x̄3x4x5x6x7 , i.e., h1 = h0 . In

Stage 2, IML receives h1 and 1011101, 1 and executes the loop resulting in h2 =

x1x̄2x4x5x7 . Now, IML reads h2 and 1011001, 1 and executes the loop in Stage

3. The result is h3 = x1x̄2x4x7 which equals the target monomial. Consequently,

Algorithm IML has reached the stage of convergence.

Now, we can directly state the following theorem.

Theorem 13. Algorithm IML ItLimInf Hn
-learns Cn .

Moreover, Algorithm IML can be easily adapted to learn from positive data

only. We have just to omit the tests whether or not m(bn) = 0 . We call the resulting

algorithm IMLP . Now, the following corollary is obvious.

Corollary 14. Algorithm IMLP ItLimTxtHn -learns Cn .

If the target monomial is the concept “FALSE”, then Algorithms IML and

IMLP immediately converge. Thus, we call “FALSE” the minimal concept. If the

target concept contains precisely n literals, then one positive example suffices. This

positive example is unique. Thus, for these two cases everything is clear and therefore,

we call these concepts trivial. Also, the set of probability distributions D on the set

of positive examples for these trivial c are trivial, too.

To study the general case, let us call the literals appearing in a non-minimal mono-

mial m relevant. All the other literals in Ln will be called irrelevant for m . There

are 2n −#(m) irrelevant literals. Recall that #(m) denotes the number of literals

in monomial m .

We call bit i relevant for monomial m if xi or x̄i is relevant for m and use

k := k(m) = n−#(m) to denote the number of irrelevant bits.

4.1. Learning Monomials from Positive Data

First, we consider learning from positive data. To avoid the trivial cases, we let

c = L(m) ∈ Cn be a concept with monomial m =
∧#(m)
j=1 `ij such that k = k(m) =

n−#(m) > 0 . There are 2k positive examples for c . For the sake of presentation,

we assume these examples to be binomially distributed. That is, in a random positive

example all entries corresponding to irrelevant bits are selected independently of each

other. With some probability p this will be a 1 , and with probability q a 0 , where

q = 1 − p . We shall consider only nontrivial distributions where 0 < p < 1 . Note

that otherwise the data sequence does not contain all positive examples. We aim to

compute the expected number of examples taken by IMLP until convergence. Again
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we use CONV to denote a random variable counting the number of examples read

till convergence.

The first example received forces IMLP to delete precisely n of the 2n literals

in hini . Thus, this example always plays a special role. Note that the resulting

hypothesis h0 depends on b0 , but the number k of literals that remain to be deleted

from h0 until convergence is independent of b0 . Using tail bound techniques, we can

show the following theorem.

Theorem 15 (Reischuk and Zeugmann [33]). Let c = L(m) be a non-minimal

concept in Cn , and let the positive examples for c be binomially distributed with

parameter p . Define ψ := min{ 1
1−p ,

1
p
} and τ := max{ p

1−p ,
1−p
p
} . Then the expected

number of positive examples needed by algorithm IMLP until convergence can be

bounded by

E[CONV ] ≤ dlogψ k(m)e+ τ + 2 .

Proof. Let k = k(m) and let q = 1−p . The first positive example contains ν times

a 1 and k−ν times a 0 with probability
(
k
ν

)
pνqk−ν at the positions not corresponding

to a literal in the target monomial m . Now, assuming any such vector, we easily

see that h0 contains ν positive irrelevant literals and k − ν negative irrelevant

literals. Therefore, in order to achieve convergence, the Algorithm IMLP now needs

positive examples that contain at least one 0 for each positive irrelevant literal and

at least one 1 for each negative irrelevant literal. Thus, the probability that at

least one irrelevant literal survives µ subsequent positive examples is bounded by

νpµ + (k − ν)qµ . Therefore,

Pr(CONV − 1 > µ) ≤
k∑
ν=0

(
k

ν

)
pνqk−ν · (νpµ + (k − ν)qµ) .

Next, we derive a closed formula for the sum given above.

Claim 1.
k∑
ν=0

(
k

ν

)
pνqk−ν · ν = kp and

k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν) = kq

The first equality can be shown as follows.

k∑
ν=0

(
k

ν

)
pνqk−ν · ν =

k∑
ν=1

(
k

ν

)
pνqk−ν · ν

=
k−1∑
ν=0

(
k

ν + 1

)
pν+1qk−1−ν · (ν + 1)

=
k−1∑
ν=0

k ·
(
k − 1

ν

)
pν+1qk−(ν+1)

= kp ·
k−1∑
ν=0

(
k − 1

ν

)
pνq(k−1)−ν

= kp · (p+ q)k−1 = kp .
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The other equality can be proved analogously, which yields Claim 1.

Now, proceeding as above, we obtain

E[CONV − 1] =
∞∑
µ=0

Pr(CONV − 1 > µ)

≤ λ+
∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · (νpµ + (k − ν)qµ)

= λ+
∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · νpµ +

∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν)qµ

= λ+
∞∑
µ=λ

pµ ·
k∑
ν=0

(
k

ν

)
pνqk−νν︸ ︷︷ ︸

=kp by Claim 1

+
∞∑
µ=λ

qµ ·
k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν)︸ ︷︷ ︸

=kq by Claim 1

= λ+ kp ·
∞∑
µ=λ

pµ + kq ·
∞∑
µ=λ

qµ = λ+ k ·
(
p

q
· pλ +

q

p
· qλ
)

≤ λ+ k ·
(
p

q
· ψ−λ +

q

p
· ψ−λ

)
≤ λ+ kψ−λ · (1 + τ) .

Finally, choosing λ = dlogψ ke gives the statement of the theorem as an easy calcu-

lation shows.

Now, taking into account that τ does not depend on the dimension n of the

learning domain {0, 1}n , we can easily determine the expected total learning time.

Corollary 16 (Reischuk and Zeugmann [33]). For every binomially distributed

text with parameter 0 < p < 1 the average total learning time of Algorithm IMLP for

concepts in Cn is at most O(n log n) .

Also, Algorithm IMLP possesses the two favorable properties needed to apply

Theorem 6, i.e., it is rearrangement-independent and conservative. Thus, we can

conclude

Pr(CONV > 2 t · E[CONV ]) ≤ 2−t for all t ∈ N .

Next, we turn our attention to the design of a stochastic finite learner. We study the

case that the positive examples are binomially distributed with parameter p . But

we do not require precise knowledge about the underlying distribution. Instead, we

reasonably assume that prior knowledge is provided by parameters plow and pup such

that plow ≤ p ≤ pup for the true parameter p . Binomial distributions fulfilling this

requirement are called (plow, pup)–admissible distributions. Let Dn[plow, pup]

denote the set of such distributions on Xn .

If bounds plow and pup are available, the Algorithm IMLP can be transformed

into a stochastic finite learner inferring all concepts from Cn with high confidence.
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Theorem 17 (Reischuk and Zeugmann [33]). Let 0 < plow ≤ pup < 1 and

ψ := min{ 1
1−plow

, 1
pup
} . Then (Cn,Dn[plow, pup]) is stochastically finitely learnable with

high confidence from text. To achieve δ -confidence no more than O
(
log2 1/δ · logψ n

)
many examples are necessary.

Proof. The stochastic finite learner is based on Algorithm IMLP and a counter

for the number of examples already processed. We set

τmax =

⌈
max

{
plow

1− plow

,
1− plow

plow

,
pup

1− pup

,
1− pup

pup

}⌉
.

If Algorithm IMLP is run for ϑ := dlogψ ne+ τmax +2 many examples, Theorem 15

implies that ϑ is at least as large as the expected convergence stage E[CONV ] .

In order to achieve the desired confidence, the learner sets γ := dlog 1
δ
e and runs

Algorithm IMLP for a total of 2 γ · ϑ examples. This is the reason why we need

a counter for the number of examples processed. The algorithm outputs the last

hypothesis h2 γ·ϑ produced by Algorithm IMLP and stops thereafter. The reliability

follows from the tail bounds established in Theorem 6.

4.2. Learning Monomials from Informant

Finally, we ask how the results obtained so far translate to the case of learning from

informant. Since Algorithm IML does not learn anything from negative examples,

one may expect that it behaves much poorer in this setting. First, we investigate the

uniform distribution over Xn . Again, we have the trivial cases that the target concept

is “FALSE” or m is a monomial without irrelevant bits. In the first case, no example

is needed at all, while in the latter one, there is only one positive example having

probability 2−n . Thus the expected number of examples needed until successful

learning is 2n = 2#(m) .

Theorem 18 (Reischuk and Zeugmann [33]). Let c = L(m) ∈ Cn be a nontrivial

concept. If a data sequence for c is generated from the uniform distribution on the

learning domain by independent draws, the expected number of examples needed by

Algorithm IML until convergence is bounded by

E[CONV ] ≤ 2#(m) (dlog2 k(m)e+ 3) .

Proof. Let CONV + be a random variable for the number of positive examples

needed until convergence. Every positive example is preceded by a possibly empty

block of negative examples. Thus, we can partition the initial segment of any randomly

drawn informant read until convergence into CONV + many blocks Bj containing a

certain number of negative examples followed by precisely one positive example. Let

Λj be a random variable for the length of block Bj . Then CONV = Λ1 + Λ2 +

· · · + ΛCONV+ , where the Λj are independently identically distributed. In order to
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compute the distribution of Λj , it suffices to calculate the probabilities to draw a

negative and a positive example, respectively. Since the overall number of positive

examples for c is 2k with k = k(m) , the probability to generate a positive example is

2k−n . Hence, the probability to draw a negative example is 1− 2k−n . Consequently,

Pr(Λj = µ+ 1) =
(
1− 2k−n

)µ · 2k−n .
Therefore,

E[CONV ] = E[Λ1 + Λ2 + · · ·+ ΛCONV+]

=
∞∑
ζ=0

E[Λ1 + Λ2 + · · ·+ Λζ | CONV + = ζ] · Pr(CONV + = ζ)

=
∞∑
ζ=0

ζ · E[Λ1] · Pr(CONV + = ζ)

= E[CONV +] · E[Λ1]

By Theorem 15, we have E[CONV +] ≤ dlog2 ke+3 , and thus it remains to estimate

E[Λ1] . A simple calculation shows

Lemma 2. For every 0 < a < 1 , it holds:

∞∑
µ=0

(µ+ 1) · aµ = (1− a)−2 .

Using this estimation we can conclude

E[Λ1] =
∞∑
µ=0

(µ+ 1) · Pr(Λ1 = µ+ 1)

= 2k−n
∞∑
µ=0

(µ+ 1) ·
(
1− 2k−n

)µ
= 2n−k ,

and thus the theorem follows.

Hence, as long as the length of m is constant, and therefore k(m) = n−O(1) , we

still achieve an expected total learning time of order n log n . But if #(m) grows lin-

early the expected total learning becomes exponential. On the other hand, if there are

many relevant literals then even h0 may be considered as a not too bad approxima-

tion for c . Consequently, it is natural at this point to introduce an error parameter

ε ∈ (0, 1) as in the PAC model, and to ask whether one can achieve an expected

sample complexity for computing an ε -approximation that is bounded by a function

depending on log n and 1/ε .

To answer this question, let us formally define errorm(hj) = D(L(hj)4L(m)) to

be the error made by hypothesis hj with respect to monomial m . Here L(hj)4L(m)

stands for the symmetric difference of L(hj) and L(m) and D for the underlying
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probability distribution with respect to which the examples are drawn. Note that by

construction of Algorithm IML we can conclude errorm(hj) = D(L(m) \ L(hj)) .

We call hj an ε –approximation for m if errorm(hj) ≤ ε . Furthermore, we

redefine the stage of convergence. Let m be any monomial, and let d = (dj)j∈N be

an informant for L(m) , then

CONV ε(d) := the least number j such that

errorm(IML(di)) ≤ ε for all i ≥ j .

Note that once the Algorithm IML has reached an ε -approximate hypothesis all

further hypotheses will also be at least that close to the target monomial.

The following theorem gives an affirmative answer to the question posed above.

Theorem 19 (Reischuk and Zeugmann [33]). Let c = L(m) ∈ Cn be a nontrivial

concept. Assuming that examples are drawn at random independently from the uni-

form distribution, the expected number of examples needed by Algorithm IML until

converging to an ε –approximation for c can be bounded by

E[CONV ε] ≤ 1

ε
· (dlog2 k(m)e+ 3) .

Proof. It holds errorm(hini) = 2k(m)−n , since hini misclassifies exactly the pos-

itive examples. Therefore, if errorm(h0) ≤ ε , we are already done. Now suppose

errorm(h0) > ε . Consequently, 1/ε > 2n−k(m) , and thus the bound stated in the the-

orem is larger than 2n−k(m)(dlog2 k(m)e + 3) , which, by Theorem 18 is the expected

number of examples needed until convergence to a correct hypothesis.

Thus, additional knowledge concerning the underlying probability distribution pays

off again. Applying Theorem 6 and modifying the stochastic finite learner presented

above mutatis mutandis, we get a learner identifying ε -approximations for all concepts

in Cn stochastically with high confidence using O(1
ε
· log 1

δ
· log n) many examples.

Comparing this bound with the sample complexity given in the PAC model, we see

that it is reduced exponentially, i.e., instead of a factor n now we have the factor

log n .

Finally, we can generalize the last results to the case that the data sequences are

binomially distributed for some parameter p ∈ (0, 1) . This means that any particular

vector containing ν times a 1 and n − ν a 0 has probability pν(1 − p)n−ν since a

1 is drawn with probability p and a 0 with probability 1 − p . First, Theorem 18

generalizes as follows.

Theorem 20 (Reischuk and Zeugmann [33]). Let c = L(m) ∈ Cn be a nontrivial

concept. Let m contain precisely π positive literals and ν negative literals. If the

labeled examples for c are independently binomially distributed with parameter p and
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ψ := min{ 1
1−p ,

1
p
} and τ := max{ p

1−p ,
1−p
p
} , then the expected number of examples

needed by Algorithm IML until convergence can be bounded by

E[CONV ] ≤ 1

pπ(1− p)ν
(dlogψ k(m)e+ τ + 2) .

Proof. Assuming the same notation as in the proof of Theorem 18, it is easy to

see that we only have to recompute E[Λ1] , and thus Pr(Λ1 = µ + 1) , too. Since m

contains precisely π positive literals and ν negative literals, the probability to draw

a positive example is clearly pπ(1− p)ν , and thus the probability to randomly draw

a negative example is 1− pπ(1− p)ν . Consequently,

Pr(Λ1 = µ+ 1) = (1− pπ(1− p)ν)µ · pπ(1− p)ν ,

and Lemma 2 gives E[Λ1] = 1
pπ(1−p)ν .

Theorem 19 directly translates into the setting of binomially distributed inputs,

too.

Theorem 21 (Reischuk and Zeugmann [33]). Let c = L(m) ∈ Cn be a nontrivial

concept. Assume that the examples are drawn with respect to a binomial distribution

with parameter p , and let ψ := min{ 1
1−p ,

1
p
} and τ := max{ p

1−p ,
1−p
p
} . Then the

expected number of examples needed by Algorithm IML until converging to an ε -

approximation for c can be bounded by

E[CONV ] ≤ 1

ε
· (dlogψ k(m)e+ τ + 2) .

Finally, one can also get stochastic finite approximations with high confidence from

informant with an exponentially smaller sample complexity.

Theorem 22 (Reischuk and Zeugmann [33]). Let 0 < plow ≤ pup < 1 and

ψ := min{ 1
1−plow

, 1
pup
} . For (Cn,Dn[plow, pup]) ε -approximations are stochastically

finitely learnable with δ -confidence from informant for any ε, δ ∈ (0, 1) .

For this purpose, O
(

1
ε
· log2 1/δ · logψ n

)
many examples suffice.

5. Conclusions

The present paper surveyed results recently obtained concerning the iterative learn-

ability of the class of all pattern languages and finite unions thereof. In particular,

it could be shown that there are strong dependencies between iterative learning, the

class of admissible hypothesis spaces and additional requirements to the learner such

as consistency, conservativeness and the decidability of the inclusion problem for the

hypothesis space chosen. Looking at these results, we have seen that the LWA is in

some sense optimal.
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Moreover, by analyzing the average-case behavior of Lange and Wiehagen’s pattern

language learning algorithm with respect to its total learning time and by establishing

exponentially shrinking tail bounds for a rather rich class of limit learners, we have

been able to transform the LWA into a stochastic finite learner. The price paid is the

incorporation of a bit prior knowledge concerning the class of underlying probability

distributions. When applied to the class of all k -variable pattern languages, where

k is a priori known, the resulting total learning time is linear in the expected string

length.

Thus, the present paper provides evidence that analyzing the average-case behav-

ior of limit learners with respect to their total learning time may be considered as

a promising path towards a new theory of efficient algorithmic learning. Recently

obtained results along the same path as outlined in Erlebach et al.[11] as well as in

Reischuk and Zeugmann [32, 34] provide further support for the fruitfulness of this

approach.

In particular, in Reischuk and Zeugmann [32, 34] we have shown that one-variable

pattern languages are learnable for basically all meaningful distributions within an

optimal linear total learning time on the average. Furthermore, this learner can

also be modified to maintain the incremental behavior of Lange and Wiehagen’s [19]

algorithm. Instead of memorizing the pair (PRE, SUF) , it can also store just the two or

three examples from which the prefix PRE and the suffix SUF of the target pattern has

been computed. While it is no longer iterative, it is still a bounded example memory

learner. A bounded example memory learner is essentially an iterative learner that is

additionally allowed to memorize an a priori bounded number of examples (cf. [9] for

a formal definition).

While the one-variable pattern language learner from [34] is highly practical, our

stochastic finite learner for the class of all pattern languages is still not good enough for

practical purposes. But our results surveyed point to possible directions for potential

improvements. However, much more effort seems necessary to design a stochastic

finite learner for PAT (k) .

Additionally, we have applied our techniques to design a stochastic finite learner for

the class of all concepts describable by a monomial which is based on Haussler’s [14]

Wholist algorithm. Here we have assumed the examples to be binomially distributed.

The sample size of our stochastic finite learner is mainly bounded by log(1/δ) log n ,

where δ is again the confidence parameter and n is the dimension of the underlying

Boolean learning domain. Thus, the bound obtained is exponentially better than the

bound provided within the PAC model.

Our approach also differs from U-learnability introduced by Muggleton [27]. First

of all, our learner is fed with positive examples only, while in Muggleton’s [27] model

examples labeled with respect to their containment in the target language are pro-

vided. Next, we do not make any assumption concerning the distribution of the target

patterns. Furthermore, we do not measure the expected total learning time with re-

spect to a given class of distributions over the targets and a given class of distributions
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for the sampling process, but exclusively in dependence on the length of the target.

Finally, we require exact learning and not approximately correct learning.
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