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Abstract

We prove performance guarantees for Bayesian learning algorithms, in

particular stochastic model selection, with the help of potential functions.

Such a potential quantifies the current state of learning in the system, in

a way that the expected error in the next step is bounded by the expected

decrease of the potential. For Bayesian stochastic model selection, an ap-

propriate potential function will be specified by introducing the entropy

potential, a quantity which we define as the worst-case entropy of a model

class with regard to the true model. The resulting cumulative error bounds

correspond to Solomonoff’s theorem and are essentially sharp. They imply

consistency, namely almost sure convergence of the predictive probabilities

to the true ones, and loss/regret bounds for arbitrary bounded loss func-

tion. Although we formulate our results in the classification framework,

they are equally applicable to the prediction of non-i.i.d. sequences.

1 Introduction

Most of the performance guarantees proven recently in learning theory fall into the

category of “data dependent bounds”. They are powerful for constructing learning

algorithms and usually do not need any assumption on the data generating process.

On the other hand, if we want to make assertions about a learner’s (expected) quality,

before we have seen any data, a different type of performance guarantees is required:

bounds that hold prior to any observation under certain assumptions on the data

generating process. This is the topic of the present paper.

An archetype for this latter sort of performance guarantees is Solomonoff’s uni-

versal induction result [Sol78] (see Theorem 3 below). It gives a tight bound on the

∗This work was supported by JSPS 21st century COE program C01.
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expected cumulative quadratic error of a Bayesian mixture learner, provided that the

learner is based on a countable model class containing the data generating distribu-

tion. This does not only imply a very strong consistency assertion (namely almost

sure convergence, i.e. convergence with probability one), but also loss bounds for ar-

bitrary loss function. A variant for continuously parameterized model class has been

given in [CB90]. Minimum description length (MDL) defines another class of learners

for which corresponding results are known [Ris96, PH05].

While, for given data, MDL and Bayes mixture learners make deterministic pre-

dictions, this is different for stochastic model selection, sometimes also referred to as

Gibbs sampling. For this learner we know of no corresponding theorem so far: This

is the main focus of the present paper. A different important type of theorems has

been intensely studied for stochastic model selection in the recent past, namely PAC-

Bayesian theorems, e.g. [McA03]: They state that PAC bounds for a single model

carry over to a learner which selects models randomly according to a suitable poste-

rior distribution.

By proving cumulative error bounds for the stochastic model selection learner,

we will obtain two conclusions: We will show that this learner is consistent in the

(strong) sense that the predictive probabilities converge to the true ones almost surely.

Moreover we will obtain loss or regret bounds under arbitrary bounded loss functions.

Both results are, to our knowledge, new for this learner.

The present proofs are based on the method of potential functions. A potential

quantifies the current state of learning, such that the expected error in the next step

does not exceed the expected decrease of the potential function in the next step. If

we then can bound the cumulative decrease of the potential function, we obtain the

desired bounds. Again Solomonoff’s result can be understood as an archetype for this

method, as we will see below. The potential method used here has been inspired by

a related (but technically different) proof technique in prediction with expert advice

[CBL03]. Also, note the fundamental difference between Bayesian stochastic model

selection, which we focus on, and the very popular stochastic expert selection algo-

rithms, e.g. [FS97]. In the latter case, the posterior, according to which is sampled,

is not Bayesian, but specifically designed for regret minimization. Expert algorithms

do not yield estimates for the probabilities governing the data.

In order to get a potential function for stochastic model selection satisfying the

desired properties, we will introduce the entropy potential. This quantity is defined

as the worst-case entropy of the model class under all admissible transformations of

the weights, where the weight of the true distribution (which is in the model class by

assumption) is kept fixed. The entropy potential is possibly a novel definition in this

work.

This paper is structured as follows. In the next section, we will introduce the

notation and prove Solomonoff’s result with a potential function. In Section 3, we

consider stochastic model selection and prove the main auxiliary result in order to

obtain bounds. Section 4 defines the entropy potential and proves bounds for general
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countable model class. In Section 5 we turn to the question how large the newly

defined entropy potential can be. The last section contains discussion and conclusions.

2 Setup and Bayes Mixture

We work in a general discrete Bayesian online classification framework with stochas-

tic concepts. All our theorems and proofs carry over to the prediction of non-i.i.d.

sequences (this setup is defined e.g. in [PH05], compare also Remark 2).

Let X = {1 . . . |X |} be a finite alphabet, Z be a finite or countable set of possible

inputs (see again Remark 2), and C = ν1, ν2, . . . be a finite or countable model class.

Each model ν ∈ C specifies probability distributions1 on X for all inputs z ∈ Z, i.e. ν

is a function

ν : z 7→ (
ν(x|z)

)
x∈X where ν(x|z) ≥ 0 and

∑
x∈X

ν(x|z) = 1. (1)

Each ν ∈ C is assigned a prior weight wν > 0, where
∑

ν∈C wν = 1. (We need not

consider models with zero prior weight, as they don’t have any impact for anything

of what follows.) In order to make clear that we talk of the prior or initial weight,

opposed to a posterior weight, we will sometimes write winit
ν instead of wν .

We assume that there is one data generating or true distribution µ ∈ C. Then the

online classification proceeds in discrete time t = 1, 2, . . .: An input zt is generated

by some mechanism (compare Remark 2 below) we must issue (i.e. the learner must

compute) a guess
(
p(x)

)
x∈X (where

∑
x∈X p(x) = 1) for the current probability vector(

µ(x|zt)
)

x∈X , and an outcome xt ∈ X is sampled according to
(
µ(x|zt)

)
and revealed

to the learner (note that the probabilities
(
µ(x|zt)

)
are not revealed).

After each observation xt, we may update the weights wν by Bayes’ rule, thus

obtaining, after time t− 1 and before time t, the posterior weights

wν(h<t) = wν(h1:t−1) = wν(z1:t−1, x1:t−1) =
wν

∏t−1
i=1 ν(xi|ui)∑

ν′∈C wν′
∏t−1

i=1 ν ′(xi|ui)
,

where h<t = (z<t, x<t) = (u1, x1, u2, x2, . . . , zt−1, xt−1) denotes the history. Then, in

the Bayesian sense it is optimal to estimate the current probabilities according to the

Bayes mixture

ξ(x|zt, h<t) =
∑
ν∈C

wν(h<t)ν(x|zt).

Example 1 Assume that X is binary and Z contains only a single element. In this

case the observations are Bernoulli trials, i.e. they result from fair or unfair coin flips.

1We don’t consider semimeasures, as our methods below rely on normalized probability dis-
tributions. This restriction can be possibly lifted to some extent, however we do not expect the
consequences to be very interesting (see also Example 22).
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C specifies the set of possible coins we consider, and it is well-known that all posterior

weights but the weight of the true coin will converge to zero almost surely for t →∞.

With the set of coins C ∼= {1
4
, 1

2
, 3

4
} and the true coin being the fair one, it is easy

to see that this example gives a lower bound o(− log wµ) on the expected quadratic

error of Bayes mixture and stochastic model selection predictions, namely the l.h.s.

expressions of (4) and (7), respectively.

Remark 2 The inputs zt are not used at all throughout this paper, so the mechanism

which generates them doesn’t need to be specified. We could as well work in an input-

less sequence prediction setup, which is common for Solomonoff induction (Theorem

3 below). We decided to keep the inputs, as stochastic model selection is usually

considered in a classification setup (compare also Example 22). We incorporate the

inputs into the history h<t, thus they don’t complicate the notation.

Solomonoff’s [Sol78] remarkable universal induction result tightly bounds the per-

formance guarantee for the Bayes mixture with an arbitrary input sequence zt. For

introductory purpose, we prove it here in the classification setup. We use an appro-

priate potential function, thereby slightly modifying the proof from [Hut04].

Theorem 3 (Solomonoff’s universal induction result) Assume that the data gener-

ating distribution is contained in the model class, i.e. µ ∈ C. Define the complexity

potential as

K(h<t) = − log wµ(h<t). (2)

(All logarithms are natural in this paper.) For any current input zt and any history

h<t, this potential satisfies

(i) K(h<t) ≥ 0,

(ii) K(h<t)− Ext∼µ(·|zt)K(h1:t) ≥
∑
x∈X

(
µ(x|zt)− ξ(x|zt, h<t)

)2
. (3)

By summing up the expectation of (ii) while observing (i), we immediately obtain

Solomonoff’s assertion for arbitrary sequence of inputs z1, z2, . . .:

∞∑
t=1

E‖µ− ξ‖2
2 :=

∞∑
t=1

E
∥∥µ(·|zt)− ξ(·|zt, h<t)

∥∥2

2
≤ Kinit = − log winit

µ , (4)

where expectation is with respect to µ, and the squared 2-norm of a vector v ∈ R|X |
is defined as usual, ‖v‖2

2 =
∑

i v
2
i . As we will see in the proof of Theorem 7, this

implies that the Bayes mixture probabilities ξ converge to the true probabilities µ

almost surely.

Proof. Clearly, (i) holds. In order to show (ii), we observe that wµ(h1:t) = wµ(h<t)
µ(xt|zt)

ξ(xt|zt,h<t)
.

Then, simplifying the notation by suppressing the history h<t and the current input

zt (e.g. K stands for K(h<t)),

K − EK(x) = K −
∑
x∈X

µ(x)
(
K − log µ(x)

ξ(x)

)
= D

[
µ(·|zt)

∥∥ξ(·|zt, h<t)
]
.
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The r.h.s. here is called Kullback-Leibler divergence. By the following lemma it is an

upper bound for
∑

x∈X
(
µ(x|zt)− ξ(x|zt, h<t)

)2
. 2

Lemma 4 For two probability distributions µ and ρ on X , we have

∑
a∈X

(
µ(a)− ρ(a)

)2 ≤
∑
a∈X

µ(a) log µ(a)
ρ(a)

.

This well known inequality is proven for instance in [Hut04, Sec.3.9.2].

By Kraft’s inequality, the complexity K of µ can be interpreted as µ’s description

length. Thus, Solomonoff’s theorem asserts that the predictive complexity (measured

in terms of the quadratic error) coincides with the descriptive complexity, if the data

is rich enough to distinguish the models. Then K can be viewed as the state of

learning in the discrete model class. Observe that only the expected progress, i.e.

decrease of K, is positive. The actual progress depends on the outcome of xt and is

positive if and only if µ(xt) ≥ ξ(xt). If the probability vectors µ and ξ coincide, then

– according to this potential function – no learning takes place for any observation,

as then K(xt) = K for all xt. Hence, the complexity potential K need not always be

a good choice to describe the learning state.

Example 5 Consider a binary alphabet and a model class containing three distribu-

tions ν1, ν2, ν3, predicting νi(1|z) = i
4

for some input z. Suppose µ = ν2, i.e. the true

probability is 1
2
. Then we cannot measure the learning progress after the observation

in terms of K. However, there should be a progress, and indeed there is one, if we

consider the entropy of the model class. This will become clear with Lemma 6.

3 Stochastic Model Selection

Here is another case where the complexity potential K is not appropriate to quantify

the state of learning. In stochastic model selection, the current prediction vector

Ξ(·|zt, h<t) is obtained by randomly sampling a model according to the current weights

wν(h<t) and using this model’s prediction, i.e.

Ξ(·|zt, h<t) = νJ(·|zt) where P(J = i) = wνi
(h<t).

Hence, Ξ is a random variable depending on the sampled index J . The following

lemma gives a first indication for a suitable potential function for learning with

stochastic model selection.

Lemma 6 Assume that the current entropy of the model class,

H(h<t) = −
∑
ν∈C

wν(h<t) log wν(h<t),
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is finite. Then, for any input zt,

H(h<t)−Ext∼ξ(·|zt,h<t)H(h1:t) =
∑
ν∈C

wν(h<t)
∑
x∈X

ν(x|zt) log ν(x|zt)
ξ(x|zt,h<t)

≥
∑
ν∈C

wν(h<t)
∑
x∈X

(
ν(x|zt)− ξ(x|zt, h<t)

)2
=: E

∥∥Ξ− ξ
∥∥2

2
.

Proof. The equality is straightforward computation. Then use Lemma 4 for the

inequality. 2

Unfortunately, the l.h.s. of the above inequality contains an expectation w.r.t. ξ

instead of µ. Since on the other hand µ governs the process and generally differs from

ξ, the entropy H is not directly usable as a potential for the Ξ’s deviation from its

mean ξ. The following theorem demonstrates an easy fix, which however exponentially

blows up the potential.

Theorem 7 (Predictive performance of stochastic model selection: loose bound) As-

sume that µ ∈ C. Define the potential PE(h<t) = H(h<t) exp
(K(h<t)

)
= H(h<t)/wµ(h<t).

Then, for any history h<t and any current input zt,

PE(h<t)− Ext∼µ(·|zt)PE(h1:t) ≥ E
∥∥Ξ(·|zt, h<t)− ξ(·|zt, h<t)

∥∥2

2
. (5)

Consequently, with Hinit = −∑
ν∈C winit

ν log winit
ν denoting the initial entropy,

∞∑
t=1

E
∥∥Ξ− ξ

∥∥2

2
≤ P init

E = Hinit/winit
µ , (6)

∞∑
t=1

E
∥∥Ξ− µ

∥∥2

2
≤ − log(winit

µ ) +Hinit/winit
µ + 2

√
−Hinit log(winit

µ )/winit
µ , (7)

and the predictions by Ξ converge to the true probabilities µ almost surely.

Proof. Recall wµ(h1:t) = wµ(h<t)
µ(xt|zt)

ξ(xt|zt,h<t)
. Since always 1/wµ(h<t) ≥ 1, using

Lemma 6 we obtain (5) by

PE(h<t)−
∑
x∈X

µ(x|zt)PE(h1:t) = 1
wµ(h<t)

(H(h<t)−
∑
x∈X

ξ(x|zt, h<t)H(h1:t)
)

≥ E
∥∥Ξ(·|zt, h<t)− ξ(·|zt, h<t)

∥∥2

2
.

Summing the expectation up yields (6). Using this together with (4) and the triangle

inequality
√∑

E
∥∥Ξ− µ

∥∥2

2
≤

√∑
E

∥∥Ξ− ξ
∥∥2

2
+

√∑
E

∥∥ξ − µ
∥∥2

2
, we conclude (7).

Finally, almost sure convergence follows from

P
(
∃t ≥ n : st ≥ ε

)
= P

( ⋃
t≥n

{
st ≥ ε

})
≤

∑
t≥n

P
(
st ≥ ε

) ≤ 1

ε

∞∑
t=n

Est
n→∞−→ 0
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for each ε > 0, with st = E
∥∥Ξ(·|zt, h<t)− µ(·|zt, h<t)

∥∥2

2
. 2

In particular, this theorem shows that the entropy of a model class, if it is initially

finite, necessarily remains finite almost surely. Moreover, it establishes almost sure

asymptotic consistency of prediction by stochastic model selection in our Bayesian

framework. However, it does not provide meaningful error bounds for all but very

small model classes, since the r.h.s. of the bound is exponential in the complexity,

hence possibly huge.

Before continuing to show better bounds, we demonstrate that the entropy is indeed

a lower bound for any successful potential function for stochastic model selection.

Example 8 Let the alphabet be binary. Let wµ = 1− 1
n
, in this wayK ≈ 1

n
and can be

made arbitrary small for large n ∈ N. Fix a target entropy H0 ∈ N and set K = 2nH0 .

Choose a model class that consists of the true distribution, always predicting 1
2
, and

K other distributions with the same prior weight 1/(nK). In this way, the entropy of

the model class is indeed close to H0 log 2. Let the input set be Z = {1 . . . nH0}, and

let νb(1|z) = bz, where bz is the zth bit of ν’s index b in binary representation. Then

it is not hard to see that on the input stream z1:nH0 = 1, 2, . . . nH0 always µ = ξ.

Moreover, at each time, E‖Ξ−µ‖2
2 = 1/(4n). Therefore the cumulative error is H0/4,

i.e. of order of the entropy. Note that this error, which can be chosen arbitrarily large,

is achievable for arbitrarily small complexity K.

In the proof of Theorem 7, we used only one “wasteful” inequality, namely 1/wµ(h<t) ≥
1. The following lemma will be our main tool for obtaining better bounds.

Lemma 9 (Predictive performance of stochastic model selection, main auxiliary re-

sult) Suppose that we have some function B(h<t), depending on the history, with the

following properties:

(i) B(h<t) ≥ H(h<t) (dominates the entropy),

(ii) Ext∼µ(·|zt)B(h1:t) ≤ B(h<t) (decreases in expectation),

(iii) the value of B(h<t) can be approximated arbitrarily close

by restricting to a finite model class.

Then, for any history and current input, the potential function defined by

P(h<t) =
[K(h<t) + log(1 +H(h<t))

]
(1 + B(h<t))

satisfies

P(h<t)− Ext∼µ(·|zt)P(h1:t) ≥ H(h<t)− Ext∼ξ(·|zt,h<t)H(h1:t). (8)

Proof. Because of (iii), we need to prove the lemma only for finite model class, the

countable case then follows by approximation. In this way we avoid dealing with a

Lagrangian on an infinite dimensional space below.
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Again we drop all dependencies on the history h<t and the current input zt from

the notation. Then observe that in the inequality chain

K + log(1 +H)−
∑
x∈X

µ(x)
[K(x) + log(1 +H(x))

]1 + B(x)

1 + B

≥ K + log(1 +H)−
∑
x∈X

µ(x)(1 + B(x))∑
x′ µ(x′)(1 + B(x′))

[K(x) + log(1 +H(x))
]

(9)

≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
, (10)

(9) follows from assumption (ii), so that we only need to show (10) in order to complete

the proof. We will demonstrate an even stronger assertion:

log(1 +H)−
∑
x∈X

µ̃x

[
log(1 +H(x))− log µ(x)

ξ(x)

] ≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
(11)

for any probability vector µ̃ = (µ̃x)x∈X ∈ [0, 1]|X | with
∑

x µ̃x = 1.

It is sufficient to prove (11) for all stationary points of the Lagrangian and all

boundary points. In order to cover all of the boundary, we allow µ̃x = 0 for all x

in some subset X0 ( X (X0 may be empty). Let X̃ = X \ X0 and define ξ(X̃ ) =∑
x∈X̃ ξ(x), ξ(X0) = 1− ξ(X̃ ), and ξ̃(x) = ξ(x)/ξ(X̃ ). Then (11) follows from

f(µ̃) = log(1 +H)−
∑

x∈X̃
µ̃x

(
Ṽ (x)− log µ(x)

ξ̃(x)

) ≥
∑

ν wν

∑
x ν(x) log ν(x)

ξ(x)

1 + B
, (12)

where Ṽ (x) = log(1−∑
ν

wνν(x)

ξ̃(x)
log wνν(x)

ξ(x)
).

We now identify the stationary points of the Lagrangian L(µ̃, λ) = f(µ̃)−λ
( ∑

x µ̃x−
1
)
. The derivative of L w.r.t. all µ̃x vanishes only if

λ = −Ṽ (x) + log µ(x)

ξ̃(x)
for all x ∈ X̃ . (13)

This implies µ(x) = ξ̃(x)eλ+Ṽ (x), and, since the µ(x) sum up to one, 1 = eλ
∑

x ξ̃(x)eṼ (x).

This can be reformulated as λ = − log
[ ∑

x ξ̃(x)eṼ (x)
]
. Using this and (13), (12) is

rewrites as
∑

ν∈C wν

∑
x∈X ν(x) log ν(x)

ξ(x)

1 + B
≤ log(1 +H) + λ (14)

= log(1−
∑
ν∈C

wν log wν)− log
[
1−

∑

x∈X̃
ξ̃(x)

∑
ν∈C

wνν(x)

ξ̃(x)
log wνν(x)

ξ(x)

]
.

The arguments of both outer logarithms on the r.h.s. of (14) are at most 1 + B: For

the left one this holds by assumption (i), H ≤ B, and for the right one also by (i)

because Ex∼ξH(x) ≤ H. Since for x ≤ y ≤ 1+B we have log(y)− log(x) ≥ y−x
1+B

, (14)

follows from ∑
ν∈C

wν

∑
x∈X0

ν(x) log ν(x)
ξ(x)

≤ −
∑
ν∈C

wν

∑
x∈X0

ν(x) log wν .
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But this relation is true by Jensen’s inequality:
∑
ν∈C

∑
x∈X0

wνν(x)
ξ(X0)

log wνν(x)
ξ(x)

≤ log
( ∑

ν∈C

∑
x∈X0

wνν(x)
ξ(X0)

· wνν(x)
ξ(x)

)
≤ 0,

since the wνν(x)
ξ(X0)

sum up to one and always wνν(x)
ξ(x)

≤ 1 holds. 2

We now present a simple application of this result for finite model classes.

Theorem 10 (Predictive performance of stochastic model selection for finite model

class) Suppose that C consists of N ∈ N models, one of them is µ. Let

PF (h<t) =
[K(h<t) + log(1 +H(h<t))

]
(1 + log N).

Then PF (h<t) − Ext∼µPF (h1:t) ≥ H(h<t) −
∑

x∈X ξ(x|zt, h<t)H(h1:t) holds for any

history h<t and current input zt, Consequently,

∞∑
t=1

E
∥∥Ξ− ξ

∥∥2

2
≤ P init

F = (1 + log N)
[
log(1 +Hinit)− log(winit

µ )
]
. (15)

Proof. Since the entropy of a class with N elements is at most log N , this follows

directly from Lemma 9. 2

4 Entropy potential and countable classes

We now generalize Theorem 10 to arbitrary countable model classes. First note that

there is one very convenient fact about the potential function proofs so far: (3), (5),

and (8) all are local assertions, i.e. for a single time instance and history. If the

local expected error is bounded by the expected potential decrease, then the desired

consequence on the cumulative error holds.

The entropy cannot be directly used as B in Lemma 9, since it may increase

under µ-expectation. Intuitively, the problem is the following: There could be a false

model with a quite large weight, such that the entropy is kept “artificially” low. If

this false model is now refuted with high probability by the next observation, then

the entropy may (drastically) increase. An instance is constructed in the following

example. Afterwards, we define the entropy potential, which does not suffer from this

problem.

Example 11 Fix binary alphabet and let C̃ and Z̃ be model class and input space

of Example 8. Let C = C̃ ∪ {νfool}, Z = Z̃ ∪ {0}, wfool = 1 − 1
m

, and the rest of the

prior of mass 1
m

be distributed to the other models as in Example 8. Also the true

distribution remains the same one. If the input sequence is z1:nH0+1 = 0, 1, . . . nH0,

and νfool(1|0) = 0 while ν(1|0) = 1 for all other ν, then like before the cumulative

error is (even more than) H0/4, while the entropy can be made arbitrarily small for

large m.



10 J. Poland

Definition 12 (Entropy potential) Let H
(
(wν)ν∈C

)
= −∑

ν wν log wν be the entropy

function. The µ-entropy potential (or short entropy potential) of a model class C
containing the true distribution µ is

Π
(
(wν)ν∈C

)
= sup

{
H

(
( wνpνP

ν′ wν′pν′
)ν

)
: pµ = 1 ∧ pν ∈ [0, 1] ∀ν ∈ C \ {µ}}. (16)

Here, the supremum is taken over all possible assignments of the multiplying proba-

bilities pν ∈ [0, 1], where pµ = 1.

Clearly, Π ≥ H. According to Theorem 7, Π is necessarily finite if H is finite, so

the supremum can be replaced by a maximum. Note that the entropy potential is

finitely approximable in the sense of (iii) in Lemma 9.

Proposition 13 (Characterization of Π) For S ⊂ C, let w(S) =
∑

ν∈S wν. There is

exactly one subset A ⊂ C with µ ∈ A, such that

− log wν > L(A) := −
∑

ν′∈A

wν′
w(A)

log wν′ ⇐⇒ ν ∈ A \ {µ}. (17)

We call A the set of active models (in Π). Then, with log pν = L(A) − log wν for

ν ∈ C \ S, log pν = 0 for ν ∈ A \ {µ}, and k = |C \ A|, we have

Π = Π
(
(wν)ν∈C

)
= H

(
( wνpνP

ν′ wν′pν′
)ν∈C

)

= log
(
k + w(A)eL(A)

)
. (18)

Moreover, this is scaling invariant in the weights, i.e. (17) yields the correct active

set and (18) gives the correct value for weights that are not normalized, if these un-

normalized weights are also used for computing w(A) and L(A).

Proof. We first argue that the maximum of (16) cannot be attained if some pν = 0.

To this aim, let p ∈ [0, 1]|C| be the multiplying probabilities, assume pν = 0, and set

H̃ = H
(
( wνpνP

ν′ wν′pν′
)ν

)
. Now assume pν > 0 and observe that

H
(
( wνpνP

ν′ wν′pν′
)ν

)
= −pνwν log(pνwν) + (1− pνwν)

[− log(1− pνwν) + H̃
] ≥ H̃

holds if − log(pνwν) ≥ H̃. This can be realized for small enough pν > 0, hence the

maximum of (16) cannot be attained for pν = 0.

Therefore, for a maximum of (16), we need that for each ν ∈ C \{µ}, either pν = 1

or, with wp(C) =
∑

ν wνpν and Lp(C) = − 1
wp(C)

∑
ν wνpν log(wνpν),

0 =
dH

(
( wνpνP

ν′ wν′pν′
)ν

)

dpν

=
wν

wp(C)

[
− log(wνpν)− Lp(C)

]
. (19)

Those ν satisfying the latter condition have log pν = −L(C)−log wν and hence L(C) =

L(C \ {ν}). Therefore, each possible maximum of (16) corresponds to a subset Ã ⊂ C
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of active models, such that µ ∈ Ã and furthermore pν = 1 for ν ∈ Ã and log pν =

−L(Ã)− log wν for ν /∈ Ã. Since only log pν ≤ 0 is feasible, for ν /∈ Ã we necessarily

have − log wν ≤ L(Ã). Subsets Ã that satisfy this latter condition are called feasible.

Assume that we have a feasible subset Ã, then for all ν /∈ Ã, the complexity wν

equals the average complexity of all ν ∈ Ã. Hence

H
(
( wνpνP

ν′ wν′pν′
)ν

)
= −

∑

ν∈Ã

wν

w(Ã)
log

wν∑
ν′∈C wν′

= L(Ã) + log
(
w(Ã) + ke−L(Ã)

)

= log
(
k + w(Ã)eL(Ã)

)
,

which proves (18) for any such Ã. Observe that our A defined in the assertion is the

smallest feasible subset and therefore unique. So we only have to make sure no larger

subset can result in a larger entropy.

To this aim, take any feasible subset Ã ⊂ C. We assume that there is ν1 ∈ Ã \ {µ}
such that − log wν1 ≤ L(Ã). We need to show that then the entropy increases if we

take out ν1. But in this case, the derivative, computed as the r.h.s. of (19), is non-

positive at pν1 = 1. Thus we may increase the entropy by decreasing pν1 until the

derivative vanishes. Repeating this step for all ν with the property − log wν ≤ L(Ã),

we conclude that the smallest feasible subset A gives the maximum entropy.

Finally, scaling invariance of the set (17) and the value (18) w.r.t. the weights is

easy to see. 2

The following result states that the the entropy potential decreases in expectation.

This will allow us to obtain the desired bound with Lemma 9.

Theorem 14 For any history h<t and current input zt,
∑
xt∈X

µ(xt|zt)Π(h1:t) ≤ Π(h<t).

Proof. We need to show the assertion only for finite model class: Once this is

established, the general case follows by approximation.

Again, we drop the dependence on the history and the current input from the

notation. We will show a slightly more general assertion: For any subset of the

alphabet X̃ ⊂ X , and any choice of probability vectors ν(x) for all ν ∈ C we have

∑

x∈X̃
µ(x)Π(x) ≤ µ(X̃ )Π

([
wνν(X̃ )

]
ν∈C

)
, (20)

where ν(X̃ ) =
∑

x∈X̃ ν(x) is the total ν-probability of the subset X̃ . We prove (20)

by induction over the subset size |X̃ |. For |X̃ | = 1, there is nothing to show. If (20)

holds for X̃ , then for X̃ ′ = X̃ ∪ {x},
∑

x∈X̃ ′
µ(x)Π(x) ≤ µ(X̃ )Π

(
[wνν(X̃ )]ν

)
+ µ(x)Π(x)

(∗)
≤ µ(X̃ ′)Π

(
[wνν(X̃ ′)]ν

)
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implies the assertion. It remains to show (∗).
Now let w̃ν = wνν(X̃ ′) and pν = ν(x)/ν(X̃ ′) for all ν ∈ C, and set µ̃ = pµ. Then

(∗) is equivalent to

(1− µ̃)Π
(
[w̃ν(1− pν)]ν∈C

)
+ µ̃Π

(
[w̃νpν ]ν∈C

) ≤ Π
(
[w̃ν ]ν∈C

)
, (21)

where for all ν ∈ C their values pν range in pν ∈ [0, 1]. Thus we have reduced the

original assertion to binary alphabet.

In order to prove (21), it is sufficient to show that the maximum of the l.h.s. is

attained if pν = µ̃ holds for all ν ∈ C. We first argue that the maximum can be

only attained if in all three sets of weights, [w̃ν ]ν , [w̃ν(1 − pν)]ν , and [w̃νpν ]ν , the

same models are active (see Proposition 13). Denote the respective sets of active

models by A, A0, A1. Recall that the constructions in Proposition 13 do not require

the weights to sum up to one, and define the quantities w̃1(A1) =
∑

ν∈A1 w̃νpν and

L1(A1) = −∑
ν∈A1

w̃νpν

w̃1(A1)
log(w̃νpν) and Π1 = log

(|C \ A1| + w̃1(A1)eL1(A1)
)
, and in

the same way, the quantities w̃0(A0), L0(A0), and Π0.

For active ν ∈ A0 or ν ∈ A1, respectively, the respective derivatives of Π0 and Π1

are computed as

dΠ0

dpν

= −w̃ν

Π0
eL0(A0)

(− log[w̃ν(1− pν)]− L0(A0)
)

< 0 for ν ∈ A0 \ {µ} and

dΠ1

dpν

=
w̃ν

Π1
eL1(A1)

(− log[w̃νpν ]− L1(A1)
)

> 0 for ν ∈ A1 \ {µ},

where dΠ1

dpν
> 0 follows from

(− log[w̃νpν ]− L1(A1)
)

> 0 for ν ∈ A1 (and analogously

for Π0). For inactive ν /∈ A0 or ν /∈ A1, respectively, the respective derivatives vanish.

Consider now a model ν /∈ A which is inactive in Π. If we choose pν = µ, then it is

inactive in both Π0 and Π1, i.e. both ν /∈ A0 and ν /∈ A1 hold. If we decrease pν until it

becomes active in Π1, then, because of dΠ1

dpν
> 0 and dΠ0

dpν
= 0, the term (1− µ̃)Π0 + µ̃Π1

decreases. The same happens if we increase pν until it becomes active in Π0. Hence

the maximum of (1 − µ̃)Π0 + µ̃Π1 can be attained only if the inactive weights in Π

remain inactive in both Π0 and Π1, and we may set pν = µ̃ for all these ν /∈ A.

Next, we claim that for a model ν ∈ A \ {µ}, which is active in Π, the maximum

of (1 − µ̃)Π0 + µ̃Π1 can be only attained if ν remains active in both Π0 and Π1. To

show this, we only need to argue that, regardless of the configuration of the other pν′

(ν ′ 6= ν),

there is an assignment pν ∈ [0, 1] such that both ν ∈ A0 and ν ∈ A1 (22)

holds. If we then increase pν until (possibly) ν /∈ A1, then we have that (1−µ̃)Π0+µ̃Π1

must decrease, since its derivative is smaller than zero.

We have that each pν in the interval I01 := (1− 1
w̃ν

e−L0(A0), 1
w̃ν

e−L1(A1)) also satisfies

(22). In order to show that I01 is non-empty, we first argue that I01 ⊃ I := (1 −
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1
w̃ν

e−L0(A), 1
w̃ν

e−L1(A)), which is then proven to be non-empty. Since we know that ν is

active in Π and therefore w̃ν < e−L(A),

1

e
P

A
w̃ν (1−pν)

w̃0(A)
log 1

w̃ν (1−pν)

+
1

e
P

A
w̃νpν

w̃1(A)
log 1

w̃νpν

= e−L0(A) + e−L1(A) ≥ e−L(A) (23)

implies that I is not empty. We will verify (23) below.

I ⊂ I01 holds by the following argument. Assume that for some ν ′ ∈ A, pν′

is so small that ν ′ /∈ A0. Varying pν′ in the range [0, u] where ν ′ /∈ A0, does not

change the left constraint 1 − 1
w̃ν

e−L0(A0), while the right constraint 1
w̃ν

e−L1(A1) is

minimal at both boundaries pν′ = 0 and pν′ = u. This can be seen by considering the

derivative dL1(A1)
dpν′

= w̃ν

w̃1(A1)

[− log(w̃ν′pν′)− L1(A1)− 1
]
, which is +∞ at pν′ = 0 and

steadily decreases until − w̃ν

w̃1(A1)
(L1(A1) + 1) at pν′ = u. Note that for both boundary

points 0 and u, the value of L1(A1) coincides. Thus we can set pν′ = u, making

the interval I01 smaller. Letting Ã0 = A0 ∪ {ν ′} and Ã1 = A1 ∪ {ν ′}, we then have

I01 = (1 − 1
w̃ν

e−L0(Ã0), 1
w̃ν

e−L1(Ã1)). A symmetric argument holds for the case that

ν ′ /∈ A1. In this way, we can subsequently treat all ν ′ ∈ A \ (A0 ∩ A1), constantly

decreasing I01, until we arrive at I.

Now, in order to show (23), observe that e
P

A
w̃ν (1−pν)

w̃0(A)
log 1

(1−pν) ≤ w̃(A)
w̃0(A)

and e
P

A
w̃νpν

w̃1(A)
log 1

pν ≤
w̃(A)
w̃1(A)

by Jensen’s inequality, so (23) follows from

w̃0(A)
w̃(A)

e
P

A
w̃ν (1−pν)

w̃0(A)
log w̃ν + w̃1(A)

w̃(A)
e

P
A

w̃νpν

w̃1(A)
log w̃ν ≥ e

P
A

w̃ν
w(A)

log w̃ν .

Applying Jensen’s inequality again to the l.h.s. verifies this. Altogether we have shown

so far that the maximum of (1− µ̃)Π0 + µ̃Π1 can be only attained if A = A0 = A1.

Finally, we can turn to proving (21), by showing that the maximum of (1− µ̃)Π0 +

µ̃Π1 is attained if pν = µ̃ for all ν ∈ C. Since we know already that we may set

pν = µ̃ for ν /∈ A in order to attain the maximum, we can just ignore these models

and assume without loss of generality that A = C. Then the derivatives of Π0 and Π1

are

dΠ0

dpν

= − w̃ν

w0(A)

(− log[w̃ν(1− pν)]− L0(A0)
)

and

dΠ1

dpν

=
w̃ν

w1(A)

(− log[w̃νpν ]− L1(A1)
)
,

respectively. A possible maximum has (1 − µ̃)dΠ0

dpν
+ µdΠ1

dpν
= 0 for all ν 6= µ, which

occurs in case that pν = µ̃ for all ν ∈ C. This is in fact a global maximum if we can

show the Hessian is globally negative semi-definite. It is sufficient to show that both

Hessians of Π0 and Π1 are negative semi-definite: We identify the model class with

an index set C = A ∼= {0, 1, . . . , N} and assign the true distribution to the index 0.

Then, abbreviating Di = log(w̃ipi)−L1(A) and using the characteristic function 1i=j

which is one if i = j and zero otherwise, the Hessian of Π1 is computed as
[

d2Π1

dpidpj

]N

i,j=1

= − 1

w̃1(A)2

[
w̃iw̃j

(
1i=j

w̃1(A)
w̃i

+ Di + Dj − 1
)]N

i,j=1
.
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This Hessian is negative semi-definite by Lemma 15 below, and so is the Hessian of

Π0. This concludes the proof. 2

Lemma 15 Let N ≥ 1 and wi > 0 for 0 ≤ i ≤ N (the wi need not sum up to one).

Let W =
∑N

i=0 wi and assume that − log wj ≥ L := −∑N
i=0

wi

W
log wi holds for all

1 ≤ j ≤ N . Then, for all vectors u ∈ RN , we have that

N∑
i,j=1

uiuj

[
1i=jW

wi

− log wi − L− log wj − L− 1

]
≥ 0. (24)

Proof. We proceed by induction over N . For N = 1, the assertion is immediate.

Now, for N , observe that the derivative of the l.h.s. of (24) w.r.t. w0,

N∑
i=1

u2
i

wi

+
2
( ∑N

i=1 ui

)2

W

[
1 + L + log w0

]
,

is positive, since − log w0 − L < 0. Thus we may decrease the l.h.s. of (24) by

decreasing w0, until eventually − log wk = L holds for one k ∈ {1 . . . N}. Set Di =

− log wi − L and W̃ = W − wk. Then

N∑
i,j=1

uiuj

[
1i=jW

wi

+ Di + Dj − 1

]
=

∑

i,j∈{1...N}\{k}
uiuj

[
1i=jW̃

wi

+ Di + Dj − 1

]

+
∑

i∈{1...N}\{k}

[
wi

wk

u2
k − 2(1−Di)uiuk +

wk

wi

u2
i

]
. (25)

Since for all u, v ∈ R and c ≤ 1 we have u2 − 2cuv + v2 ≥ 0, the term (25) is

nonnegative. Thus the assertion follows from the induction hypothesis. 2

Now we can prove the main result of this paper.

Theorem 16 (Predictive performance of stochastic model selection) For countable

model class C containing the true distribution µ, define the potential as

P(h<t) =
[K(h<t) + log(1 +H(h<t))

]
(1 + Π(h<t)).

Then, for any history h<t and current input zt,

P(h<t)− Ext∼µ(·|zt)P(h1:t) ≥ H(h<t)− Ext∼ξ(·|zt,g<t)H(h1:t), and thus
∞∑

t=1

E
∥∥Ξ− ξ

∥∥2

2
≤ P init = (1 + Πinit)

[
log(1 +Hinit)− log(winit

µ )
]
. (26)

Proof. Using Theorem 14, this follows directly from Lemma 9. 2

Theorem 16 implies performance guarantees for arbitrary bounded loss functions.
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Corollary 17 For each input z, let `(·, ·|z) : (x̂, x) 7→ `(x̂, x|z) ∈ [0, 1] be a loss

function known to the learner, depending on the true outcome x and the prediction

x̂ (` may also depend on the time, but we don’t complicate notation by making this

explicit). Let `µ
<∞ be the cumulative loss of a predictor knowing the true distribution

µ, where the predictions are made in a Bayes optimal way (i.e. choosing the prediction

arg minx̂ Ex∼µ`(x̂, x|zt) for current input zt), and `Ξ
<∞ be the corresponding quantity

for the stochastic model selection learner. Then the loss of the learner is bounded by

E`Ξ
<∞ ≤ E`µ

<∞ + 2C + 2
√

2CE`µ
<∞,

where C =
(√

(1 + Πinit)
[
log(1 +Hinit) +Kinit

]
+
√
Kinit

)2
.

Proof sketch. First, we have to prove Theorem 16 for the Hellinger distance instead

of the quadratic distance, arriving at
∑∞

t=1 E
∥∥√Ξ − √µ

∥∥2

2
≤ C. This is straightfor-

ward, since Lemma 4 and Lemma 6 also hold for the Hellinger distance. Then, the

result follows from [PH05, Lemma 24–26] with one additional application of Jensen’s

inequality. 2

Similar and even slightly stronger loss bounds hold for different stochastic model

selection algorithms derived from prediction with expert advice, e.g. the Hedge algo-

rithm [FS97] for finite model class or FPL [HP05] for countable class. The expert

proof techniques do not even require µ ∈ C, but work without any assumption on

the data generating process. The experts posterior, according to which is sampled,

is not Bayesian, but specifically designed in order to minimize loss. However, these

algorithms do not give estimates for the true probabilities µ, and consequently no

consistency in this sense can be proved. We expect that Bayesian algorithms are su-

perior to expert algorithms in cases where probability estimates can be obtained and

are beneficial.

5 The magnitude of the entropy potential

In this section, we will partially answer the question how large the newly defined

quantity, the entropy potential, can grow. We start with a general bound.

Proposition 18 The µ-entropy potential is always bounded by Π ≤ H/wµ. There

are cases where this bound is sharp up to a factor.

Proof. With A denoting the active set, we have that H ≥ −∑
ν∈A wν log wν =

w(A)L(A) ≥ wµL(A) ≥ wµΠ. In order to see that this bound is sharp in general,

consider the model class C = {µ, ν∗, ν1 . . . νN}, where wν∗ ≥ 1
2
, wµ = 1

2
(1− wν∗), and

wν1 = . . . = wνN
= 1

2N
(1−wν∗). Then Π > log 2+ 1

2
log N , but H = H(wν∗ , 1−wν∗)+

2wµ(log 2 + 1
2
log N). Thus, Π > 1

2
w−1

µ (H−H(wν∗ , 1− wν∗)) holds in this case. 2
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Proposition 18 gives a worst-case bound which is of course not satisfactory: Using

it in Theorem 16, the resulting bound becomes no better than that of Theorem 7.

Fortunately, in most cases, the entropy potential behaves well and is much smaller.

For finite model classes, it is clearly at most the logarithm of the size of the class.

We present two different infinite model classes in the following, one where the weights

decay rapidly, and one where they decay slowly.

Example 19 Consider a model class with rapidly decaying weights (2−i)i≥1, and

suppose that the true model has index k. Then it has complexity k log 2. Moreover,

since
∑∞

i=k
i log 2
2i−k+1 = (k +1) log 2, in the computation of Π, all models i ≥ k are active,

and consequently Π = log(k + 3) = O(K). In contrast, the entropy of the model class

is 2 log 2.

Example 20 Consider a model class with slowly decaying weights ( 6
i2π2 )i≥1, and let

the true model have index k, i.e. complexity log k2π2

6
. In order to estimate Π this

time, we have to find a sufficiently large index j such that log j2π2

6
≥ [

1
k2 log k2π2

6
+∑∞

j
1
i2

log i2π2

6

]
/[ 1

k2 +
∑∞

j
1
i2

]. Substituting the sums by appropriate integrals, we make

the r.h.s. larger and look for a j such that

log
j2π2

6

[
1
k2 + 1

j

]
≥ 1

k2 log
k2π2

6
+

log (j−1)2π2

6
+ 2

j − 1
.

This is satisfied for j − 1 = k2, as an elementary computation verifies. Consequently,

the active set consists of at most k2 models, and Π ≤ log
(
k2 + O(k2 log k4)

)
=

O
(
log(k)

)
= O(K). The entropy of the model class is O(1).

In both of the above examples, we have that Π = O(K) = O(− log wµ). We believe

that this is the typical behavior of the entropy potential, in contrast to Proposition

18. It remains open to precisely characterize those well-behaved cases:

Problem 21 Characterize those weight distributions satisfying Π = O(K).

Finally, our bounds are infinite with the usual definition of a universal model class.

But with a slight modification of the prior, they become finite. Hence we can obtain

a universal induction result for stochastic model selection:

Example 22 Consider a model class C corresponding to the set of programs on a

universal Turing machine. For ν ∈ C, let wν ∼ 2−K(ν)/K(ν)2, where K denotes

the prefix Kolmogorov complexity – it is shown e.g. in [LV97] how to obtain such

a construction. Then H = O(1), and Theorem 16 implies consistency of universal

stochastic model selection with this prior and normalization. If we would have chosen

the usual “canonical” weights wν ∼ 2−K(ν), then H ∼= ∑
K(ν)2−K(ν) = ∞, since K

is the smallest possible code length to satisfy the Kraft inequality, and any smaller

code length must necessarily result in an infinite sum. Hence the bound for universal

stochastic model selection is infinite with the usual prior.
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6 Discussion and conclusions

We have shown that the cumulative quadratic error of Bayesian stochastic model

selection in countable model classes is finitely bounded if the entropy is so. This

corresponds to results for Bayes mixture and MDL learners (which however have no

entropy in their bounds). Unlike the MDL bound [PH05], our bound obtained here

is usually not exponential in the complexity of the true distribution (but can be so

in bad cases). Our results imply strong consistency (almost sure convergence) of the

stochastic model selection learner, and moreover loss bounds for arbitrary bounded

loss functions. According to Examples 1, 8, and 11, our cumulative error bound (26),

which is of order K · Π, is essentially sharp in the sense that both ingredients K and

Π are necessary. We don’t know if the bound needs to be the product K ·Π, or if the

smaller sum K + Π is also possible.

There is hope that the entropy potential introduced in this work has other applica-

tions in learning and information theory. It remains open to study this quantity more

thoroughly and characterize the weight distributions where it behaves well (Problem

21). Moreover, this paper show new ways to evaluate the state of learning in a discrete

model class. The general potential P from Theorem 16 always strictly decreases in

expectation unless all models predict the same (so it does not share the undesirable

property of K discussed in Example 5). A couple of interesting questions remain open,

such as defining a good potential function for active learning.
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