
TCS -TR-A-06-17

TCS Technical Report

Generating Frequent Closed Item Sets Based on

Zero-suppressed BDDs

by

Shin-ichi Minato

Division of Computer Science

Report Series A

July 3, 2006

Hokkaido University
Graduate School of

Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +81-011-706-7682

Fax: +81-011-706-7682





Generating Frequent Closed Item Sets Based on Zero-suppressed BDDs

Shin-ichi Minato
Division of Computer Science, Hokkaido University

North 14, West 9, Sapporo, 060-0814 Japan

July 3, 2006

(Abstract) Frequent item set mining is one of
the fundamental techniques for knowledge discov-
ery and data mining. In the last decade, a number
of efficient algorithms for frequent item set min-
ing have been presented, but most of them focused
on just enumerating the item set patterns which
satisfy the given conditions, and it was a different
matter how to store and index the result of patterns
for efficient data analysis. Recently, we proposed
a fast algorithm of extracting all frequent item set
patterns from transaction databases and simulta-
neously indexing the result of huge patterns using
Zero-suppressed BDDs (ZBDDs). That method,
ZBDD-growth, is not only enumerating/listing the
patterns efficiently, but also indexing the output
data compactly on the memory to be analyzed with
various algebraic operations. In this paper, we
present a variation of ZBDD-growth algorithm to
generate frequent closed item sets. This is a quite
simple modification of ZBDD-growth, and addi-
tional computation cost is relatively small com-
pared with the original algorithm for generating
all patterns. Our method can conveniently be uti-
lized in the environment of ZBDD-based pattern
indexing.

1 Introduction

Frequent item set mining is one of the fundamental
techniques for knowledge discovery and data min-
ing. Since the introduction by Agrawal et al.[1], the
frequent item set mining and association rule anal-
ysis have been received much attentions from many
researchers, and a number of papers have been pub-
lished about the new algorithms or improvements
for solving such mining problems[4, 6, 11]. How-

ever, most of such item set mining algorithms fo-
cused on just enumerating or listing the item set
patterns which satisfy the given conditions and it
was a different matter how to store and index the
result of patterns for efficient data analysis.

Recently, we proposed a fast algorithm[8] of ex-
tracting all frequent item set patterns from trans-
action databases, and simultaneously indexing the
result of huge patterns on the computer memory
using Zero-suppressed BDDs. That method, called
ZBDD-growth, does not only enumerate/list the
patterns efficiently, but also indexes the output
data compactly on the memory. After mining, the
result of patterns can efficiently be analyzed by us-
ing algebraic operations.

The key of the method is to use BDD-based
data structure for representing sets of patterns.
BDDs[2] are graph-based representation of Boolean
functions, now widely used in VLSI logic design
and verification area. For the data mining applica-
tions, it is important to use Zero-suppressed BDDs
(ZBDDs)[7], a special type of BDDs, which are
suitable for handling large-scale sets of combina-
tions. Using ZBDDs, we can implicitly enumerate
combinatorial item set data and efficiently compute
set operations over the ZBDDs.

In this paper, we present an interesting variation
of ZBDD-growth algorithm to generate frequent
closed item sets. Closed item sets are the subset of
item set patterns each of which is the unique rep-
resentative for a group of sub-patterns relevant to
the same set of transaction records. Our method is
a quite simple modification of ZBDD-growth. We
inserted several operations in the recursive proce-
dure of ZBDD-growth, to filter the closed patterns
from all frequent patterns. The experimental re-

1



2 Shin-ichi Minato

Figure 1: A Boolean function and a combinatorial
item set.

sult shows that the additional computation cost
is relatively small compared with the original al-
gorithm for generating all patterns. Our method
can conveniently be utilized in the environment of
ZBDD-based data mining and knowledge indexing.

2 ZBDD-based item set repre-
sentation

As the preliminary section, we describe the meth-
ods for efficiently indexing item set data based on
Zero-suppressed BDDs.

2.1 Combinatorial item set and ZBDDs

A combinatorial item set consists of the elements
each of which is a combination of a number of
items. There are 2n combinations chosen from n

items, so we have 22n
variations of combinatorial

item sets. For example, for a domain of five items
a, b, c, d, and e, we can show examples of combina-
torial item sets as:
{ab, e}, {abc, cde, bd, acde, e}, {1, cd}, 0. Here “1”
denotes a combination of null items, and 0 means
an empty set. Combinatorial item sets are one of
the basic data structure for various problems in
computer science, including data mining.

A combinatorial item set can be mapped into
Boolean space of n input variables. For exam-
ple, Fig. 1 shows a truth table of Boolean func-
tion: F = (a b c) ∨ (b c), but also represents
a combinatorial item set S = {ab, ac, c}. Using
BDDs for the corresponding Boolean functions, we

Figure 2: An example of ZBDD.

Figure 3: Example of tuple-histogram.

can implicitly represent and manipulate combina-
torial item set. In addition, we can enjoy more effi-
cient manipulation using “Zero-suppressed BDDs”
(ZBDD)[7], which are special type of BDDs opti-
mized for handling combinatorial item sets. An
example of ZBDD is shown in Fig. 2.

The detailed techniques of ZBDD manipulation
are described in the articles[7]. A typical ZBDD
package supports cofactoring operations to traverse
0-edge or 1-edge, and binary operations between
two combinatorial item sets, such as union, inter-
section, and difference. The computation time for
each operation is almost linear to the number of
ZBDD nodes related to the operation.

2.2 Tuple-Histograms and ZBDD vec-
tors

A Tuple-histogram is the table for counting the
number of appearance of each tuple in the given
database. An example of tuple-histogram is shown
in Fig. 3. This is just a compressed table of the



Generating Frequent Closed Item Sets Based on Zero-suppressed BDDs 3

Figure 4: ZBDD vector for tuple-histogram.

database to combine the same tuples appearing
more than once into one line with the frequency.

Our item set mining algorithm manipulates
ZBDD-based tuple-histogram representation as the
internal data structure. Here we describe how to
represent tuple-histograms using ZBDDs. Since
ZBDDs are representation of sets of combinations,
a simple ZBDD distinguishes only existence of
each tuple in the database. In order to repre-
sent the numbers of tuple’s appearances, we de-
compose the number into m-digits of ZBDD vec-
tor {F0, F1, . . . , Fm−1} to represent integers up to
(2m−1), as shown in Fig. 4. Namely, we encode the
appearance numbers into binary digital code, as F0

represents a set of tuples appearing odd times (LSB
= 1), F1 represents a set of tuples whose appear-
ance number’s second lowest bit is 1, and similar
way we define the set of each digit up to Fm−1.

In the example of Fig. 4, The tuple frequen-
cies are decomposed as: F0 = {abc, ab, c}, F1 =
{ab, bc}, F2 = {abc}, and then each digit can be
represented by a simple ZBDD. The three ZBDDs
are shared their sub-graphs each other.

Now we explain the procedure for construct-
ing a ZBDD-based tuple-histogram from original
database. We read a tuple data one by one from
the database, and accumulate the single tuple data
to the histogram. More concretely, we generate a
ZBDD of T for a single tuple picked up from the
database, and accumulate it to the ZBDD vector.
The ZBDD of T can be obtained by starting from
“1” (a null-combination), and applying “Change”
operations several times to join the items in the
tuple. Next, we compare T and F0, and if they
have no common parts, we just add T to F0. If
F0 already contains T , we eliminate T from F0 and

carry up T to F1. This ripple carry procedure con-
tinues until T and Fk have no common part. Af-
ter finishing accumulations for all data records, the
tuple-histogram is completed.

Using the notation F .add(T ) for addition of a
tuple T to the ZBDD vector F , we describe the pro-
cedure of generating tuple-histogram H for given
database D.

H = 0
forall T ∈ D do

H = H.add(T )
return H

When we construct a ZBDD vector of tuple-
histogram, the number of ZBDD nodes in each
digit is bounded by total appearance of items in
all tuples. If there are many partially similar tu-
ples in the database, the sub-graphs of ZBDDs are
shared very well, and compact representation is ob-
tained. The bit-width of ZBDD vector is bounded
by log Smax, where Smax is the appearance of most
frequent items.

Once we have generated a ZBDD vector for
the tuple-histogram, various operations can be ex-
ecuted efficiently. Here are the instances of opera-
tions used in our pattern mining algorithm.

• H.factor0(v): Extracts sub-histogram of tu-
ples without item v.

• H.factor1(v): Extracts sub-histogram of tu-
ples including item v and then delete v from
the tuple combinations. (also considered as
the quotient of H/v)

• v ·H: Attaches an item v on each tuple com-
binations in the histogram F .

• H1 + H2: Generates a new tuple-histogram
with sum of the frequencies of corresponding
tuples.

• H.tuplecount: The number of tuples appear-
ing at least once.

These operations can be composed as a sequence
of ZBDD operations. The result is also compactly
represented by a ZBDD vector. The computation
time is bounded by roughly linear to total ZBDD
sizes.



4 Shin-ichi Minato

ZBDDgrowth(H,α)
{

if(H has only one item v)
if(v appears more than α )

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H.factor1(v) ;
H0 ← H.factor0(v) ;
F1 ←ZBDDgrowth(H1, α) ;
F0 ←ZBDDgrowth(H0 + H1, α) ;
F ← (v · F1) ∪ F0 ;
Cache(H) ← F ;
return F ;

}

Figure 5: ZBDD-growth algorithm.

3 ZBDD-growth Algorithm

Recently, we developed a ZBDD-based
algorithm[8], ZBDD-growth, to generate “all”
frequent item set patterns. Here we describe this
algorithm as the basis of our method for “closed”
item set mining.

ZBDD-growth is based on a recursive depth-first
search over the ZBDD-based tuple-histogram rep-
resentation. The basic algorithm is shown in Fig. 5.

In this algorithm, we choose an item v used in
the tuple-histogram H, and compute the two sub-
histograms H1 and H0. (Namely, H = (v · H1) ∪
H0.) As v is the top item in the ZBDD vector,
H1 and H0 can be obtained just by referring the
1-edge and 0-edge of the highest ZBDD-node, so
the computation time is constant for each digit of
ZBDD.

The algorithm consists of the two recursive calls,
one of which computes the subset of patterns in-
cluding v, and the other computes the patterns
excluding v. The two subsets of patterns can be
obtained as a pair of pointers to ZBDDs, and then
the final result of ZBDD is computed. This proce-
dure may require an exponential number of recur-
sive calls, however, we prepare a hash-based cache
to store the result of each recursive call. Each entry
in the cache is formed as pair (H,F ), where H is

the pointer to the ZBDD vector for a given tuple-
histogram, and F is the pointer to the result of
ZBDD. On each recursive call, we check the cache
to see whether the same histogram H has already
appeared, and if so, we can avoid duplicate process-
ing and return the pointer to F directly. By using
this technique, the computation time becomes al-
most linear to the total ZBDD sizes.

In our implementation, we use some simple tech-
niques to prune the search space. For example, if
H1 and H0 are equivalent, we may skip to com-
pute F0. For another case, we can stop the recur-
sive calls if total frequencies in H is no more than
α. There are some other elaborate pruning tech-
niques, but they needs additional computation cost
for checking the conditions, so sometimes effective
but not always.

4 Frequent closed item set min-
ing

In frequent item set mining, we sometimes faced
with the problem that a huge number of frequent
patterns are extracted and hard to find useful in-
formation. Closed item set mining is one of the
techniques to filter important subset of patterns.
In this section, we present a variation of ZBDD-
growth algorithm to generate frequent closed item
sets.

4.1 Closed item sets

Closed item sets are the subset of item set pat-
terns each of which is the unique representative for
a group of sub-patterns relevant to the same set
of tuples. For more clear definition, we first de-
fine the common item set Com(ST ) for the given
set of tuples ST , such that Com(ST ) is the set of
items commonly included in every tuple T ∈ ST .
Next, we define occurence Occ(D,X) for the given
database D and item set X, such that Occ(D,X)
is the subset of tuples in D, each of which includes
X. Using these notations, if an item set X satisfies
Com(Occ(D,X)) = X, we call X is a closed item
set in D.



Generating Frequent Closed Item Sets Based on Zero-suppressed BDDs 5

For example, let us consider the database D

as shown in Fig. 3. Here, all item set patterns
with threshold α = 1 is: {abc, ab, ac, a, bc, b, c}, but
closed item sets are: {abc, ab, bc, b, c}. In this ex-
ample, “ac” is eliminated from a closed pattern be-
cause Occ(D,“ac”) = Occ(D,“abc”).

In recent years, many researchers discuss the ef-
ficient algorithms for closed item set mining. One
of the remarkable result is LCM algorithm[10] pre-
sented by Uno et. al. LCM is a depth-first search
algorithm to extract closed item sets. It features
that the computation time is bounded by linear to
the output data length. Our ZBDD-based algo-
rithm is also based on a depth-first search manner,
so, it has similar properties as LCM. The major
difference is in the data structure of output data.
Our method generates ZBDDs for the set of closed
patterns, ready to go for more flexible analysis us-
ing ZBDD operations.

4.2 Eliminating non-closed patterns

Our method is a quite simple modification of
ZBDD-growth shown in Fig. 5. We inserted several
operations in the recursive procedure of ZBDD-
growth, to filter the closed patterns from all fre-
quent patterns. The ZBDD-growth algorithm is
staring from the given tuple-histogram H, and
compute the two sub-histograms H1 and H0, such
that H = (v · H1) ∪H0. Then ZBDD-growth(H1)
and ZBDD-growth(H1 + H0) is recursively exe-
cuted.

Here, we consider the way to eliminate non-
closed patterns in this algorithm. We call the
new algorithm ZBDD-growthC(H). It is obvious
that (v· ZBDD-growthC(H1) ) generates (a part
of) closed patterns for H each of which includes v,
because the occurrence of any closed pattern with
v is limited in (v · H1), thus we may search only
for H1. Next, we consider the second recursive call
ZBDD-growthC(H1 + H0) to generate the closed
patterns without v. Important point is that some
of patterns generated by ZBDD-growthC(H1 +H0)
may have the same occurrence as one of the pat-
tern with v already found in H1. The condition
of such duplicate pattern is that it appears only in

P .permit(Q)
{

if(P =“0” or Q =“0”) return “0” ;
if(P = Q) return F ;
if(P =“1”) return “1” ;
if(Q =“1”)

if(P include “1” ) return “1” ;
else return “0” ;

R← Cache(P, Q) ;
if(R exists) return R ;
v ←TopItem(P,Q) ; /* Top item in P,Q */
(P0, P1)←factors of P by v ;
(Q0, Q1)←factors of Q by v ;
R← (v · P1.permit(Q1))

∪ (P0.permit(Q0 ∪Q1)) ;
Cache(P, Q) ← R ;
return R ;

}

Figure 6: Permit operation.

H1 but irrelevant to H0. In other words, we elim-
inate the patterns from ZBDD-growthC(H1 + H0)
such that the patterns are already found in ZBDD-
growthC(H1) but not included in any tuples in H0.

For checking the condition for closed patterns,
we can use a ZBDD-based operation, called per-
mit operation by Okuno et al.[9].1 P .permit(Q)
returns a set of combinations in P each of which is
a subset of some combinations in Q. For example,
when P = {ab, abc, bcd} and Q = {abc, bc}, then
P .permit(Q) returns {ab, abc}. The permit opera-
tion is efficiently implemented as a recursive pro-
cedure of ZBDD manipulation, as shown in Fig. 6.
The computation time of permit operation is al-
most linear to the ZBDD size.

Finally, we describe the ZBDD-growthC algo-
rithm using the permit operation, as shown in
Fig. 7. The difference from the original algorithm
is only one line, written in the frame box.

5 Experimental Results

Here we show the experimental results to evalu-
ate our new method. We used a Pentium-4 PC,

1Permit operation is basically same as SubSet operation
by Coudert et al.[3], defined for ordinary BDDs.



6 Shin-ichi Minato

Table 1: Generation of tuple-histograms[8].
Data name #T total|T | |ZBDD Vector| Time(s)
T10I4D100K 100,000 1,010,228 552,429 43.2
T40I10D100K 100,000 3,960,507 3,396,395 150.2
chess 3,196 118,252 40,028 1.4
connect 67,557 2,904,951 309,075 58.1
mushroom 8,124 186,852 8,006 1.2
pumsb 49,046 3,629,404 1,750,883 188.5
pumsb star 49,046 2,475,947 1,324,502 123.6
BMS-POS 515,597 3,367,020 1,350,970 895.0
BMS-WebView-1 59,602 149,639 46,148 18.3
BMS-WebView-2 77,512 358,278 198,471 138.0
accidents 340,183 11,500,870 3,877,333 107.0

Table 2: Result of the original ZBDD-growth[8].
Data name: #Frequent (output) Time(sec)

Min. freq. α patterns |ZBDD|
mushroom: 5,000 41 11 1.2

1,000 123,277 1,417 3.7
200 18,094,821 12,340 9.7
50 198,169,865 36,652 10.2
16 1,176,182,553 53,804 7.7
4 3,786,792,695 59,970 4.3
1 5,574,930,437 40,557 1.8

T10I4D100K: 5,000 10 10 81.3
1,000 385 382 135.5

200 13,255 4,288 279.4
50 53,385 20,364 408.7
16 175,915 89,423 543.3
4 3,159,067 1,108,723 646.0

BMS-WebView1: 1,000 31 31 27.8
200 372 309 31.3
50 8,191 3,753 49.0
40 48,543 12,176 46.6
36 461,521 34,790 102.4
35 1,177,607 47,457 111.4
34 4,849,465 64,601 120.8
33 69,417,073 80,604 130.0
32 1,531,980,297 97,692 133.7
31 8,796,564,756,112 117,101 138.1
30 35,349,566,550,691 152,431 143.9

800MHz, 1.5GB of main memory, with SuSE Linux
9. We can deal with up to 40,000,000 nodes of ZB-
DDs in this machine.

Table 1 shows the time and space for gener-
ating ZBDD vectors of tuple-histograms for the
FIMI2003 benchmark databases[5]. This table
shows the computation time and space for provid-
ing input data for ZBDD-growth algorithm. In this
table, #T shows the number of tuples, total|T |
is the total of tuple sizes (total appearances of
items), and |ZBDD| is the number of ZBDD nodes
for the tuple-histograms. We can see that tuple-
histograms can be constructed for all instances in
a feasible time and space. The ZBDD sizes are
almost same or less than total|T |.

After generating ZBDD vectors for the tuple-

histograms, we applied ZBDD-growth algorithm
to generate frequent patterns. Table 2 show the
results of the original ZBDD-growth algorithm[8]
for the selected benchmark examples, “mushroom,”
“T10I4D100K,” and “BMS-WebView-1.” The ex-
ecution time includes the time for generating the
initial ZBDD vectors for tuple-histograms.

The results shows that the ZBDD size is ex-
ponentially smaller than the number of patterns
for “mushroom.” This is a significant effect of us-
ing the ZBDD data structure. On the other hand,
no remarkable reduction is seen in ”T10I4D100K.”
”T10I4D100K” is known as an artificial database,
consists of randomly generated combinations, so
there are almost no relationship between the tuples.
In such cases, ZBDD nodes cannot be shared well,



Generating Frequent Closed Item Sets Based on Zero-suppressed BDDs 7

ZBDDgrowthC(H, α)
{

if(H has only one item v)
if(v appears more than α )

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H .factor1(v) ;
H0 ← H .factor0(v) ;
F1 ←ZBDDgrowthC(H1, α) ;
F0 ←ZBDDgrowthC(H0 + H1, α) ;
F ← (v · F1) ∪

(F0 − (F1 − F1.permit(H0))) ;
Cache(H) ← F ;
return F ;

}

Figure 7: ZBDD-growthC algorithm.

and only the overhead factor is revealed. For the
third example, “BMS-WebView-1,” the ZBDD size
is almost linear to the number of patterns when the
output size is small, however, an exponential factor
of reduction is observed for the cases of generating
huge patterns.

Next, we show the experimental results of fre-
quent closed pattern mining using ZBDD-growthC
algorithm. In Table 3, we show the results for
the same examples as used in the experiment
of the original ZBDD-growth. The last column
T ime(closed)/T ime(all) shows the ratio of compu-
tation time between the ZBDD-growthC and the
original ZBDD-growth algorithm. We can observe
that the computation time is almost the same
order as the original algorithms for “mushroom”
and “BMS-WebView-1,” but some additional fac-
tor is observed for “T10I4D100K.” Anyway, filter-
ing closed item sets has been regarded as not a
easy task. We can say that the ZBDD-growthC
algorithm can generate closed item sets with a
relatively small additional cost from the original
ZBDD-growth.

6 Conclusion

In this paper, we presented an interesting varia-
tion of ZBDD-growth algorithm to generate fre-
quent closed item sets. Our method is a quite
simple modification of ZBDD-growth. We inserted
several operations in the recursive procedure of
ZBDD-growth, to filter the closed patterns from all
frequent patterns. The experimental result shows
that the additional computation cost is relatively
small compared with the original algorithm for gen-
erating all patterns.

A ZBDD can be regarded as a compressed trie
for representing a set of patterns. ZBDD-based
method will be useful as a fundamental technique
for database analysis and knowledge indexing, and
will be utilized for various data mining applica-
tions.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami,
Mining Association rules between sets of items
in large databases, In P. Buneman and S. Jajo-
dia, edtors, Proc. of the 1993 ACM SIGMOD
International Conference on Management of
Data, Vol. 22(2) of SIGMOD Record, pp. 207–
216, ACM Press, 1993.

[2] Bryant, R. E., Graph-based algorithms for
Boolean function manipulation, IEEE Trans.
Comput., C-35, 8 (1986), 677–691.

[3] O. Coudert, J. C. Madre, H. Fraisse, A new
viewpoint on two-level logic minimization, in
Proc. of 30th ACM/IEEE Design Automation
Conference, pp. 625-630, 1993.

[4] B. Goethals, “Survey on Frequent
Pattern Mining”, Manuscript,
2003. http://www.cs.helsinki.fi/
u/goethals/publications/survey.ps

[5] B. Goethals, M. Javeed Zaki (Eds.), Frequent
Itemset Mining Dataset Repository, Frequent
Itemset Mining Implementations (FIMI’03),
2003.
http://fimi.cs.helsinki.fi/data/



8 Shin-ichi Minato

Table 3: Results of ZBDD-based closed pattern mining.
Data name: #Freq. (output) ZBDD- T ime(closed)

Min. freq. α closed |ZBDD| growthC /T ime(all)

patterns Time(s)
mushroom:

5,000 16 16 1.2 1.00
1,000 3,427 1,660 3.8 1.02

200 26,968 9,826 9.9 1.02
50 68,468 19,054 13.0 1.27
16 124,411 24,841 13.3 1.73
4 203,882 26,325 13.2 3.06
1 238,709 20,392 12.9 7.19

T10I4D100K:
5,000 10 10 104.8 1.29
1,000 385 382 208.1 1.54

200 13,108 4,312 2713.6 9.71
50 46,993 20,581 4600.1 11.25
16 142,520 89,185 5798.5 10.67
4 1,023,614 691,154 18573.0 28.75

BMS-WebView-1:
1,000 31 31 30.1 1.08

200 372 309 36.8 1.18
50 7,811 3,796 71.9 1.47
40 29,489 11,748 111.4 2.39
36 64,762 25,117 153.7 1.50
35 76,260 30,011 169.2 1.52
34 87,982 35,392 186.5 1.54
33 99,696 40,915 207.7 1.60
32 110,800 46,424 221.7 1.66
31 120,190 51,369 247.7 1.79
30 127,131 55,407 271.5 1.89

[6] J. Han, J. Pei, Y. Yin, R. Mao, Mining
Frequent Patterns without Candidate Gen-
eration: A Frequent-Pattern Tree Approach,
Data Mining and Knowledge Discovery, 8(1),
53–87, 2004.

[7] S. Minato: Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems, In Proc.
30th ACM/IEEE Design Automation Conf.
(DAC-93), (1993), 272–277.

[8] S. Minato, H. Arimura: ZBDD-growth:
An Efficient Method for Frequent Pattern
Mining and Knowledge Indexing, Hokkaido
University, Division of Computer Science,
TCS Technical Reports, TCS-TR-A-06-12,
Apr. 2006.
http://www-alg.ist.hokudai.ac.jp/
tra.html

[9] H. Okuno, S. Minato, and H. Isozaki: On
the Properties of Combination Set Operations,
Information Procssing Letters, Elsevier, 66
(1998), pp. 195-199, 1998.

[10] T. Uno, Y. Uchida, T. Asai, and H. Arimura:
“LCM: An Efficient Algorithm for Enumerat-

ing Frequent Closed Item Sets,” Proc. Work-
shop on Frequent Itemset Mining Implementa-
tions (FIMI’03), Mohammed J. Zaki and Bart
Goethals (eds.), 2003.
http://fimi.cs.helsinki.fi/fimi03/

[11] M. J. Zaki, Scalable Algorithms for Associa-
tion Mining, IEEE Trans. Knowl. Data Eng.
12(2), 372–390, 2000.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Emulate Acrobat 4)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 841.890]
>> setpagedevice


