TCS-TR-A-06-22

TCS Technical Report

Symmetric [tem Set Mining Method Using ZBDDs
and Application to Biological Data

by

SHIN-ICHI MINATO AND KIMIHITO ITO

Division of Computer Science
Report Series A
November 11, 2006

Hokkaido University
Graduate School of
Information Science and Technology

Email: minato@ist.hokudai.ac.jp Phone: +481-011-706-7682
Fax: +81-011-706-7682

Symmetric [tem Set Mining Method Using ZBDDs
and Application to Biological Data

SHIN-ICHI MINATO
Division of Computer Science
Hokkaido University
North 14, West 9
Sapporo 060-0814, Japan

Kimiairo Ito

Research Center for Zoonosis Control

Hokkaido University
North 18, West 9
Sapporo 060-0818, Japan

November 11, 2006

(Abstract) In this paper, we present a method
of finding symmetric items in a combinatorial item
set database. The techniques for finding symmet-
ric variables in Boolean functions have been studied
for long time in the area of VLSI logic design, and
the BDD (Binary Decision Diagram) -based meth-
ods are presented to solve such a problem. Re-
cently, we have developed an efficient method for
handling databases using ZBDDs (Zero-suppressed
BDDs), a particular type of BDDs. In our ZBDD-
based data structure, the symmetric item sets can
be found efficiently as well as for Boolean func-
tions. We implemented the program of symmetric
item set mining, and applied it to actual biologi-
cal data on the amino acid sequences of influenza
viruses. We found a number of symmetric items
from the database, some of which indicate interest-
ing relationships in the amino acid mutation pat-
terns. The result shows that our method is help-
ful for extracting hidden interesting information in
real-life databases.

1 Introduction

Frequent item set mining is one of the fundamental
techniques for knowledge discovery. Since the in-
troduction by Agrawal et al.[1], the frequent item
set mining and association rule analysis have been
received much attentions from many researchers,
and a number of papers have been published about
the new algorithms or improvements for solving
such mining problems|3].

After generating frequent item set data, we
sometimes faced with the problem that the results
of item sets are too large and complicated to re-
trieve useful information. Therefore, it is impor-
tant for practical data mining to extract the key
structures from the item set data. Closed/maximal
item set mining[16] is one of the useful methods to
find important item sets. Disjoint decomposition of
item set data[13] is another powerful method for ex-
tracting hidden structures from frequent item sets.

In this paper, we propose one more interesting
method for finding hidden structure from large-
scale item set data. Our method is based on the
symmetry of items. It means that the exchange of
a pair of symmetric items has completely no effect
for the database information. This is a very strict
property and it will be a useful association rule for
the database analysis.

The symmetry of variables is a fundamental con-
cept in the theory of Boolean functions, and the
method of symmetry checking has been studied for
long time in VLSI logic design area. There are
some state-of-the-art algorithms[14, 7] using BDDs
(Binary Decision Diagrams)[2] to solve such a prob-
lem. The BDD-based techniques can be applied to
data mining area. Recently, we found that ZB-
DDs (Zero-suppressed BDDs)[9] are very suitable
for representing large-scale item set data used in
transaction database analysis[12].

In this paper, we discuss the property of sym-
metric items in transaction database, and then
present an efficient algorithm to find all symmetric

item sets using ZBDDs. We also show the experi-
mental result for an actual biological database on
the amino acid sequences of influenza viruses[8][6].
We found a number of symmetric items from the
database, some of which indicate an interesting re-
lationship of amino acid mutation patterns. The
result shows that our method is helpful for extract-
ing hidden information in real-life databases.

2 Preliminaries

Here we briefly describe the basic techniques of
BDDs and ZBDDs for representing combinatorial
item sets efficiently.

2.1 BDDs

BDD (Binary Decision Diagram) is a directed
graph representation of the Boolean function, as
illustrated in Fig. 1(a).
a binary tree graph representing recursive Shan-
The fol-
lowing reduction rules yield a Reduced Ordered
BDD (ROBDD), which can efficiently represent the
Boolean function. (see [2] for details.)

It is derived by reducing

non’s expansion, indicated in Fig. 1(b).

e Delete all redundant nodes whose two edges
point to the same node. (Fig. 3(a))

e Share all equivalent sub-graphs. (Fig. 3(b))

ROBDDs provide canonical forms for Boolean
functions when the variable order is fixed. Most
researches on BDDs are based on the above reduc-
tion rules. In the following sections, ROBDDs will
be referred to as BDDs (or ordinary BDDs) for the
sake of simplification.

As shown in Fig. 2, a set of multiple BDDs can
be shared each other under the same fixed variable
ordering. In this way, we can handle a number of
Boolean functions simultaneously in a monolithic
memory space.

Using BDDs, we can uniquely and compactly
represent many practical Boolean functions includ-
ing AND, OR, parity, and arithmetic adder func-
tions. Using Bryant’s algorithm[2], we can effi-
ciently construct a BDD for the result of a binary

Shin-ichi Minato and Kimihito Ito

logic operation (i.e. AND, OR, XOR), for given a
pair of operand BDDs. This algorithm is based on
hash table techniques, and the computation time
is almost linear to the data size unless the data
overflows the main memory. (see [10] for details.)

Based on these techniques, a number of BDD
packages have been developed in 1990’s and widely
used for large-scale Boolean function manipulation,
especially popular in VLSI CAD area.

2.2 ZBDDs and combinatorial item sets

BDDs are originally developed for handling
Boolean function data, however, they can also be
used for implicit representation of combinatorial
item sets. Here we call “combinatorial item set”
for a set of elements each of which is a combination
out of n items. This data model often appears in
real-life problems, such as combinations of switch-
ing devices(ON/OFF), fault combinations, and sets
of paths in the networks.

A combination of n items can be represented by
an n-bit binary vector, (xjzs...x,), where each
bit, x € {1,0}, expresses whether or not the item
is included in the combination. A set of combina-
tions can be represented by a list of the combina-
tion vectors. In other words, a combinatorial item
set is a subset of the power set of n items.

A combinatorial item set can be mapped into
Boolean space by using n-input variables for each
bit of the combination vector. If we choose any
one combination vector, a Boolean function deter-
mines whether the combination is included in the
combinatorial item set. Such Boolean functions are
called characteristic functions. For example, the
left side of Fig. 5 shows a truth-table representing
a Boolean function (abe) V (bc), but also represents
a combinatorial item set {ab,ac,c}. Using BDDs
for characteristic functions, we can implicitly and
compactly represent combinatorial item sets. The
logic operations AND/OR for Boolean functions
correspond to the set operations intersection/union
for combinatorial item sets. By using BDDs for
characteristic functions, we can manipulate com-
binatorial item sets efficiently. They can be gen-
erated and manipulated within a time roughly

Symmetric Item Set Mining Method Using ZBDDs and Application to Biological Data 3

Figure 1: BDD and binary tree:
(anb)Vve.

iy

(b) Binary tree.

F =

Figure 2: Shared multiple BDDs.

a) Node deletion.

Figure 3:
BDDs

proportional to the BDD size. When we han-
dle many combinations including similar patterns
(sub-combinations), BDDs are greatly reduced by
node sharing effect, and sometimes an exponential
reduction benefit can be obtained.

Zero-suppressed BDD (ZBDD)[9] is a spe-
cial type of BDDs for efficient manipulation of com-
binatorial item sets. ZBDDs are based on the fol-
lowing special reduction rules.

e Delete all nodes whose 1-edge directly points
to the O-terminal node, and jump through to
the 0-edge’s destination, as shown in Fig. 4.

e Share equivalent nodes as well as ordinary
BDDs.

Notice that we do not delete the nodes whose two
edges point to the same node, which used to be
deleted by the original rule. The zero-suppressed
deletion rule is asymmetric for the two edges, as we
do not delete the nodes whose 0-edge points to a
terminal node. It is proved that ZBDDs also give

b) Node sharing.

-

Figure 4: ZBDD reduction rule.

Reduction rules of ordinary

canonical forms as well as ordinary BDDs under a
fixed variable ordering.

Here we summarize the features of ZBDDs.

e In ZBDDs, the nodes of irrelevant items (never
chosen in any combination) are automatically

deleted by ZBDD reduction rule.
nary BDDs, irrelevant nodes still remain and

In ordi-

they may spoil the reduction benefit of shar-
ing nodes. An example is shown in Fig. 5. In
this case, the item d is irrelevant, but ordinary
BDD for characteristic function Fz(a,b,c)
and Fz(a,b,c,d) become different forms. On
the other hand, ZBDDs for Fz(a,b,c) and
Fz(a,b,c,d) become identical forms and com-
pletely shared.

e Each path from the root node to the 1-terminal
node corresponds to each combination in the
set. Namely, the number of such paths in the
ZBDD equals to the number of combinations
in the set. In ordinary BDDs, this property
does not always hold.

Shin-ichi Minato and Kimihito Ito

alblc|d|F|Fz As a Boolean function: As a set of combinations:
ofo|ofo]o] O F(a,b,c)=(ab ~c)V (~bc) Fz(a,b,c) = {ab, ac, ¢}
1/0{o0{0]Jo]oO F(a,b,c,d) = (ab ~c) V (~b c) Fz(a,b,c,d) = {ab, ac, c}
of1]ofofo]o Fz(a,b,c,d) = (@b ~c ~d) V (~b ¢ ~d)

111(0(0]1 1 Pab

o[(0|1|0]1 1 Pc

11ol1lol1 11 > ac Ordinary BDDs: ZBDDs:
oj1]|1]o]o]oO F(a,b,c) F(a,b,c,d) Fz(a,b,c,d) Fz(a,b,c) Fz(a,b,c,d)
1/1]11]0]J0] O

o[(ojo|1]o0]O

110(0(1]0} O

o|1j0f(1]101] O

11110111 0

0101 (111 0

110(1(1]11]0

o[(1|111]01]0

1111|110 0

Figure 5: Effect of ZBDD reduction rule.

e When no equivalent nodes exist in a ZBDD,
that is the worst case, the ZBDD structure
explicitly stores all items in all combinations,
as well as using an explicit linear linked list
data structure. Namely, (the order of) ZBDD
size never exceeds the explicit representation.
If more nodes are shared, the ZBDD is more
compact than linear list.

The detailed techniques of ZBDD manipulation
are described in the articles[9, 11]. A typical ZBDD
package supports cofactoring operations to traverse
0-edge or 1-edge, and binary operations between
two combinatorial item sets, such as union, inter-
section, and difference. The computation time for
each operation is almost linear to the number of
ZBDD nodes related to the operation.

3 Symmetric item sets in trans-
action databases

3.1 Symmetry of variables in Boolean
functions

The symmetry is a fundamental concept in the the-
ory of Boolean functions. A symmetric Boolean
function means that any exchange of input vari-
ables has no effect for the output value. In other
words, the output value is decided only by the to-
tal number of true assignments in the n-input vari-
ables. The parity check functions and threshold

Figure 6: Four sub-functions for symmetry check-
ing.

functions are typical examples of symmetric func-
tions.

When the function is not completely symmetric,
we sometimes find partial groups of symmetric vari-
ables. If two variables are exchangeable without
any output change, we call them symmetric vari-
ables in the function. An obvious property holds
that if the pairs (a,b) and (a,c) are both symmet-
ric, then any pair in (a, b, ¢) is symmetric.

As finding symmetric variables leads to compact
logic circuits, it has been studied for long time
in VLSI logic design area. In order to check the
symmetry of the two variables v; and vy in the
function F, as shown in Fig. 6, we first extract
four sub-functions: Fyg, Fy1, F1g, and Fi1 by assign-
ing all combinations of constant values 0/1 into vy
and v9. We then compare of Fy; and Fig. If the
two are equivalent, we can see the two variables

Symmetric Item Set Mining Method Using ZBDDs and Application to Biological Data)

S
{abe, acd, ad, bed, bd ¢, cd}

Son So1 S Sy
{c, ed} {cd, d} {cd, d} {c}

Figure 7: Four sub-combinations for symmetry
checking.

are symmetric. In principle, we need n(n — 1)/2
times of symmetry checks for all possible variable
pairs. There have been proposed some state-of-the-
art algorithms[14, 7] using BDDs (Binary Decision
Diagrams)[2] to solve such a problem efficiently.

3.2 Symmetric Items in combinatorial
item sets

Here we discuss the symmetry of items in a com-
binatorial item set. For example we consider the
following combinatorial item set:
S = {abe, acd, ad, bed, bd, ¢, cd}.

In this case, the item a and b are symmetric
but the other pairs of variables are not symmet-
ric. The symmetry can be confirmed as shown
in Fig. 7. First we classify the combinations into
four categories: (1) both a and b included, (2)
only a is included, (3) only b is included, and (4)
neither included. Namely, it can be written as:
S = abS11 U aS1p U bSp1 U Sgg. Then, we can de-
termine the symmetry of ¢ and b by comparing
S10 and Spp. If the two subsets are equivalent,
a and b are exchangeable. For the above exam-
ple, S11 = {c},S10 = {cd,d},So1 = {cd,d}, and
Soo = {c,cd}. We can see a and b are symmetric
as 510 = 501.

Even if we do not know the actual meaning of
the item a and b in the original database, we can
expect that ¢ and b would have somehow strong
relationship if the symmetric property holds. It is
a kind of hidden information. It would be a useful
and interesting task to find all possible symmetric

item sets from the given databases. This method
can be used not only for original database but also
for frequent item set data to find some relationships
between the items.

4 ZBDD-based algorithm for
finding symmetric item sets

As shown in article[12], the ZBDD-based data
structure is quite effective (exponentially in ex-
treme cases) for handling transaction databases,
especially when the item sets include many simi-
lar partial combinations. Now we show an efficient
algorithm of finding symmetric item sets based on
ZBDD operations.

First we explain the cofactor operation on ZB-
DDs. Cofactor(S,v) classifies a combinatorial item
set S into the two subsets, one of which includes
the item v and the other does not. Namely, it ex-
tracts S7 and Sy such that S = vS7USy. If the item
v is the top (highest ordered) item in the ZBDD,
then S7 and Sy are the two sub-graphs pointed by
l-edge and 0-edge of the top decision node, and
the cofactor operation can be done in a constant
time. Therefore, if the item v, and vy are the first
and second top items in the ZBDD, the symmetry
checking is quite easy because Sio (subset with vy
but not vy) and Sp; (subset with vg but not v1) can
be extracted and compared in a constant time.

This “naive” checking method works quite ef-
ficiently only if the v; and vo are at the highest
positions. Otherwise, we have to generate tem-
porary ZBDDs for Sy and Sp; by cofactor oper-
ations. If S1g and Sp; are quite different, we may
easily find the asymmetry of two items by check-
ing a small part of ZBDDs. However, the naive
method always generates the whole ZBDDs for S
and Sp; and then compare them. To address this
inefficiency, we developed an efficient recursive al-
gorithm as presented in 8.

In this algorithm, first we get the top item t in
the ZBDD S, and extract S1 and .Sy as the cofactors
of S by t. We then recursively check the symmetry
of (v1,v9) for each subset S; and Sy, and if they
are symmetric for the both, we can see they are
symmetric for S.

Shin-ichi Minato and Kimihito Ito

SymChk(S, v1,ve) /* Assume v; higher than vy in the ZBDD ordering.*/

{
if (S=0o0r S=1)return 1 ;
r « Cache(S, v1,v2) ;
if (r exists) return r ;

t; < S.top ; /* Top item in S */

if (¢; higher than v)

(S1,S0) < (Cofactors of S by t1) ;
r «— SymChk(S1,v1,v2) && SymChk(Sy, vy, v2) ;

else

(S1,S0) < (Cofactors of S b¥

to «— Max(Sy.top, Sp.top) ; /
if (t2 higher than wvs)
ESn, 510;

Sot,S00)

1) ;
Top

item in S1, Sy */

«— (Cofactors of S1 by t2) ;
Cofactors of Sy by ta) ;

roo— SymChk((thH U Slo),tg,l)g) && SymChk((thm U

Soo),tiuw) ;
else
ESn, 510;

Sot, So0
S10="501)71:0;

-
T <—
endif
endif
Cache(S,v1,v9) <1 ;
return 7 ;

«— (Cofactors of S7 by v2) ;
Cofactors of Sy by va

)

Figure 8: Sketch of the symmetry checking algorithm.

This procedure may require an exponential
number of recursive calls in terms of the number
of items higher than vy, vy in the ZBDD, however,
we do not have to execute the procedure twice for
the same ZBDD node because the results will be
the same. Therefore, the number of recursive calls
is bounded by the ZBDD size, by using a hash-
based cache to save the result of procedure for each
ZBDD node. In addition, if we found the two items
are asymmetric either for S; or Sy, we may imme-
diately quit the procedure and conclude they are
asymmetric for S.

In our checking algorithm, the cofactor opera-
tion is always applied to the highest ordered items,
and each recursive procedure can be executed in a
constant time. Thus, the total computation time
is bounded by O(|G]), where |G| is the ZBDD size
for S. Repeating this procedure for all item pairs
in S, we can extract all possible symmetric item
sets in O(n?|G|) time, where n is number of items.
The time will be shorter in practice because the
most of item pairs are asymmetric in usual cases.
In addition, the benefit of hash-based cache can be
shared in the repetition of checking different item

pairs.

Lastly we note that there have been several ef-
ficient symmetry checking algorithms for Boolean
function data using ordinary BDDs[14, 7], but it is
not trivial to apply the techniques to the ZBDDs
since the primitive operations of ZBDDs are differ-
ent from those of ordinary BDDs. Our work is the
first proposal of the efficient symmetry checking al-
gorithm for combinatorial item sets using ZBDDs.

5 Implementation and Applica-
tion to biological data

We implemented our symmetric checking algo-
rithm. The program is based on our own ZBDD
package, and additional 70 lines of C++ code for
the symmetry checking algorithm. We used a
Pentium-4 PC, 800MHz, 1.5GB of main memory,
with SuSE Linux 9. We can manipulate up to
20,000,000 nodes of ZBDDs in this PC.

Symmetric Item Set Mining Method Using ZBDDs and Application to Biological Data 7

Table 1: Experimental result for basic performance evaluation

Data name #Item | #Record | #Tuple ZBDD | Time(sec) for [[Sym. Time(sec)

nodes ZBDD gen. || pairs | for sym.chk.
mushroom 119 8,124 8,124 8,006 1.1 19 0.6
T1014D100K 870 | 100,000 | 89,135 547,777 59.2 0 61.7
pumsb 2113 | 49.046 | 48474 || 1,749.775 166.7 90 1,152.0
BMS-Web-View-1 497 59,602 18,473 42,629 24.9 6 30.2
accidents 468 340,183 | 339,898 || 3,876,468 127.5 11 18.0

Table 2: Comparison to naive checking method.

Data name Time(sec) for sym.chk.
our method | naive method.
mushroom 0.6 1.2
T10I4D100K 61.7 28,482.0
pumsb 1,152.0 (> 24h)
BMS-Web-View-1 30.2 251.8
accidents 18.0 53,290.3

5.1 Experiment for basic performance
evaluation

For evaluating the basic performance, we applied
our method to the practical transaction databases
chosen from FIMI2003 benchmark set[4]. We first
constructed a ZBDD for the set of all tuples in
the database, and then apply our symmetry check-
ing algorithm for all item pairs. The results are
shown in Table 1. “Sym. pairs” shows the number
of symmetric pairs we found. Our result demon-
strates that we succeeded in extracting all symmet-
ric item sets for a practical size of databases within
a feasible computation time. We can see that no
symmetric pairs are found in “T10I4D100K.” It is
a reasonable result because this data is randomly
generated and there is no strong relationship be-
tween any pair of items.

Table 2 shows the comparison of our symmetry
checking algorithm to the “naive” method, which
always generates the whole ZBDDs for Sjy and
So1 and then compare them. The differences of
computation time are more than hundred times in
larger instances. This result shows that our recur-
sive checking algorithm is remarkably effective to
find symmetric item pairs.

5.2 Experiment of biological data anal-
ysis

Hokkaido University Research Center for Zoonosis
Control is conducting a research project for ana-
lyzing the mutations in the hemagglutinins of in-
fluenza viruses, in order to predict possible struc-
tural changes in the future influenza viruses[6]. The
hemagglutinin (HA) is the major surface glycopro-
tein of influenza viruses and plays an important
role in virus entry into host cells. The amino acid
sequences of HAs mutate every year, and the con-
tinuously cause epidemic in the world.

We applied our method to a real-life biological
data, the amino acid sequences of the HA of human
influenza viruses.

The data we used are the 1,657 instances of
amino acid sequences of type “H3N2” HAs of hu-
man influenza viruses, isolated during 1968 to 2006
in the world. Each sequence has 328 positions of
amino acids, and each position has one of the 20
amino acid types: {R, K, H, P, A, L, G, V, I, W,
M, S, Y,Q, T, F, N, C, E, D}. Namely, the total
The se-
quence data also has a field of the year when the

combinatorial space is as many as 20328,

virus was isolated. The data is available at the
public database of NCBI Influenza resources[15].
In our experiment, we prepared primitive items
as all possible pairs of a position and a amino acid
type. We used 20 x 328 = 6,560 different items in
total. For example, the item “125T” means that

Shin-ichi Minato and Kimihito Ito

amino acid

OmMOZNA40 <022 _<Or>TVIXD

1828
188
1585
1888
1986
1887
1988
1989
1990
1901
1902
1903

1994
1995
1996
1997
1998

2 1999

3 1999
2000
2001
2002

<

2003
2004
2005
2006

Figure 9: Mutations at the 225th and the 193rd amino acid positions.

the amino acid “T” appears at the 125th position.
We used the letter “X” when the data of a posi-
tion is missing, for instance, “167X” means that
we don’t know the amino acid at the 167th posi-
tion. The field of the year is expressed as “Y1989.”
In this way, the sequence data can be represented
as follows:

Y1968 1Q 2D 3L 4P 5G ... 326K 327Q 328T
Y1973 1Q 2D 3F 4P 5G ... 326K 327Q) 3287T
Y1999 1Q 2K 3L 4P 5G ... 326K 327Q 328T

The data contains 1,657 lines of such combinatorial
item sets.

We conducted an experiment of generating a
ZBDD for the amino acid sequence data and then
extracting all symmetric item sets from the ZB-
DDs. In our result, the number of ZBDD nodes
is 168,261. The CPU time just for ZBDD con-
struction was 17.9 second. Next, we execute our
algorithm of symmetric item set mining for the

ZBDD. The total computation time for checking
21,513,520(= 6560C2) item pairs was 725 sec, and
we found 64 groups of symmetric items, as follows.

(324P 321R 320M 314L 306P 301T 296N 290N
287 281C 277C 266S 256G 255R 254P 250N 241D
240G 237V 224R 200G 191Q 181G 166V 153W
147F 136S 134G 132Q 125F 123E 119E 116G 113A
111L 100Y 90R 89E 84W 76C 73D 71L 70L 69A
68D 66L 65T 64C 61G 52C 42L 39A 28T 26V
18H) (13W 12R 11Q 10R 9A 7T 6M) (309A 307X

303R 258X 232M 117X 24X) (303X 187M 180X
133X 120C 60X) (212L 210K 209C 108V 107C)
(74X 62X 47X 21X 2X) (322Y 311P 310E 276S
861) (322X 318X 294C 234X 19X) (328L 327K 3261
323E) (2585 238R 164V 1P) (173G 163M 104E
62A) (225A 211X 183Q 6D) (190N 186D 15M)
(203A 198P 11T) (235A 216Y 115P) (214V 23R
3M) (327R 127L 110L) (159R 118M 34T) (146R
139F 31V) (180W 120F 60D) (225N 193F) (225H
33R) (104G 93S) (298D 124R) (252T 152S) (218X
1401) (95C 94T) (131D 33N) (871 80L) (275E 46L)
(304V 72X) (140T 139X) (328P 325X) (257F 98N)
(219T 2R) (327L 325Q) (193T 183P) (218A 205C)
(21R 17R) (144A 126S) (328S 294Y) (187K 1569)

Symmetric Item Set Mining Method Using ZBDDs and Application to Biological Data 9

(311E 170H) (244M 83R) (53S 6K) (114L 9K)
(309G 213R) (173R 124E) (212A 133G) (172A
80R) (292Q 291H) (15X 14X) (97S 96Y) (236T
226P) (319R 249A) (278V 169S) (319G 249G)
(318T 234W) (257Y 98Y) (235T 115S) (2321 24T)
(210Q 108L) (127W 110S) (126T 83T)

In the result, the first symmetric group of a large
number of items represents the items commonly ap-
pear in all the sequences, in other words, they are
the amino acid positions which have never changed.
The other symmetric groups are related to a part
of sequences, and the pair of positions may have
some interesting biological relationship. For exam-
ple, (225N 193F) is one of the symmetric item pair,
and we checked the mutations of the 225th and the
193rd amino acid positions with our visualization
tool[5]. Some portions of the graphic output are
shown in Fig. 9. We can observe that the two amino
acid positions have a strong co-relation in the very
recent sequences after 2005.

There is a related work[6] to extract co-related
amino acid positions based on mutual information
analysis. The calculation of mutual information
also gives a relationship between the two positions,
however, it indicates the total behaviors of all se-
quence data, and would not be effective to find a
relationship sharply seen in a portion of sequence
instances. Our method will be useful to detect such
relationships.

The symmetric item sets extracted in our
method does not always correspond to biologically
meaningful relationships, however, some of them
may have such interesting information. We have al-
ready known many kind of data mining techniques
such as frequent pattern mining, closed pattern
mining, etc. Our symmetric item set mining will be
a new alternative method for knowledge discovery.

6 Conclusion

In this paper, we presented an efficient method
for extracting all symmetric item sets in transac-
tion databases. The experimental results show that
our method efficiently extracts hidden information
from the large-scale database. It is applicable to

a real-life biological database, which includes 6,560
items and requires 21,513,520 pairs of symmetry
checking. Our method will be useful to detect a
sharp relationship hidden in a limited portion of
database and may also be useful for pruning noisy
data.

As our future work, we are considering more ef-
ficient algorithm to be applied for more larger ZB-
DDs, and it would also be interesting to develop
“approximately” symmetry checking method which
allows some errors or noise in the data.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami,
Mining Association rules between sets of items
in large databases, In P. Buneman and S. Jajo-
dia, edtors, Proc. of the 1993 ACM SIGMOD
International Conference on Management of
Data, Vol. 22(2) of SIGMOD Record, pp. 207—
216, ACM Press, 1993.

[2] Bryant, R. E., Graph-based algorithms for
Boolean function manipulation, IEEE Trans.
Comput., C-35, 8 (1986), 677-691.

[3] B. Goethals, “Survey on Frequent Pattern
Mining”, Manuscript, 2003.
http://www.cs.helsinki.fi/u/goethals/
publications/survey.ps

[4] B. Goethals, M. Javeed Zaki (Eds.), Frequent
Ttemset Mining Dataset Repository, Frequent
Itemset Mining Implementations (FIMI'03),
2003.
http://fimi.cs.helsinki.fi/data/

[5] Hokkaido University Research Center for
Zoonosis Control, PlotH3N2, Available from:
http://www.czc.hokudai.ac. jp/ “murakami/
plot-H3N2/

6] K. Tto, M. Igarashi, H. Kida, and A.
Takada, “Computer Analysis of Structural
Changes in H3 Hemagglutinins of Human In-
fluenza Viruses Isolated During 1968 to 2006,”
Thirteenth International Conference Negative
Strand Viruses 2006, p.28, 2006.

10

[7]

[12]

N. Kettle and A. King: “An Anytime Sym-
metry Detection Algorithm for ROBDDs,” In
Proc. IEEE/ACM 11th Asia and South Pacific
Design Automation Conference (ASPDAC-
2006), pp. 243-248, Jan. 2006.

Krug, R.M. and Lamb,
R.A.,Orthomyxoviridae: The Viruses and
Their Replication, Fields Virology. 4th

edition, editors: Knipe DM, Howley PM,.
Philadelphia: Lippincott Williams & Wilkins.
2001.

Minato, S., Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems, In Proc.
30th ACM/IEEE Design Automation Conf.
(DAC-93), (1993), 272-277.

S. Minato: “Binary Decision Diagrams and
Applications for VLSI CAD”, Kluwer Aca-
demic Publishers, November 1996.

S. Minato, Zero-suppressed BDDs and Their
Applications, International Journal on Soft-
ware Tools for Technology Transfer (STTT),
Springer, Vol. 3, No. 2, pp. 156-170, May
2001.

S. Minato and H. Arimura: ”Efficient Com-
binatorial Item Set Analysis Based on Zero-
Suppressed BDDs”, IEEE/IEICE/IPSJ Inter-
national Workshop on Challenges in Web In-
formation Retrieval and Integration (WIRI-
2005), pp. 3-10, Apr., 2005.

S. Minato: “Finding Simple Disjoint De-
compositions in Frequent Itemset Data Us-
ing Zero-suppressed BDD,” In Proc. of IEEE
ICDM 2005 workshop on Computational In-
telligence in Data Mining, pp. 3-11, ISBN-0-
9738918-5-8, Nov. 2005.

A. Mishchenko, “Fast Computation of Sym-
metries in Boolean Functions,” IEEE Trans.
Computer-Aided Design, Vol. 22, No. 11,
pp- 1588-1593, 2003.

National Center for Biotechnology Informa-
tion, “Influenza virus resource,” Jun 23, 2005.
Available from:

Shin-ichi Minato and Kimihito Ito

http://www.ncbi.nlm.nih.gov/genomes/
FLU/FLU.html

T. Uno, T. Asai, Y. Uchida and H. Arimura,
“An Efficient Algorithm for Enumerating
Closed Patterns in Transaction Databases,” In

Proc. of the 8th International Conference on
Discovery Science 2004 (DS-2004), 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Emulate Acrobat 4)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 841.890]
>> setpagedevice

