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(Abstract) In this paper, we propose a new
method for discovering hidden information from
large-scale transaction databases by considering a
property of cofactor implication. Cofactor implica-
tion is an extension or generalization of symmetric
itemsets, which has been presented recently. Here
we discuss the meaning of cofactor implication for
the data mining applications, and show an efficient
algorithm of extracting all non-trivial item pairs
with cofactor implication by using Zero-suppressed
Binary Decision Diagrams (ZBDDs). Finally, we
show an experimental result to see how many item-
sets can be extracted by using cofactor implication,
compared with symmetric itemset mining. Our
result indicates that the use of cofactor implica-
tion has a possibility of discovering a new aspect of
structural information hidden in the databases.

1 Introduction

Discovering useful knowledge from large-scale
databases has attracted a considerable attention
during the last decade. Frequent pattern mining
is one of the fundamental problems for knowledge
discovery. Since the pioneering paper by Agrawal
et al.[1], various algorithms have been proposed
to solve the frequent pattern mining problem (cf.,
e.g., [15, 6]).

Recently, we have attacked the problem of effi-
ciently generating the frequent patterns in a trans-
action database by using a data structure called
Zero-suppressed Binary Decision Diagrams (abbr.
ZBDDs), see [7, 8]. ZBDDs are a special case of

Binary Decision Diagrams (abbr. BDDs)[2]. Us-
ing ZBDDs one can implicitly enumerate sets of
combinations. Moreover, one can then perform ef-
ficiently various operations including the discovery
and analysis of frequent patterns.

After generating frequent item set data, we
sometimes faced with another problem that the
results of itemsets are too large and compli-
cated to retrieve useful information. It is impor-
tant for practical data mining to extract the key
structures from the itemset data. For example,
closed/maximal itemset mining[16, 14, 13] extracts
a partial set of itemsets with a special property,
and it reveals a kind of structural information in
the database. In this context, recently our re-
search group have developed several new method
such as disjoint itemset decomposition[9], and sym-
metric itemset mining[10]. Both the two methods
are based on ZBDD representation for transaction
databases, and efficiently find hidden structural in-
formation using set operations supported by ZBDD
manipulation.

In this paper, we propose a new aspect of item-
set mining by considering a property of cofactor im-
plication. The cofactor implication is an extension
or generalization of symmetric itemset[10]. Here we
discuss the meaning of the cofactor implication for
the data mining applications, and show an efficient
algorithm of extracting all non-trivial item pairs
with the cofactor implication by using ZBDD op-
erations. Finally, we show an experimental result
to see how many itemsets can be extracted by using
the cofactor implication, compared with symmet-
ric itemset mining. Our result indicates that the
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use of the cofactor implication has a possibility of
discovering a new aspect of structural information
hidden in the databases.

2 Database Representation Us-
ing ZBDDs

In this section, we first describe the database rep-
resentation to be discussed. Here we consider
databases of the following type. Let M �= ∅ be
any set. We refer to the elements of M as to items.
In our examples below, we use M = {a, b, c}. Then
the set of all possible combinations is the power
set ℘(M) of M . Any subset C ⊆ ℘(M) is said to
be a set of combinations. The elements of a set
of combinations are sets of items, e.g., {a, c}. To
simplify notation, we write ac instead of {a, c} and
we refer to the elements of a set of combinations as
to tuples. A transaction database is just a list of
tuples.

A Binary Decision Diagram (BDD) is a graph
representation for a Boolean function. An Example
is shown in Fig. 1 for F (a, b, c) = abc ∨ abc.

Given a variable ordering (in our example
a, b, c), one can use Bryant’s algorithm[2] to con-
struct the BDD for any given Boolean function.
For many Boolean functions appearing in practice
this algorithm is quite efficient and the resulting
BDDs are much more efficient representations than
binary decision trees.

BDDs were originally invented to represent
Boolean functions. But we can also map a set
of combinations into Boolean space of n variables,
where n is the cardinality of the item set M (see
Fig. 2). So, one could also use BDDs to represent
sets of combinations. However, one can even ob-
tain a more efficient representation by using Zero-
suppressed BDDs (ZBDDs)[7].

If there are many similar combinations then the
subgraphs are shared resulting in a smaller repre-
sentation. In addition, ZBDDs have a special type
of node deletion rule. As shown in Fig. 3, All nodes
whose 1-edge directly points to the 0-terminal node
are deleted. Because of this, the nodes of items that
do not appear in any sets of combinations are au-
tomatically deleted as shown in Fig.1. This ZBDD

reduction rule is extremely effective if we handle a
set of sparse combinations. If the average appear-
ance ratio of each item is 1%, ZBDDs are possi-
bly more compact than ordinary BDDs, up to 100
times.

ZBDD representation has another good prop-
erty that each path from the root node to the 1-
terminal node corresponds to each combination in
the set. Namely, the number of such paths in the
ZBDD equals to the number of combinations in
the set. This beautiful property indicates that,
even if there are no equivalent nodes to be shared,
the ZBDD structure explicitly stores all items of
each combination, as well as using an explicit lin-
ear linked list data structure. In other words, (the
order of) ZBDD size never exceeds the explicit rep-
resentation. If more nodes are shared, the ZBDD
is more compact than linear list.

Using a ZBDD-based data structure, we can ma-
nipulate compressed representation of large-scale
transaction databases on the main memory. Re-
cently, our research group has developed an ef-
ficient algorithm “ZBDD-growth”[11] to generate
ZBDDs compactly representing all frequent item-
sets for given databases. Our method is not only
enumerating/listing the frequent patterns but also
efficiently analyzing the huge size of mining re-
sults by using ZBDD operations. For example, ex-
tracting all patterns including a certain items, or
computing the intersection/union/difference set for
given two sets of patterns. The computation time
of those operations does not directly depend on the
number of patterns but almost linear to the (com-
pressed) ZBDD size. It is an important advantage
of using ZBDDs.

3 Cofactor Implication Based on
ZBDDs

In this section, we present the definition of the co-
factor implication and discuss the properties.
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Figure 1: Binary Decision Tree, BDDs and ZBDDs

a b c F → S
0 0 0 0
0 0 1 0
0 1 0 1 → b
0 1 1 0
1 0 0 0
1 0 1 1 → ac
1 1 0 0
1 1 1 0

As a Boolean function:
F = abc ∨ abc

As a set of combinations:
S = {ac, b}

Figure 2: Correspondence of Boolean functions and sets of combinations.

3.1 Symmetry of Items in Sets of Com-
binations

In our previous work[10], we defined symmetry
of items in transaction databases, and we pre-
sented an efficient algorithm to find all symmet-
ric items in a given database. Here we explain
the meaning of symmetry of items. For exam-
ple, we consider the following set of itemsets: S =
{abc, acd, ad, bcd, bd, c, cd}. In this case, the item
a and b are symmetric but the other pairs of vari-
ables are not symmetric. Figure 4 show a method
of symmetry checking. First we classify the combi-
nations into four categories: (1) Sab, both a and b

included, (2) Sab, only a is included, (3) Sab, only b

is included, and (4) Sab, neither included. Namely,
it can be written as:

S = a b Sab ∪ a Sab ∪ b Sab ∪ Sab

Then, we can determine the symmetry of a and b

by comparing Sab and Sab. If the two subsets are
equivalent, a and b are exchangeable without any
effect. For the above example, we can see that a

and b are symmetric because Sab = Sab = {cd, d}.

By using quick equivalence checking based
on ZBDD operations, we can efficiently detect
symmetric itemsets in a large-scale transaction
database. Previous experimental results[12] show
that our method is applicable to a real-life biologi-
cal database, which consists of 6,560 items of amino
acid information related to influenza viruses. We
succeeded in extracting all possible 64 groups of
symmetric items from the database in a feasible
computation time. Even if we do not know the ac-
tual meaning of each item, we can expect that the
group of items would have somehow strong corre-
lation if the symmetric property holds.

3.2 Symmetric Property and Cofactor
Operation

Symmetric property is useful for extracting a kind
of structural information from databases, however,
in some cases, it is too strict to check Sab and
Sab are completely identical. For example, if the
database includes a bit of noise, the symmetric
property is broken and we lose the chance to dis-
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Figure 3: ZBDD reduction rule.

Figure 4: Symmetry checking based on ZBDD structure.

cover an interesting correlation. Therefore, we now
consider to relax or to generalize the symmetric
condition.

Let us consider the relationship between ZBDD
data structure and symmetric property. A ZBDD
decision node corresponds to the following expres-
sion of set operations.

S = x Sx ∪ Sx,
where x is the item symbol of the decision node, Sx

and Sx are the subgraphs pointed by the 1-edge and
the 0-edge, respectively. This operation, to obtain
Sx and Sx from S, is called cofactor operation. It
can be performed in a constant time (just looking
pointers) if the item x is in the highest position in
ZBDD variable ordering. Otherwise, the computa-
tion time is linear to the number of ZBDD nodes
with the items higher than x.

In the transaction databases, Sx represents the
set of item patterns co-occurring with x in some
tuples, and Sx represents the set of patterns never
co-occurring with x in the database. In this paper,
we call Sx and Sx the positive cofactor and negative
cofactor, respectively, if we distinguish the two kind
of cofactors.

Symmetric items can be detected by generating
the four sub-factors Sxy, Sxy, Sxy, Sxy, which are
the two stages of cofactor operations with respect
to the items x and y. The condition Sxy ≡ Sxy

means that the sub-patterns co-occurring only with
x and the sub-patterns co-occurring only with y are
the completely identical.

It is a naive idea to relax the symmetric con-
dition that Sxy and Sxy are not completely iden-
tical but Sxy implies Sxy. We call this condition
cofactor implication. If and only if the cofactor im-
plication holds bidirectionally, symmetric property
holds. Therefore, the cofactor implication is a par-
tial condition for symmetry of items.

For example, in the following sets of combina-
tions:

S = {abc, acd, ad, bc, bcd, bd, c, cd},
the patterns co-occurring with a but not with b are
{cd, d}, and the patterns co-occurring with b but
not with a are {c, cd, d}. Thus, the cofactor impli-
cation holds from a to b.



Itemset Mining Based on Cofactor Implication 5

Table 1: Conditions on cofactors and item correlations
Conditions Correlations between the two items.
Sxy ≡ ∅ x always occurs with y. (Direct implication.)
Sxy ≡ ∅ y always occurs with x. (Direct implication.)
Sxy ≡ Sxy ≡ ∅ x, y co-occur with each other. (Complete co-occurrence.)
Sxy ≡ ∅ x, y are exclusive. (x and y never co-occur.)
Sxy ≡ ∅ x, y are complementary. (At least either occurs.)
Sxy ≡ Sxy ≡ ∅ x, y are exclusive and comlementary.
Sxy ⊆ Sxy Cofactor implication holds from x to y.
Sxy ⊆ Sxy Cofactor implication holds from y to x.
Sxy ≡ Sxy x, y are symmetric.

3.3 Properties of Cofactor Implication

Let us discuss the meaning of the cofactor implica-
tion in transaction databases.

First, we can see that the cofactor implication
is transitive as well as the symmetric condition.
For example, if the cofactor implication holds from
x to y and from y to z, then it also holds from
x to z. Notice that the cofactor implication has
the direction. This is different from the symmetric
property.

Next, if the cofactor implication holds from x

to y in a transaction database, all the patterns co-
occurring with item x also co-occurs with item y.
When the database represents a kind of knowledge,
the cofactor implication represents a correlation be-
tween the two concepts used in the knowledge. An-
alyzing co-occurrence words is a basic method in
the area of natural language processing[3]. Con-
sidering the cofactor implication would be an in-
teresting idea to apply the recent state-of-the-art
data mining techniques to the knowledge analysis
and natural language processing.

Table 1 shows the list of various relationships of
two items and their conditions based on the four
cofactors, Sxy, Sxy, Sxy, Sxy. In this table, the con-
dition Sxy ≡ ∅ (or Sxy ≡ ∅) represents the direct
implication property on the occurrences of x and
y. This condition is commonly used to check the
implication of items in transaction databases. It is
contrastive that our cofactor implication is not di-
rectly checking the item occurrences but comparing
the cofactors obtained by the items. In addition,
Sxy ≡ ∅ implies Sxy ⊆ Sxy, namely, the set of item

pairs with the cofactor implication always includes
ones with the ordinary direct implication. If we
found a set of item pairs such that the cofactor im-
plication holds but the ordinary implication does
not hold, the result indicates a new aspect of item
correlations which have never been considered.

In our definition of the cofactor implication, we
should be careful that we do not use Sxy for the
checking condition. There is the case that a sub-
pattern P co-occurs with only x but not with only
y, and that P still co-occurs with xy. If we con-
sider such cases, the definition of cofactor implica-
tion can be modified as:

Sxy ⊆ (Sxy ∪ Sxy).
However, if we use this modified definition, the
property is not always transitive, and x and y are
not always symmetric when the cofactor implica-
tion holds bidirectionally. In this paper, we con-
sider only the simple definition: Sxy ⊆ Sxy, which
has beautiful properties.

4 ZBDD-based algorithm for

checking cofactor implication

In this section, we describe an efficient ZBDD-
based algorithm of finding all the pairs of items
such that the cofactor implication is holds for a
given database S.

The “naive” checking method is to generate ZB-
DDs for Sxy and Sxy by cofactor operations for each
pair of items x and y, and then compare the im-
plication of the two cofactors. Sxy and Sxy can be
computed in a constant time only if the two items
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CoImplyAll(S) {
I ← ∅ ;
for each item x used in S {

(Sx, Sx)← (Cofactors of S by x) ;
Ix ← CoImplyItems(Sx, Sx) ;
for each item y ∈ Ix

I ← I ∪ { “x→ y” } ;
}
return I ;}

CoImplyItems(Sx, Sx) {
if (Sx ≡ ∅) return ∅ ;
if (Sx ≡ {1} && (Sx ≡ ∅ | |Sx ≡ {1}) ) return ∅ ;

Ix ← Cache(Sx, Sx) ;
if (Ix exists) return Ix ;

y ← (Sx, Sx).top ; /* Highest ordered item in Sx, Sx */
(Sxy, Sxy)← (Cofactors of Sx by y) ;
(Sxy, Sxy)← (Cofactors of Sx by y) ;

if (Sxy ≡ ∅) Ix ← CoImplyItems(Sxy, Sxy) ;
else if (Sxy ≡ ∅) Ix ← CoImplyItems(Sxy, Sxy) ;
else Ix ← CoImplyItems(Sxy, Sxy) ∩ CoImplyItems(Sxy, Sxy) ;

if (Sxy ⊆ Sxy) Ix ← Ix ∪ {y} ;

Cache(Sx, Sx)← Ix ;
return Ix ;}

Figure 5: Sketch of the cofactor implication checking algorithm.

x and y are at the nearly highest positions. Other-
wise, the cofactor operation requires a linear time
to the ZBDD size in average, so the total compu-
tation time becomes O(n2|S|), where n is the num-
ber of items and |S| is the number of ZBDD nodes
for S. To improve this time complexity, we devel-
oped an efficient recursive algorithm as presented
in Fig. 5.

Our algorithm consists of the two parts. In the
first part “CoImplyAll(),” we choose one of item
x used in S, and then call the other part “CoIm-
plyItems()” to find the set of items Ix such that for
any item y ∈ Ix the cofactor implication from x to
y holds.

The core of our algorithm, CoImplyItems(), is
recursively implemented based on the cofactor op-
eration with the highest ordered item y. The
problem for (Sx, Sx) is divided into the two sub-
problems for (Sxy, Sxy) and (Sxy, Sxy), and the re-
sults of each sub-problems are computed recur-
sively. The main result for (Sx, Sx) is obtained

as the intersection of the results of the two sub-
problems. Finally, the checking condition for item
y itself, Sxy ⊆ Sxy is determined and y is added
into Ix if it holds. As well as the many of ZBDD-
based operations, this algorithm uses a hash-based
cache technique to avoid duplicated recursive calls.
The number of recursive calls can be bounded by
the number of ZBDD nodes if the hash table works
well.

It is difficult to evaluate the exact complexity of
CoImplyItems() due to the behavior of the hash-
based cache. Since CoImplyItems() is called from
CoImplyAll() for only n times, our algorithm can
be up to n times faster than O(n2|S|) by the naive
algorithm.

5 Experimental Results

We implemented our cofactor implication check-
ing algorithm. The program is based on our own
ZBDD package, and additional 70 lines of C++
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Table 2: Database examples and their ZBDDs.
Name #Items #Records ZBDD nodes Time for gen.(sec)
mushroom 119 8,124 8,006 1.3
T10I4D100K 870 100,000 547,777 59.2
pumsb 2,113 49,046 1,749,775 166.7
BMS-Web-View-1 497 42,629 10,098 21.9
accidents 468 340,183 3,876468 127.5

Table 3: Experimental results for detecting item pairs.
Name Symmetry check[10] Cofactor implication check

Detected Time All detected Time Direct- Others Naive alg.
pairs (sec) pairs (sec) imply Time(sec)

mushroom 19 0.6 1002 0.2 949 53 2.2
T10I4D100K 0 61.7 58 121.5 58 0 (>36,000)
pumsb 90 1152.0 39,323 642.1 39,322 1 (>36,000)
BMS-Web-View-1 6 30.2 206 4.3 181 25 423.0
accidents 11 18.0 4,509 303.0 4,509 0 (>36,000)

code for the symmetry checking algorithm. We
used a 2.8GHz Pentium-4 PC, 1.5 GB of main
memory, with SuSE Linux 9 and GNU C++ com-
piler. On this platform, we can manipulate up to
40,000,000 nodes of ZBDDs with up to 65,000 dif-
ferent items.

For evaluating the performance, we applied our
method to the practical databases chosen from
FIMI2003 benchmark set[5]. We first constructed a
ZBDD for the set of all tuples in the database, and
then apply our cofactor implication checking algo-
rithm for the ZBDD. Table 2 shows the specifica-
tions of database examples and the sizes of ZBDDs
for them. In our experiments, so far we do not con-
sider the number of frequency of each tuple, only
dealing with binary information.

The experimental results are shown in Table 3.
In this table, we show our previous results of sym-
metry checking[10] and this paper’s results of co-
factor implication checking. The numbers of the
cofactor implications are classified into the two cat-
egories: the ordinary direct implications and the
others, which are newly detected ones. We can
observe that much larger number of the cofactor
implications are detected compared with the sym-
metric ones. This is a reasonable result since the
cofactor implication is a partial condition of the

symmetry.

On the computation time, our implementation
of cofactor implication checking is competitive to
the symmetric checking algorithm, and in some ex-
amples, our method is even faster than symmet-
ric checking. Since our results also including all
the symmetric item pairs, we can use the cofac-
tor implication checking algorithm as an alterna-
tive method for the symmetric checking. We also
compared the computation time with the naive al-
gorithm to check all the n2 pairs of items. Our
algorithm is 10 to 100 times faster than the naive
one.

In our experiments, we detected a small number
of the cofactor implications which are not the ordi-
nary direct implications. Those item pairs have no
direct relationship of implication, but the implica-
tion property holds between the co-occurring sub-
patterns. Figure 6 and 7 illustrate the diagrams
of those cofactor implications generated by graph
drawing software graphviz[4]. In the diagrams, the
two nodes mutually connected indicate the sym-
metric item groups. We can observe a number of
correlated item clusters based on the connecting
edges of the cofactor implications. Those clusters
possibly represent interesting structural informa-
tion hidden in the database, which has not been
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Figure 6: Cofactor implication diagram of “mushroom” (excluding direct implications).

Figure 7: Cofactor implication diagram of “BMS-Web-View-1”(excluding direct implications).

discovered before.

6 Conclusion

In this paper, we proposed a new aspect of item-
set mining based on the cofactor implication. We
defined the cofactor implication as a relaxation of
the symmetric condition, and discuss the meaning
and the properties of the cofactor implication in the
transaction databases. We also presented an effi-
cient checking algorithm using ZBDD data struc-
ture, and showed the experimental results for the
actual database benchmark examples. The experi-
mental results show that our method is very power-
ful and will be useful for discovering hidden inter-
esting information in the given data. As our future
work, we will apply our method to real-life data
mining problems, in order to compare our result of
the item correlations with the original meaning of
the items in the databases.

Analyzing co-occurrence words is a basic
method in the area of natural language process-

ing. Our result indicates a new possibility of ap-
plying the recent state-of-the-art data mining tech-
niques to the knowledge analysis and natural lan-
guage processing.
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