
TCS -TR-A-07-26

TCS Technical Report

Time and Space Efficient Discovery of Maximal
Geometric Subgraphs

by

Hiroki Arimura, Takeaki Uno, Shinichi Shimozono

Division of Computer Science

Report Series A

May 7, 2007

Hokkaido University
Graduate School of

Information Science and Technology

Email: arimura@ist.hokudai.ac.jp Phone: +81-011-706-7678
Fax: +81-011-706-7680

Time and Space Efficient Discovery of Maximal
Geometric Subgraphs

May 7, 2007

Abstract

A geometric graph is a labeled graph whose vertices are points in the 2D plane with
isomorphism invariant under geometric transformations such as translation, rota-
tion, and scaling. While Kuramochi and Karypis (ICDM2002) extensively studied
the frequent pattern mining problem for geometric subgraphs, the maximal graph
mining has not been considered so far. In this paper, we study the maximal (or
closed) graph mining problem for the general class of geometric graphs in the 2D
plane by extending the framework of Kuramochi and Karypis. Combining tech-
niques of canonical encoding and a depth-first search tree for the class of maximal
patterns, we present a polynomial delay and polynomial space algorithm, MaxGeo,
that enumerates all maximal subgraphs in a given input geometric graph without
duplicates. This is the first result establishing the output-sensitive complexity of
closed graph mining for geometric graphs. We also show that the frequent graph
mining problem is also solvable in polynomial delay and polynomial time.

Keywords: geometric graphs, closed graph mining, depth-first search, rightmost expansion,

polynomial delay polynomial space enumeration algorithms.

0

1 Introduction

Backgrounds. By rapid growth of the amount and the varieties of nonstandard datasets

in scientific, spatial, and relational domains, there are increasing demands for efficient methods

that extracts useful patterns and rules from weakly structured datasets. Graph mining is one

of the most promising approaches for knowlege discovery from such weakly structured datasets,

and the following topics have been extensively studied for the last years: frequent subgraph

mining [6, 11, 16, 26], maximal (closed) subgraph mining [3, 8, 19, 24] and combination with

machine learning [20, 27]. See surveys, e.g. [7, 23], for the overviews.

The class of geometric graphs. In this paper, we study a graph mining problem for the

class G of geometric graphs. Geometric graphs (geographs , for short) [14] are a special kind of

vertex- and edge labeled graphs whose vertices have the coordinates in the 2D plane R2, while

vertex and edge labels are used for representing geometric features and their relationships of

geometric objects. The matching relation for geographs is defined through invariant under

a class of geometric transformations, such as translation, rotation, and scaling in the plane

in addition to the usual constraint for graph isomorphism. Geographs are useful in applica-

tions concering with geometric configulations, e.g., analysis of chemical compounds, geographic

information systems, and knowledge discovery from vision and image data.

Maximal pattern discovery problem. For the class of geometric graphs, Kuramochi

and Karypis presented an effcient mining algorithm gFSG for frequent geometric subgraph

mining, based on Apriori-like breadth-first search [14]. However, frequent pattern mining has

a problem that it can easily produce an extremely large number of solutions, which degrade

the performance and the comprehensivity of data mining to a large extent. On the other

hands, the maximal subgraph mining problem1 is the problem of finding all maximal patterns

(closed patterns) appearing in a given input geometric graph D, where a maximal pattern is

any geometric graph isomorphic to a subgraph of D which does not have any properly larger

subgraph having the same set of occurrences in the input database. Since the set M of all

maximal patterns is expected to be much smaller than the set F of all frequent patterns but

still contains the complete information of M, maximal subgraph mining has some advantage

as a compact representation to frequent subgraph mining.

Difficulties of maximal pattern mining. However, there are a number of difficulties

in maximal subgraph mining for geometric graphs. In general, maximal pattern mining has

a large computational complexity [4, 25]. Although a number of efficient maximal pattern

algorithms are proposed so far for sets, sequences, and graphs [3, 8, 19, 21, 24], some algorithms

use explicit duplicate detection and maximality test by maintaining a collection of already

discovered patterns, but this requires large memory and delay time, and makes it difficult to

use efficient search techniques, e.g., depth-first search. For these reasons, output-polynomial

time computation for the maximal pattern problem is still a challenge in maximal geometric

graphs. Besides this, the invariance under geometric transformation for geometric graphs adds

another difficulty to geometric graph mining. Thus, a depth-first algorithm is not known so

far even for frequent pattern mininig.
1Although the maximal pattern discoery is more often called closed pattern discovery , we use the term

“maximal” rather than “closed” in this paper for the consistency with works in computational complexity and
algorithms area [4, 25].

1

Main result. The goal of this paper is the development of a time and space efficient

algorithm that can work well in theory and practice for maximal geometric graphs. As our

main result, we present an efficient depth-first search algorithm MaxGeo that, given an in-

put geometric graph, enumerates all frequent maximal pattern P in M without duplicates in

O(mnk2) = O(n5) time per pattern and in O(m) = O(n2) space, where k = |P | is the size of

pattern being enumerated, m is the maximum number of its occurrences, and n is the input

size. Thus, this is a polynomial delay and polynomial time algorithm for the maximal pattern

discovery problem for geometric graphs. This is the first result establishing the output-sensitive

complexity of closed graph mining for geometric graphs.

Other contributions of this paper. To cope with the difficulties mentioned above, we

devise some new techniques for geometric graph mining.

(1) We define a polynomial time computable canonical representation for all geometric graphs

in G, which is invariant under geometric transformations. As bi-product, we give the

first polynomial delay and polynomial space algorithm FreqGeo for frequent geometric

subgraph mining problem.

(2) We introduce the intersection and the closure operations for G. Using these tools, we

define the tree-shaped search route T for all maximal patterns in G. Combining the closure

expansion [17] and the rightmost expansion [6, 15, 26], we propose a new pattern growth

technique called the ppc-expansion (prefix-preserving closure expansion) for traversing

the search tree T by depth-first search.

(3) As a main result, we present a polynomial delay and polynomial space algorithm MaxGeo

based on depth-first search over T for the maximal geometric subgraph mining problem.

This is the first output polynomial time algorithm for the problem.

Related works. There are closely related researches on 1D and 2D point set matching

algorithms, e.g. [2], where point sets are simplest kind of geometric graphs. However, since

they mainly study exact and approximate matching of point sets, but not matching, the purpose

is different from this work.

A number of efficient maximal pattern mining algorithms are presented for subclasses of

graph, trees, and sequences, e.g.: general graphs [24], ordered and unordered trees [8], attribute

trees [3, 19], and sequences [4, 5, 22]. Some of them have output-sensitive time complexity as

follows. The first group deal with mining of “elastic” or “flexible” patterns, where the closure

is not defined. CMTreeMiner [8], BIDE [22], and MaxFlex [5] are essentially output-polynomial

time algorithms for location-based maxmal patterns though it is implicit. They are originally

used as pruning for document-based maximal patterns [5].

The second group deal with mining of “rigid” patterns which have closure-like operations.

LCM [21] proposes ppc-expansion for maximal sets, and then CloATT [3] and MaxMotif [4]

generalize it for trees and sequences. They together with this paper are polynomial delay and

polynomial space algorithms.

Some of other maximal pattern miners for complex graph classes, e.g.,CloseGraph [24], adopt

frequent pattern discovery augmented with,e.g., maximality test and the duplicate detection

although it seems difficult to achieve output-polynomial time computability in this approach.

2

rotation

translation

scaling

geometric graph G

Figure 1: Three basic types of geometric
transformarions

B

B

B

C

B
B

B

B

B

1

2

3

4

5

6

7

8

x

y

1.0 2.0 3.0 4.0

1.0

2.0

3.0

Figure 2: A geometric database D with V =
{1, . . . , 9}, ΣV = ∅, and ΣE = {B, C}

Organization of this paper. In Section 2, we introduce maximal pattern mining for

geometric graphs. In Section 3, we give the canonical representation and frequent pattern

mining. In Section 4, we develop present polynomial delay and polynomial space algorithm

MaxGeo for maximal pattern mining, and in Section 5, we conclude.

2 Preliminaries

In this section, we prepare basic definitions and notations for maximal geometric graph mining.

We denote by N and R the set of all natural numbers and real numbers, resp.

2.1 Geometric transformation and congruence.

We briefly prepare basic of plane geometry [10, 12]. In this paper, we consider geometric

objects, such as points, lines, point sets, and polygons, on the two-dimensional Eucledean space

E = R2, also called the 2D plane. A geometric transformation T is any mapping T : R2 → R2,

which transforms geometric objects into other geometric objects in the 2D plane R2. In this

paper, we consider the class Tgeo of geometric transformations consisting of three basic types

of geometric transformations, rotation, and scaling , and their combinations. In general, any

geometric transformation T can be represented as a 2D affine transformation T : ~x 7→ A~x +~t,

where A is a 2 × 2 nonsingular matrix with det(A) 6= 0, and ~t is a 2-vector. Such T is one-to-

one. In addition, if T ∈ Tgeo then T preserves the angle of two lines and maps an object to a

similar object. It is well-known that any affine transformation can be determined by a set of

three non-collinear points and their images. For Tgeo, we have the following lemma.

Lemma 1 (determination of unknown transformation) Given two distinct points in the

plane ~x1, ~x2 and the two corresponding points ~x′
1, ~x

′
2, there exists a unique geometric transfor-

mation T , denoted by T(~x1~x2; ~x′
1~x

′
2), such that T (~xi) = ~x′

i for every i = 1, 2.

T(~x1~x2; ~x′
1~x

′
2) is computable in O(1) time. The above lemma is crucial in the following

discussion. For any geometric object O and T ∈ Tgeo, we denote the image of O via T by

T (O). The inverse image of O via T is T−1(O).

2.2 Geometric graphs

We introduce the class of geometric graphs according to [14] as follows. Let ΣV and ΣE be

mutually disjoint sets of vertex labels and edge labels associated with total orders <Σ. In

3

what follows, a vertex is always an element of N. A graph is a node and edge-labeled graph

G = (V,E, λ, µ) with a set of vertices V and a set of edges E ⊆ V 2. Each x ∈ V has a vertex

label λ(x) ∈ ΣV, and each e = xy ∈ E ⊆ V 2 represents an unordered edge {x, y} with an

edge label µ(e) ∈ ΣE. Two graphs Gi = (Vi, Ei, λi, µi) (i = 1, 2) are isomorphic if they are

topologically identical to each other, i.e., |V1| = |V2| and there is a bijection φ : V1 → V2 such

that for every xy ∈ (V1)
2, xy ∈ E1 iff φ(x)φ(y) ∈ E2. The mapping φ is called an isomorphism

of G1 and G2.

A geometric graph is a representation of some geometric object by a set of features and

their relationships on a collection of 2D points.

Definition 1 (geometric graph) Formally, a geometric graph (or geograph, for short) is a

structure G = (V,E, c, λ, µ), where (V,E, λ, µ) is an underlying graph and c : V → R2 is

a one-to-one function called the coordinate function. Each vertex v ∈ V has the associated

coordinate c(v) ∈ R2 in the 2D plane as well as its vertex label λ(v). We refer to the components

V,E, c, λ, µ as VG, EG, cG, λG, µG.

We denote by G the class of all geometric graphs over ΣV and ΣE.

Alternative representation for geograhs. Alternatively, a geometric graph can be sim-

ply represented as a collection of labeled object G = V ∪ E, where V = { 〈vi, ~xi, λi〉 | i =

1, . . . , n} ⊆ N×R2 ×ΣV. and E = { 〈ei, µi〉 | i = 1, . . . ,m} ⊆ N×N×ΣE. Each 〈v, ~x, λ〉 ∈ V λ

is a labeled vertex for a vertex v with c(v) = ~x and λ(v) = λ, and each 〈e, µ〉 is a labeled edge

for an edge e with label µ(e) = µ. A labeled object refers to either a labeled vertex or a labeled

edge. Let OL = (N×R2 ×ΣV)∪ (N×N×ΣE) be a domain of labeled object. We assume the

lexicographic order <O L over OL by extending those over N, R2, ΣV and ΣE. Since the corre-

spondence between G and G is obvious, we will often use both representations interchangeably.

For instance, we may write G ∪ {〈v, ~x, λ〉} or G − {〈e, µ〉}. Since c is one-to-one, we may also

write ~x ∈ G instead of ~x ∈ c(VG).

2.3 Geometric isomorphism and matching

Now, we extend the notions of isomorphisms and matchings for geographs as in [14]. Let

G1, G2 ∈ G be any geographs. Then, G1 and G2 are geometrically isomorphic, denoted by

G1 ≡ G2, if there are an isomorphism φ of G1 and G2 and some transformation T ∈ Tgeo such

that T (c(x)) = c(φ(x)) for every vertex x of G1. The pair 〈φ, T 〉 is a geometric isomorphism

of G1 and G2.

Let G = (V,E, c, λ, µ) be a geograph. A geograph H is a geometric subgraph of G, denoted

by H ⊆ G, if GH is a substructure of G, that is, (i) VH ⊆ V and EH ⊆ E hold, and (ii)

mappings λH , µH , and cH are the restrictions of λ, µ, and c, respectively, on VH . Now, we

define the matching of geographs in terms of geometric subgraph isomorphism.

Definition 2 (geometric matching) A geograph P geometrically matches a geograph G

(or, P matches G) if there exists some geometric subgraph H of G that is geographically iso-

morphic to P with a geometric isomorphism 〈φ, T 〉. Then, we call the geometric transformation

T a geometric matching function from P to G or an occurrence of P in G.

4

We denote by M(P,G) ⊆ Tgeo the set of all geometric matching functions from P to G.

We omit φ from 〈φ, T 〉 above because if P matches G then, there is at most one vertex

v = φ(u) ∈ VG of G such that c(v) = T (c(u)) for each u ∈ VP of P due to the one-to-one

condition of c. Clearly, P matches G iff M(P,G) 6= ∅. If P matches G then we write P v G

and say P occurs in G or P appears in G. If P v Q and Q 6v P then we define P @ Q.

We can observe that if both of P v Q and Q v P hold then P ≡ Q, that is, P and Q are

geometrically isomorphic. If we take the set G of the equivalence classes of geographs modulo

geometric isomorphisms, then v is a partial order over G.

2.4 Patterns, occurences, and frequencies

Let k ≥ 0 be a nonnegative integer. A k-pattern (or k-geograph) is any geograph P ∈ G

with k vertices. From the invariance under Tgeo, we assume without any loss of generality

that any k-pattern P always has the vertex set VP = {1, . . . , k} and if k ≥ 2 then P has the

fixed coordinates c(1) = (0, 0) and c(2) = (0, 1) ∈ R2 for its first two vertices in the local

Cartesian coordinate. An input geometric database or of size n ≥ 0 is a single geograph D =

(V,E, c, λ, µ) ∈ G with |V | = n. D is also called an input geograph. If we receive a collection of

small geographs as input, then we merge them into a single graph after appropriately renaming

vertices and their coordinates. Fig. 2 shows an example of an input geometric database D with

V = {1, . . . , 9} over ΣV = ∅, and ΣE = {B, C}.

Let P ∈ G be any k-pattern. Then, the location list of pattern P in D is defined by

the set L(P) of all geometric transformations that matches P to the input geograph D, i.e.,

L(P) = M(P,D). The frequency of P is |L(P)| ∈ N. Given an integer 0 ≤ σ ≤ n, called a

minimum support (or minsup), P is σ-frequent in D if freq(P) ≥ σ.

Unlike ordinary graphs, the number of distinct matching functions in L(P) is bounded by

polynomial in the input size.

Lemma 2 For any geograph P , |L(P)| is bounded from above by n2 under Tgeo.

Proof: From Lemma 1, the images ~x′
1~x

′
2 of just two points ~x1~x2 in the plane are sufficient to

determine T(~x1~x2; ~x′
1~x

′
2) in Tgeo. Thus, the result follows. 2

Lemma 3 (monotonicity) Let P,Q be any geographs. (i) If P ≡ Q then L(P) = L(Q). (ii)

If P v Q then L(P) ⊇ L(Q). (iii) If P v Q then |L(P)| ≥ |L(Q)|.

2.5 Maximal pattern discovery

From the monotonicity of the location list and the frequency in Lemma 3, it is natural to

consider maximal subgraphs in terms of v preserving their location lists as follows.

Definition 3 (maximal geometric patterns) A geometric pattern P ∈ G is said to be

maximal in an input geograph T if there is no other geometric pattern Q ∈ G such that (i)

P ⊂ Q and (ii) L(P) = L(Q) hold.

5

In other words, P is maximal in D if there is no strictly larger pattern than P that has

the same location list as P . Equivalently, P is maximal iff any addition of a labeled node or a

labeled edge to P makes L(P) strictly smaller than before. We denote by Fσ ⊆ G be the set

of all σ-frequent geometric patterns in D, and by M ⊆ G be the set of all maximal geometric

patterns in D under T. The set of all σ-frequent maximal patterns is Mσ = M ∩ Fσ.

Now, we state our data mining problem as follows.

Definition 4 (maximal pattern enumeration problem) The maximal geometric pattern

enumeration problem is, given an input geograph D ∈ G of size n and a minimum support

1 ≤ σ ≤ n, to enumerate all frequent maximal geometric patterns P ∈ Mσ appearing in D

within G without repetition.

Our goal is to devise a light-weight and high-throughput mining algorithm for enumerating

all maximal patterns appearing in a given input geograph. This is paraphrased in terms of

output-sensitive enumeration algorithms in Section 2.6 as a polynomial delay and polynomial

space algorithm for solving this problem. This goal has been open question for M and even

for Fσ so far.

We can define different notion of a location list D(P), called the document list, defined

as the set of input graphs in which a pattern appears, and the maximality based on D(P)

in a similar way. Acturally, the location-based maximality is a necessary condition for the

document-based maximality. However, we do not go further in this direction.

2.6 Model of computation

We make the following standard assumptions in computational geometry [18]: For every point

p = (x, y) ∈ E, we assume that its coordinates x and y have infinite precision. Our model of

computation is the the random access machine (RAM) model with O(1) unit time arithmetic

operations over real numbers as well as the standard functions of analysis ((·) 1
2 , sin, cos, etc) [1,

18].

An enumeration algorithm A is an output-polynomial time algorithm if A finds all solutions

S ∈ S without duplicates on a given input I in total polynomial time both in the input size

n = ||I|| and the number of output m = |S|. A is a polynomial delay and polynomial space

algorithm if the delay , which is the maximum computation time between two consecutive

outputs, and the maximum space of A are both bounded by polynomials in n = |D| only. If

A is of polynomial delay then A is also of output-polynomial time.

3 Algorithm for Frequent Pattern Discovery

3.1 Canonical encoding for geographs

In this subsection, we define a canonical representation of each geograph in G, which is an

invariant under geometric isomorphism in Tgeo. Let P be any k-pattern with VP = {1, . . . , k}.
Recall that the first two vertices of P have the fixed coordinates c(1) = (0, 0), c(2) = (0, 1) ∈ R2

in their local 2D plane.

6

θ

1

(r, θθθθ): polar coordinate
For point y

e: orientation

o: origin

(o, e): reference frame
for point x

2
3

4

n

n−1

r x

local coordinate
for pattern G

tour for pattern G

Figure 3: The local frame and reference frame for a pattern

Defining a tour. Let ~o =
∑

~x∈c(P) be the centroid (the center) of P . For each start point

~x ∈ c(P), we consider the polar coordinate system for P that has the center ~o and the zero

orientation vector ~i = ~x − ~o (See Fig. 3). Then, the tour for P w.r.t. ~x is the increasing

list Tour(P, ~x) = (~x1(= ~x), . . . , ~xk) ⊆ R2 of all k points in P in the increasing angle-distance

order around ~o in the polar coordinate (Fig. 3). That is, Tour(P, ~x) is obtained by sorting the

points ~y ∈ c(P) first in angle(~y − ~o, ~x − ~o) and then in dist(~y, ~o) in O(k log k) time. Clearly,

there are exactly k distinct Tour(P, ~x) depending on the choice of the starting point ~x. For

π = Tour(P, ~x) and each ~y ∈ π, let ordπ(~y) is the order of ~y appearing in π, that is, ordπ(~y) = i

if ~y = ~xi.

Alternative representation for geographs. Next, we define a sequential representation

for the labeled object representation of geograph P in Sec. 2.2 as follows. For π = Tour(P, ~x),

we define the set Labπ(P) ⊆ OL of labeled objects for P as follows:

(i) First, let Labπ(P) = ∅.

(ii) For every x ∈ VP of P , add 〈ordπ(x), c(x), λ(x)〉 ∈ N × R2 × ΣV into Lab.

(iii) For every xy ∈ VP , add 〈ordπ(x′)ordπ(y′), c(x′)c(y′), µ(xy)〉 ∈ N×N×ΣE into Lab. If xy

is directed, then ordπ(xy) = ordπ(x) ordπ(y) ∈ N2. If xy is undirected, i.e., it represents

{xy, yx}, then x′y′ is the lexcographically larger one of xy and yx ∈ N2.

Then, the sequential encoding for P w.r.t. a tour π, denoted by eπ(P), is the increasing list

eπ(P) = 〈o1, l1〉#〈o2, l2〉# · · · #〈o`, l`〉 of labeled objects 〈oi, li〉 separated with a special delimitor

for some ` ≥ 0. This list is obtained in O(k2) time by sorting the elements of Labπ(P) in the

increasing order w.r.t. the total order <OL over labeled objects.

3.1.1 Canonical Encoding. Now, we define the canonical encoding for P , denoted

cano e(P), by the lexcographically first sequential encoding of P one among all encodings of

P for possible choices of starting point ~x ∈ c(P):

cano e(P) = min
<lex,OL

{ eπ(P) |π = Tour(P, ~x) for some ~x ∈ c(P) }.

Theorem 4 (characterization of canonical encoding) For any P,Q ∈ G of size k ≥ 0,

cano e(P) = cano e(Q) iff P ≡ Q under Tgeo.

We can compute in O(k2 log k) time.

The main purpose of cano e(P) is for assigning

By using cano e(P), we define the total order <cano e(P) over the components of P as

follows: For any labeled objects ξ, ξ′ ∈ P , we define ξ <cano e(P) ξ′ iff ξ appears at an earlier

position than ξ′ in cano e(P). The tail of P is defined by tail(P) = max<cano e(P)
P , i.e.,

the last element of the canonical encoding cano e(P) as a sequence.

7

Elimination Ordering:

1: Given an labeled object representation of geograph P ;
2: i = 1; j = 1; P1 = P ;
3: while Pi 6= ∅ do
4: 〈o, l〉 = tail(Pi) based on the canonical encoding cano e(Pi);
5: if L(Pi − {〈o, l〉}) 6= L(Pi) then χi = 〈o, l〉 and i = i + 1;
6: Pi+1 = Pi − {〈o, l〉}; ξj = 〈o, l〉 and j = j + 1;
7: end while
8: return elimseq(P) = (ξk, . . . , ξ1) and critseq(P) = (χj, . . . , χ1);

Figure 4: The procedure for computing the perfect elimination and the perfect critical
elimination sequences elimseq(P) and critseq(P) for a geometric graph P

3.2 Perfect elimination sequences

Before studying the enumeration or generation of each pattern, we consider the reverse process

of the enumeration, the decomposition of a given geograph. Let P ∈ G be any k-geograph.

We define the sequences elimseq(P) = (ξk, . . . , ξ1) ∈ OL∗ and critseq(P) = (χj, . . . , χ1) =

(ξσ(j), . . . , ξσ(1)) ∈ OL∗ by the procedure Elimination Ordering in Fig. 4. They are called the

perfect elimination sequence and the perfect critical elimination sequence, resp. Note that the

elimination sequence (ξk, . . . , ξ1) for P is not the mere reverse of cano e(P) since the i-th

element ξi is selected based on the canonical form of the current geograph Pi not on that of

the initial graph P = Pk.

Lemma 5 For any P,Q ∈ G, P ≡ Q under Tgeo iff elimseq(P) = elimseq(Q).

In the next Sec. 3.3, we study the application of elimseq(P) to frequent geograph mining

. In Sec. 4.3, we consider critseq(P) for maximal pattern enumeration.

3.3 Algorithm for Frequent Pattern Discovery

In Fig. 5, we show an algorithm FreqGeo for frequent geometric subgraph discovery. Starting

from the emptygraph ∅, FreqGeo searches Fσ from smaller to larger by growing P with adding

new labeled object ξi one by one in the reverse order of the elimination sequence for P . Since

{ξi}i = P holds, we know that at least FreqGeo is complete for Fσ. The key of the algorithm is

the test for the elimination ordering at Line 4 of Fig. 5. From Lemma 5, we know that distinct

elimination sequence results distinct patterns.

There are infinitely many candidates for possible labeled object at Line 2 of Fig. 5. From

the next lemma, we can avoid such a blind search by focusing only on missing labeled objects

for P , which is either labeled vertex or edge ξ such that L(P) ⊇ L(P ∪ {ξ}) 6= ∅ holds. From

Lemma 1 and Lemma 3, we have the next lemma.

Lemma 6 (missing labeled objects) Let P be a pattern with nonempty L(P) in D. Any

missing object ξ = 〈o, l〉 for P is the inverse images of some labeled vertex or labeled edge π

via T for some matching T ∈ L(P), that is, ξ = T−1(π) for some π ∈ D.

8

FreqGeo(σ : minsup, D : input database)

1: call Expand FG(∅, σ,D);

Expand FG(P, σ,D)

1: if |L(P)| < σ then return else output P as a frequent subgraph;
2: for each possible labeled object 〈o, l〉 do
3: Q = P ∪ {〈o, l〉};
4: if 〈o, l〉 6= tail(Q) then return;
5: call Expand FG(Q, σ,D);
6: end for

Figure 5: A polynomial delay and polynomial space algorithm for the fre-
quent geometric subgraph enumeration problem

From Lemma 6 above, we know that there are at most O(|L(P)| · ||D||) = O(n4) missing

objects. Thus, Line 2 can be done in polynomial time. Combining the above discussion, we

have the following theorem.

Theorem 7 (frequent geograph enumeration) The algorithm FreqGeo in Fig. 5 enumer-

ates all σ-frequent geometric subgraphs in a given input database D ∈ G in polynomial delay

and polynomial space in the total input size n = ||D||.

4 Algorithm for Maximal Pattern Discovery

In this section, we present an efficient algorithm MaxGeo for the maximal pattern enumeration

problem for the class of geographs that runs in polynomial delay and polynomial space in the

input size.

4.1 Outline of the algorithm

In Fig. 6, we show our algorithm MaxGeo for enumerating all σ-frequent maximal geometric

patterns in Mσ using backtracking. The key of the algorithm is a tree-like search route T =

T(Mσ) for Mσ implicitly defined over Mσ. Then, Starting at the root of the search tree T, the

algorithm MaxGeo searches T jumping from a smaller maximal pattern to a larger one in the

depth-first manner. Each jump is performed by expanding each maximal pattern in polynomial

time using a procedure called the ppc-expansion defined in the following subsections. To

properly handle the geometric isomorphism among the isomorphic patterns, we introduce the

canonical encoding for geometric patterns.

4.2 Intersection and closure operations for geographs

Let G1 and G2 be two geographs with VG1 ∩ VG2 6= ∅. The maximally common geometric

subgraph (MCGS) of G1 and G2 is a maximal geograph G ∈ G w.r.t. ⊆ such that G ⊆ Gi for

every i = 1, 2. The next lemma states that MCGS is unique for geographs, while they are not

unique for ordinary graphs.

Lemma 8 (intersection geometric subgraph G1 ∩ G2) There exists the unique maximally

common geometric subgraph of two geographs G1 and G2. It is given by the intersection geo-

graph G1 ∩ G2 = (V12, E12, λ12, µ12, c12) ∈ G defined below:

9

Algorithm MaxGeo: (D : input geograph, σ : minsup)
task: finding all σ-frequent maximal patterns of Mσ in D.

1: ⊥ = Clo(∅); //The bottom maximal geograph
2: Call the recursive procedure Expand MaxGeo(⊥,0, σ,D);

Algorithm Expand MaxGeo(P, π, σ,D)

1: if P is not σ-frequent then return; //Frequency test
2: else output P as a σ-frequent maximal geograph;
3: for each missing labeled object ξ = 〈o, `〉 do //Lemma 6
4: Q = Clo(P ∪ { ξ }); //Cond.(i) of Def.7
5: if (ξ ≤cano e(Q) π) then return; //Cond.(ii) of Def.7
6: if ((∃τ ∈ Q − P) τ <cano e(Q) ξ) then return; //Cond.(iii) of Def.7
7: call Expand MaxGeo(Q, ξ, σ,D); //Recursive call for children
8: endfor

Figure 6: A polynomial delay and polynomial space algorithm MaxGeo for the maxi-
mal geometric subgraph enumeration problem

• V12 = {1, . . . , k} for some k ≥ 0.

• For every ~x ∈ R2, ~x ∈ V12 iff ~x ∈ c(V1) ∩ c(V2) and λ1(~x) = λ2(~x).

• For every ~x~y ∈ R2 × R2, ~x ∈ E12 iff c(E1) ∩ c(E2) and µ1(~x~y) = µ2(~x~y).

where Pi = (Vi, Ei, λi, µi, ci) for i = 1, 2. Furthermore, G1 ∩ G2 is computable in O(||G1|| +

||G2||) time, where ||Gi|| = |Vi| + |Ei|.

Proof: By the construction, V12 and E12 are the largest sets satisfying the above conditions.

It follows from this that that G1 ∩ G2 is the unique MCGS for both G1 and G2. 2

The intersection operation ∩ is reflexive, commutative, and associative over G. For a set

G = {G1, . . . , Gm} of geographs, we define ∩G = G1 ∩ G2 ∩ · · · ∩ Gm. We can see that the

size and the computation time of ∩G are bounded by O(||G||). Some literatures [13] give the

intersection of labeled graphs or first-order models based on the cross product of two structures.

However, their iterative applications causes exponentially large intersection unlike ∩G above.

Gariiga et al.[9] discuss related issues.

Now, we define the closure operation for G.

Definition 5 (closure operator for geographs) Let P ∈ G be geograph of size ≥ 2. Then,

the closure of P in D is define by the geograph Clo(P):

Clo(P) =
∩
{ T−1(D) |T ∈ L(P) }.

Theorem 9 (correctness of the closure operation) Let P be a geograph of size ≥ 2 and

D be an input database. Then, Clo(P) is the unique, maximal geograph w.r.t. v satifying

L(Clo(P)) = L(P).

10

Proof: We give a sketch of the proof. Let T ∈ Tgeo be any geometric tansformation. Then,

we can see that P matches D via T iff P is a direct geometric subgraph (substructure) of the

inverse image of D via T , i.e., P ⊆ T−1(D). Thus, taking the intersection of the inverse image

T−1(D) for all matching T of P , we obtain the unique maximal subgraph having L(P). 2

Lemma 10 For any geographs P,Q ∈ G, the following properties hold:

(i) P ⊆ Clo(P). (ii) L(Clo(P)) = L(P). (iii) Clo(P) = Clo(Clo(P)).

(iv) P ⊆ Q iff L(P) ⊇ L(Q) for any maximal P,Q ∈ M.

(v) Clo(P) is the unique, smallest maximal point set containing P .

(vi) For the empty graph ∅, ⊥ = Clo(∅) is the smallest element of M.

Theorem 11 (characterization of maximal geographs) Let D be an input geograph and

P ∈ G be any geograph. Then, P is maximal in D iff Clo(P) = P .

4.3 Defining the tree-shaped search route

In this subsection, we define a tree-like search route T = (Mσ, P,⊥) for the depth-first search

of all maximal geographs based on a so-called parent function. By inspecting the procedure

for elimination sequences in Fig. 4 carefully, we obtain the following definitions.

Let Q ∈ M be a maximal pattern such that Q 6= ⊥. Suppose we have the canonical encoding

cano e(Q) and the associated total ordering <cano e(Q) over the elements of Q. For any element

ξ ∈ Q, define the ξ-prefix of Q as the pattern Q[ξ] with Q[ξ] = { π ∈ Q |π ≤cano e(Q) ξ }.
Then, the core index of Q is

core i(Q) = max
≤cano e(Q)

{ ξ ∈ Q | L(Q[ξ]) = L(Q) }.

We can show that if Q 6= ⊥ then core i(Q) is always defined. We assume that core i(⊥) = 0

for a special labeled object 0 such that 0 < ξ for any ξ ∈ OL.

Q[core i(Q)] ⊆ Q is a shortest prefix of Q satisfying L(Q[ξ]) = L(Q). Moreover, if we

remove core i(Q) from the prefix Q[core i(Q)], then we have the properly shorter prefix, and

then the location list changed. Now, we define the parent function P that gives the predecessor

of Q in terms of its perfect critical elimination sequence.

Definition 6 (parent function P) The parent of any maximal pattern Q ∈ M (Q 6= ⊥) is

defined by P(Q) = Clo(Q[ξ] − {ξ}), where ξ = core i(Q) is the core index of Q.

Lemma 12 P(Q) is (i) always defined, (ii) unique, (iii) is a maximal pattern in M. Moreover,

P satisfies that (iv) P(Q) ⊂ Q, (v) |P(Q) | < |Q |, and (vi) L(P(Q)) ⊃ L(Q).

The parent P(Q) corresponds to the maximum critical object in Q in critseq(Q). Now,

we define the search graph for Mσ as a rooted directed graph T(Mσ) = (Mσ, P,⊥), where Mσ

is the vertex set, P is the set of reverse edges, and ⊥ is the root. Then, the unique path from

each maximal pattern Q to ⊥ spells out critseq(Q).

Theorem 13 (reverse search property) For every σ, the search graph T(Mσ) is a spanning

tree with the root ⊥ over all the maximal patterns in Mσ.

11

4.4 A polynomial space polynomial delay algorithm

The remaining thing is to show how we can efficiently traverse the search tree T(Mσ) starting

from the ⊥. However, this is not a straightforward task since T(Mσ) only has the reverse

edges. To cope with this difficulty, we introduce the notion of the prefix-preserving closure

expansion by combining the rightmost expansion [6, 15, 24, 26] and the closure extension [17].

For discussions on closure expansion, see Sec. B of appendix.

Prefix-preserving closure extension for geographs. For a maximal pattern Q 6= ⊥ and

its predecessor P(Q), we can show from the definition of P and Lemma 10 that if ξ = core i(Q)

then π ∈ Q[ξ] iff π ∈ Q for all π ∈ Q such that π <core i(Q) ξ, that is ξ-prefix other than ξ

itself is preserved by the application of P.

Definition 7 (ppc-expansion) Let P and Q be any patterns such that Q 6= ⊥. Suppose

that P is maximal in D. Q is a prefix-preserving closure expansion (ppc-expansion) of P if Q

satisfies the following conditions (i) – (iii):

(i) Q = Clo(P ∪ {ξ}) for some labeled object ξ = 〈o, l〉 ∈ OL, called a key .

(ii) The key ξ satisfies: core i(P) <cano e(Q) ξ.

(iii) There is no element τ ∈ Q − P such that: τ <cano e(Q) ξ.

Theorem 14 (correctness of ppc-expansion) Let P and Q be any maximal patterns such

that Q 6= ⊥. P = P(Q) holds iff Q = Clo(P ∪ {ξ}) is a ppc-expansion of P with some labeled

object ξ ∈ OL. In this case, ξ = core i(Q) always holds. Furthermore, if two ppc-extension

have mutually distinct keys then the resulting ppc-extensions are also mutually distinct.

The correctness and the time and space complexity. Based on Theorem 14, we can

show the correctness and the time and space complexity of our algorithm MaxGeo in Fig. 6

based on the ppc-extension. Now, we show the main theorem of this paper.

Theorem 15 (correctness and complexity of MaxGeo) Given a minimum support param-

eter 1 ≤ σ ≤ n and an input geograph D of length n, the algorithm MaxGeo in Fig. 6 enu-

merates all σ-frequent maximal geograph P of Mσ in O(mnk2) = O(n5) delay per maximal

geograph and using O(km) space, where k is the maximum size of patterns and m = O(n2) is

the maxmum size of the location lists.

Overall, the algorithm MaxGeo runs in O(n5) time in the size of input geograph n. If the

maximum size k of maximal geographs is bounded by a (small) constant, the algorithm runs

in O(mn) per pattern P and will be fast when m = |L(P)| is not large.

Corollary 16 The maximal geograph enumeration problem is solvable in polynomial delay and

polynomial space.

12

5 Conclusion

In this paper, we presented a polynomial delay and polynomial space algorithm that discover

all maximal geographs in a given geometric configulations without duplicates. As future works,

we are working on implementation and experimental evaluation of the algorithm. Extensions

with approximation and constraints, with applications to image processing and geographic

information systems, are other future problems.

References

[1] Aho, A. V., Hopcroft, J. E., Ullman, J. D., Data Structures and Algorithms, 1983.

[2] T. Akutsu, H. Tamaki, T. Tokuyama, Distribution of distances and triangles in a point
set and algorithms for computing the largest common point sets, Discr. & Comp. Geom.,
20(3), 307–331, 1998.

[3] H. Arimura, T. Uno, An output-polynomial time algorithm for mining frequent closed
attribute trees, In Proc. ILP’05, LNAI 3625, 1–19, August 2005.

[4] H. Arimura, T. Uno, A polynomial space and polynomial delay algorithm for enumeration
of maximal motifs in a sequence, In Proc. ISAAC’05, LNCS, 2005.

[5] H. Arimura, T. Uno, Effcient algorithms for mining maximal flexible patterns in texts and
sequences, TCS-TR-A-06-20, DCS, Hokkaido Univeristy, 2006. (submitting)

[6] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. Efficient sub-
structure discovery from large semi-structured data. In Proc. SDM’02, 2002.

[7] Y. Chi, R. R. Muntz, S. Nijssen, J. N. Kok, Frequent subtree mining – An overview,
Fundam. Inform., 66, 1–2, 161–198, 2005.

[8] Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz, CMTreeMiner: mining both closed and
maximal frequent subtrees, In Proc. PAKDD’04, 2004.

[9] G. C. Garriga, R. Khardon, L. De Raedt, On mining closed sets in multi-relational data,
In Proc. IJCAI 2007, 804–809, 2007.

[10] C. Guerra, Vision and image processing algorithms, Algorithms and Theory of Computa-
tion Handbook, Chapter 22, 22-1–22-23, CRC Press, 1999.

[11] A. Inokuchi, T. Washio, H. Motoda, An apriori-based algorithm for mining frequent
substructures from graph data, In Proc. PKDD’00, 13–23, LNAI 1910, 2000.

[12] A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, 1986.

[13] R. Khardon, Learning function-free horn expressions, Machine Learning 37(3), 241–275,
1999.

[14] M. Kuramochi, G. Karypis, Discovering frequent geometric subgraphs, In Proc. IEEE
ICDM’02, 258–265, 2002.

[15] S. Nakano, Efficient generation of plane trees, Information Processing Letters, 84, 167–172,
Elsevier,2002.

[16] S. Nijssen, J. N. Kok, Effcient discovery of frequent unordered trees, In Proc. MGTS’03,
2003.

13

[17] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for
association rules, In Proc. ICDT’99, 398–416, 1999.

[18] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer,
1985.

[19] A. Termier, M.-C. Rousset, M. Sebag, Dryade: a new approach for discovering closed
frequent trees in heterogeneous tree databases, In Proc. ICMD’04, 2004.

[20] K. Tsuda, T. Kudo, Clustering graphs by weighted substructure mining, Proc. ICML
2006, 953–960, 2006.

[21] T. Uno, T. Asai, Y. Uchida, H. Arimura, An efficient algorithm for enumerating closed
patterns in transaction databases, In Proc. DS’04, LNAI 3245, 16–30, 2004.

[22] J. Wang, J. Han, BIDE: Efficient Mining of Frequent Closed Sequences, In Proc. IEEE
ICDE’04, 79–90, 2004.

[23] T. Washio, H. Motoda, State of the art of graph-based data mining, SIGKDD Explor., 5,
1, 59–68, 2003.

[24] X. Yan, J. Han, CloseGraph: mining closed frequent graph patterns In Proc. KDD’03,
2003.

[25] G. Yang, The complexity of mining maximal frequent itemsets and maximal frequent
patterns, In Proc. KDD’04, 344–353, 2004.

[26] M. J. Zaki, Efficiently mining frequent trees in a forest, In Proc. KDD’02, 71–80, 2002.

[27] M. J. Zaki, C. C. Aggarwal, XRules: an effective structural classifier for XML data, In
Proc. KDD’03, 316–325, 2003.

14

Note: The contents of this appendix is not included in the submission draft and can be

ignored.

A Appendix: Basics in geometry

In this paper, we consider points and geometric objects on the two-dimensional Eucledean

space (or the plane, for short) E.

Throughout this paper, we fix the Cartesian coordinate system for E. Each point ~p in the

plane E is represented by a pair of real numbers ~p = (~p.x, ~p.y) = (x, y) ∈ R2, where x and y

are called the x- and the y-coordinates of p, resp. A point ~x is also regarded as a vector in R2

as well. Let ~ex = (1, 0) and ~ey = (0, 1) be a pair of the orthogonal unit vectors for x-axis and

y-axis . Therefore, our Cartesian coordinate system is specified by the axes ψ = (~ex, ~ey). For

vectors ~x = (x, y) ∈ R2, the norm or the length of ~x is defined by ||~x|| = (x2 + y2)
1
2 ≥ 0.

Let ~x1, ~x2 ∈ R2 be two points in R2. Then, the distance of ~x1 and ~x2 is defined by ||~x1−~x2||.
The line segment between ~x1 and ~x2 is denoted by ~x1~x2. The angle of two line segments ~s1

and ~s2 is denoted by angle(~s1, ~s2). We denote the scalar product of vector ~x ∈ R2 with c ∈ R
by c ~x, and the addition of two vectors ~x, ~y by ~x + ~y. The product of a 2 × 2 matrix A and a

2-vector ~x is denoted by A~x. Then, the determinant of A is written det(A). If det(A) 6= 0, A

is called non-singlar and always has its inverse A−1.

In this paper, we consider three basic types of geometric transformations, translation M ,

rotation R, and scaling S defined as follows for any vector ~x ∈ R2:

M : ~x 7→ ~x +

(
t1
t2

)
, R : ~x 7→

(
cos θ sin θ
− sin θ cos θ

)
~x, S : ~x 7→

(
s 0
0 s

)
~x,

where (t1, t2) is called a displacement, 0 ≤ θ < 2π is a rotaion angle (in clockwise), and s > 0

is a scaling factor of the transformations.

In general, any geometric transformation T can be represented as a 2D affine transformation

T : ~x 7→ A~x+~t, where A is a 2×2 nonsingular matrix with det(A) 6= 0, and ~t is a 2-vector. Such

T is is one-to-one, and any transformation can be determined a set of three non-collinear points

and their images. An affine transformation T ∈ Taffine has the following nice properties: it maps

parallel lines to parallel lines, is one-to-one and preserved the coordinates detemined by three

non-collinear points. Also, any transformation can be determined a set of three non-collinear

points and their images.

B Discussion: Critical perfect elimination sequences and
application to maximal pattern enumeration

Given a k-pattern Q, its perfect critical elimination sequence critseq(Q) = (χj, . . . , χ1),

discussed in Sec. 3.2, is uniquely determined by the procedure Elimination Ordering shown in

Fig. 4. The next lemma says that the critical elimination sequence has the complete information

on the original pattern Q as expected.

Lemma 17 For any Q ∈ G, Clo(critseq(Q)) = Q.

15

ClosureMain(σ : minsup, D : input database)

1: global: Pool = ∅;
2: call ClosureExpansion(⊥ = Clo(∅), σ,D);

ClosureExpansion(P, σ,D)

1: global: Pool; //A pool of already discovered patterns
2: if |L(P)| < σ then return
3: else if P 6∈ Pool then
4: output P as a frequent maximal subgraph; Pool = Pool ∪ {P};
5: for each possible labeled object 〈o, l〉 do
6: Q = Clo(P ∪ {〈o, l〉});
7: call ClosureExpansion(Q, σ,D);
8: end for

Figure 7: An output-polynomial time algorithm for enumerating all frequent-maximal
patterns without duplicates. This algorithm is neither of polynomial delay or poly-
nomial space.

Proof: To see this, suppose we reverse the elimination process of Elimination Ordering by

the following procedure: STEP 1: Q = ∅; STEP 2: for i = j downto 1 do Q = Clo(Q∪{χi});
STEP 3: return Q; Then, this process finally reaches the original k-pattern Q. Since we can

show that this iterative process is equivalent to Clo(critseq(Q)), the proof is completed. 2

From the above arguments, we can show that any maximal pattern Q can be generated from

a properly smaller maximal pattern, say P , and some labeled object ξ by iterativelly applying

the operation Q = Clo(P ∪ {ξ}) called the closure extension [17]. In Fig. 7, we present a

recursive algorithm ClosureMain for the frequent maximal geograph enumeration problem.

Proposition 18 ClosureMain is an output-polynomial time algorithm for the frequent maximal

geograph enumeration problem, but neither a polynomial delay or polynomial space algorithm.

To avoid duplication, ClosureMain has to use explicit maximality test at Line 3 of Fig. 7 by

maintaining a possibly exponentially large pool Pool of discovered patterns. Unfortunately,

however, ClosureMain may visit an identical maximal pattern possibly exponentially many

times in the worst case through distinct search route. Therefore, we conclude that ClosureMain

is neither polynomial delay or polynomial space. In the next subsection, we will show how to

improve this approach.

16

