TCS-TR-A-08-35

TCS Technical Report

Algorithms for Finding a Minimum Repetition
Structure of a String or a Tree

by

ATSUYOSHI NAKAMURA
TOMOYA SAITO
MINEICHI KUDO

Division of Computer Science
Report Series A
February 8, 2008

Hokkaido University
Graduate School of
Information Science and Technology

Email: atsu@ist.hokudai.ac.jp Phone: +81-011-706-6806
Fax: +81-011-706-7832

Algorithms for Finding a Minimum Repetition
Structure of a String or a Tree

February 8, 2008

Abstract

A repetition representation string, RRS for short, is a representation for
a set of disjoint or nested tandem arrays in a string. The length of an RRS
depends on a set of tandem arrays it represents. We show an O(n?) dynamic
programming algorithm for finding a shortest RRS representing a given string
with length n. The algorithm can be extended to an algorithm of the same
time complexity for finding a minimum repetition representation tree, RRT for
short, representing a given labeled ordered tree with n nodes. Furthermore,
corresponding problems for width-k subclasses of RRSs and RRTs are shown to
be solved in time O(k%n) when functions of deciding the size of a RRS and a
RRT satisfy a certain condition.

1 Introduction

Contiguous repeats appeared in a sequence have special meanings in many cases. For
example, contiguously repeated melody forms an impressive part of a music piece,
contiguous repeats in a DNA sequence have been shown to cause human disease [1],
and a number of data records embedded in a Web page can be recognized by detecting
contiguously repeated HTML tag structure [2].

A contiguous repeat of a substring embedded in a string is called a tandem array,
and it is also called a tandem repeat when the number of repetition is two. The problem
of finding tandem arrays and repeats have been studied for more than two decades in
the fields of computer science, mathematics and biology [3]. Efficient algorithms for
finding all or primitive tandem repeats have been proposed [3, 4].

A tandem array is representable by (r)", which means A times repetition of a string
r. By repeatedly substituting this representation for a contiguous substring corre-
sponding to a tandem array, a number of tandem arrays embedded in a string s can
be represented in a special string r that is composed of not only alphabets appeared
in s but also parentheses and superscript numbers. We call such a representation r a
repetition representation string, RRS for short. An RRS can not represent all tandem

2 ATSuYosHI NAKAMURA TOMOYA SAITO MiNeIcHI KuDO

arrays but can represent a set of disjoint or nested tandem arrays simultaneously.
Note that there are many RRS representing a string.

In this paper, we show an O(n?) algorithm for finding a shortest RRS representing
a given string with length n. Here, using an alphabet weight function wy and a
repetition weight function wg, the length I(r) of an RRS r is defined as the sum
of its component lengths, which is wx(a) if the component is an alphabet a and is
I(r') + wgr(h) if the component is a tandem array (r')". Our algorithm is very simple
one using a dynamic programming technique. When the width of tandem arrays (r)",
the length of the string represented by r, represented in an RRS is restricted to at
most k, and when wg(2),wg(3), ... is an arithmetic progression sequence, an O(k?n)
algorithm is shown.

Furthermore, our O(n?) and O(k*n) algorithms can be extended to algorithms of
the same time complexity for finding a minimum repetition representation tree, RRT
for short, representing a given labeled ordered tree with n nodes. Here, an RRT is a
labeled ordered tree that may have special nodes called repetition information nodes
labeled A > 2 which represent an h times repetition of a sequence of the subtrees rooted
by its child nodes. Our algorithm uses divide-and-conquer strategy and recursively
solves subproblems for 1-height smaller trees, subtrees rooted by child nodes of the
root node. Using the solutions for the subproblems, the problem is reduced to the
one for finding a shortest RRS.

2 Finding a Shortest Repetition Representation String

2.1 Problem Setting

Let X be a finite set of alphabets. A string is defined inductively as follows. Special
symbol A, called a null string, and all alphabets are strings. If s; and s, are strings,
then sis9, concatenation of s; and s, is also a string. Note that A\s = s\ = s for all
strings s. Here, we define more general notion called a repetition representation string,
RRS for short, as follows. First, all strings are RRSs. If ry and r, are RRSs, then
7179, concatenation of r; and ry, is also an RRS. If r is an RRS, then (r)" (h > 2), h
times repetition of r, is also an RRS that is another representation of concatenation

rr---r of the same RRSs r. Note that parentheses ‘(’, ‘)" and codes for numbers are
——

htimes
special symbols and not contained in ¥. Though (r)" is generally called a tandem

array, we use term “repetition” instead of tandem array in the rest of the paper.
Ezxpansion of (r)" is concatenation rr - --r of the same RRSs r. Reversely, reduction

htimes
of concatenation yr-- -7 of the same RRSs r, is an RRS (r)". String s is said to be
————

htimes
represented by RRS r if expansions of all repetitions in r change r to s.

Example 1 String abaababaab is represented by RRS (ab(a)?b)?. Note that there are
many RRSs representing abaababaab such as abaababaab itself and (aba)?b(a)?b.

Algorithms for Finding a Minimum Repetition Structure of a String or a Tree 3

Next, we define the length of an RRS. The length of an RRS can be calculated
using given two weight functions, alphabet weight function ws and repetition weight
function wg. Function wy is a real-valued function on ¥, and function wg is a real-
valued function on the set of natural numbers at least 2. Given wy, and wg, the length
I(r) of an RRS r is recursively defined as follows:

I(A) = 0,

l(a) = ws(a) fora€ X,
[(ryr9) = 1(r1) + I(re) for all RRSs r; and r9, and
()" = U(r) +wr(h).

Example 2 Let wx(a) = 1 for all alphabets a € ¥, wr(h) =1 for all h > 2. Then,
I(abaababaab) = 10, I((ab(a)?b)?) = 6 and I((aba)?*b(a)?b) = 8.

Problem we deal with in this section is the following one.

Problem 1 Given a string s, an alphabet weight function ws, and a repetition weight
function wg, find a shortest RRS r that represents s.

2.2 Algorithm

In this subsection, we describe an algorithm for finding a shortest RRS for an arbitrary
string s(= ajas - - - a,) with length n, an arbitrary alphabet weight function wy, and an
arbitrary repetition weight function wg. Let s[i, j] denote the substring a;a;i1 - - - @,
of s, and let r[i, j] denote a shortest RRS representing s[i, j]. Then, the following
proposition holds.

Proposition 1 For all 1 <1i < j <mn, one of the following cases holds.

Case 1 r[i,j] = (r[i,i + h — 1)) for some h > 1 and d > 2 with dh = j — i+ 1

Case 2 r[i,j] =r[i,i +drji+d+1,j] for some 0 <d < j—1

(Proof) If r[i, j] = (r')? for some RRS 7', ' must be an RRS representing s[i, i — 1+ h]
where h = (j —i+1)/d. RRS 7’ must be a shortest RRS representing s[i,i — 1 + A
because, if not, I(r") > I(r[i,i—1+h]) holds and it leads that I(r[i, j]) = I(r")+wgr(d) >
U(rli,i — 1+ h]) + wr(d) = U((r[i,i — 1 + h])?), which contradicts the fact that r[i,]
is the shortest RRS representing s[i, j]. Thus, Case 1 holds in this case.

If there do not exist ' and d > 2 such that 7[i,j] = ('), then r[i,j] = riro
for some RRSs r; and 7. RRSs ry and ry must be RRSs representing s[i,i + d]

and s[i + d + 1, j], respectively, for some 0 < d < j —i. RRSs r; and r, must be
shortest RRSs representing s[i, i + d] and s[i + d + 1, j], respectively, because, if not,

4 ATSuyosHI NAKAMURA TOMOYA SAITO MineIcHI KuDO

I(rq) > U(r]i,i +d]) or I(rg) > I(r[i + d + 1, 7]) holds and it leads to a contradiction
with the fact that r[é, j] is a shortest RRS. Thus, Case 2 holds in this case. O

For given 1 < i < j < n, assume that r[¢/', j'] is already known forall 1 <i' < j' <n
with j' — ' < j —i. Using the above proposition, r[i, j] is obtainable by searching a
shortest RRS among |(j — i + 1)/2] possibilities of Case 1 and j — i possibilities of
Case 2. If [(r[i’, j']) for all 1 < i’ < j' < n with j'—4' < j—1i is already calculated, the
length for each possible RRS can be calculated in constant time. Thus, such search
can be finished in O(j — i + 1) time. This means that a shortest RRS r[1,n| for a
given string s is efficiently obtainable by dynamic programming using the fact that
rli, i) = s[i,i] for all 1 <i < n.

ShortestRRS % [Finding a Shortest RRS Representing String aqas - - - ay]
Input: aias - ay: string
wy: alphabet weight function

wp: repetition weight function
Output:r : shortest RRS representing ajas - - ay,

[, : length of r
1: U[i,i] + wx(a;) fori=1,2,...,n
2: l[i,j] ¢ oo fori=1,2,...,n and 7 =2,3,....n with i < j
3: for h=1ton do
4: fori=1ton—h+1do

5: ford=0to h—2do

6: if lfi,i+d +1[i+d+1,i+h—1] <l[i,i+h—1] then
7 livi+h—=1]«1[i,i+d+I[i+d+1,9+h—1]

8: type[i,i + h — 1] < (2,d)

9: end if

10: end for

11: for s=i4+hton—h+1byhdo

12: if asasy1 - asip_ 1 # ;a1 - a;1p 1 then break

13: if I[i,i+h—1]+wr((s—1)/h+1) <l[i,s +h—1] then
14: li,s+h—1]«I[i,i+h—1]+wr((s—17)/h+1)

15: typeli,s + h — 1] < (1,h)

16: end if

17: end for

18: end for

19: end for

20: I, < 1[1,n]

21: r + ConstructShortestRRS(aias - - - ay, type)
22: return (r,l,)

Figure 1: Algorithm ShortestRRS

Algorithm ShortestRRS shown in Fig. 1 is the one that constructs a shortest RRS
representing a given string using dynamic programming. In the algorithm, [[i, j]
(1 <i < j < n)is the length of a shortest RRS representing string a;a;1 - - - a;. At
Line 1, all [[z,] for i = 1,2,...,n are set to the correct value. All the other [[i, j] are
set to oo at first (Line 2), but those are updated in the for-loop from Line 3 to 19,

Algorithms for Finding a Minimum Repetition Structure of a String or a Tree 5

and all [[i, j] are set to the correct values by the end of the loop. In the for-loop, h
increases one by one from 1 to n, and all I[i,i+ ho— 1] for 1 < i < n—hg+1 are set to
the correct value when h = hy. More precisely, in another for-loop from Line 4 to 18
inside the for-loop with h = hg, each [[ig, iy + ho — 1] is set to the correct value when
i = ig. In the for-loop from Line 5 to 10, the lengths of Ay — 1 Case-2 possibilities
are calculated for I[ig,ig + ho — 1], and I[ig, 39 + ho — 1] is set to the correct value
at the end of this for-loop. This is because the lengths of all the Case-1 possibilities
for l[ig, ig + ho — 1] are already calculated when h < hg, that is, Case-1 possibility
(r[i,i + hy — 1])® is calculated when h = h; < hg. The lengths of all the Case-1
possibilities are calculated in the for-loop from Line 11 to 17. In the for-loop, the
lengths of (r[i,i+h—1])? for 2 < d < [(n—i+1)/h] are calculated for current h and
. Finally, at the end of the for-loop with variable h, the length of a shortest RRS
representing ajas - - - ay, [[1,n], is calculated.

A shortest RRS r can be constructed from the given string and ‘type’ because
‘type’ contains the information of which possibility is a shortest RRS: r[i, j] = r[i +
dlri +d + 1, j] if typeli, j] = (2,d) and 7[i, j] = (r[i,i + h — 1))U=#D/0if type[i, j] =
(1,h), where the first component of ‘type’ indicates which case is selected. Starting
from r[1, n], recursively apply this refinement using ‘type’ information, an expression
that only contains r[i,i| for © = 1,2,...,n except special symbols for repetition can
be obtained. By replacing all r[i,i] in the expression with a;, a shortest RRS r is
constructed. ConstructShortestRRS is the algorithm that executes this procedure.
Each refinement and replacement above can be done in constant time and there are
at most n refinements and at most n replacements, so ConstructShortestRRS runs in

time O(n).
Proposition 2 Algorithm ShortestRRS runs in time O(n?).

(Proof) Computational time needed outside the for-loop from Line 3 to 19 is at most
O(n?). So, we only have to show that computational time needed for lines from Line
5 to 17, which are inside the two outer for-loops, is O(n). The first for-loop from Line
5 to 10 is trivially O(n). The number of executing the inside of the for-loop from Line
11 to 17 is at most n/hg when h = hg, and O(hg) time is necessary for Line 12 in this
case. Thus, O(n) time is also needed for this for-loop. Therefore, computational time
needed for lines from Line 5 to 17 is O(n). O

2.3 Fast Algorithm for Width-£ RRSs

Computational time O(n?) of algorithm ShortestRRS seems too slow for practical use.
In this subsection, we consider a restricted class of width-k RRSs, for which a shortest
one can be constructed more efficiently.

Let (r)" be an arbitrary repetition of RRS r. The width of repetition (r)" is defined
as the length of string s represented by r. Here, the length of string a,as---a, for
a; € ¥ is n, which is different from the length of an RRS.

6 ATSUYOSHI NAKAMURA TOMOYA SAITO MineIcHI KuDO
RRS r is said to be width-k if the width of any repetition appeared in r is at most

Let s(= ajay---a,) denote an arbitrary string and let ri[é, j] denote a shortest
width-k RRS representing s[i, j|. We also define 7y ;[1,1] as a shortest width-& RRS
with form ry[1,i—jh](rp[i—jh+1,i—(5—1)h])" for some h > 2 when such RRSs exist.
Width-k RRS ryj[1,1] is a shortest one among those representing s[1,i] and ending
with a width-j repetition. Note that ry ;[1,] is NOT always defined. To simplify our
notation, we let ryo[1,7] denote a shortest width-k RRS among those representing
s[1,i] and containing no ending repetition. Then, the following fact trivially holds.

fact 1 ry[1,i] is a shortest width-k RRS among ry j[1,1] for j =0,1, ..., k.

By the fact above, if ry [1,7] for j = 0,1, ...,k can be efficiently constructed from
re;]1,4'] for j = 0,1, ...,k and ¢ < 4, then r4[1,n] can be efficiently calculated using
dynamic programming. We show that this is true. For j = 0, the following proposition
trivially holds, so we omit its proof.

Proposition 3 7y [1,i = ri[l, i — 1]a;

For j = 1,2,..., k, we need the following property of repetition weight function wg
to efficiently construct ry ;[1,1].

wr(h+ 1) = wg(h) + « for some constant a and for all h > 2. (1)

When wg has this property, the following proposition holds.

Proposition 4 Assume that wg satisfies (1) and that 1 < j < min{i/2,k} and
ai_j+1az~_]~+2 ey = ai_2j+1ai_2j+2 s ai_j. If ’rk,j[]-; Z] = Tk[]_, 7 — jh](?“k[l — jh + 1, 17—
(j —)R for h > 3, then rij[1,i — j] = re[l, i — jh)(reli — jh+ 1,4 — (j — 1)h))"!

(Proof) Assume that
rigllyi = j] = re[Loi = R (reli = G0+ 1,i = (j = DAY
for some h' # h, and also assume that
WrslL,i = gh'\(rili = B+ Li = (G = DA™
Ure[L,i = jh)(rsli — Gh+ 1, = (j = A",
Then,

!

Irp[l, i —) (rgi — 0 + 1,5 — (5 — D)R')A

)
= I(rp[1,i— 50 (re[i — G + 1,0 — (G — DD) + wr(h) — wr(h' — 1)
(-

\/\/~,
\
3
~—

il
= (e[l — jR](reli =GB + 1,0 — (— DR 1) + wr(h) — wr(h — 1)
< A(rp[l,i— jh)(rgfi — jh+ 1,5 — (5 — DR)") + wr(h) — wr(h — 1)
= U(ry[l,i = jh](reli = jh+ 10— (7 — 1)A)")

Algorithms for Finding a Minimum Repetition Structure of a String or a Tree 7

This contradicts the fact that ry ;[1,4] = rg[1,4 — jh|(re[i — jh+ 1, — (j — 1)A])". O

By this proposition, ry ;[1,] for j = 1,2, ...,k is either modified 7 ;[1,7 — j] that
is constructed from 7 ;[1,7 — j] by repeating the last repetition one more time, or
(1,0 — 2j)(rili — 25 + 1,0 — §])%, if it is defined.

ShortestWiRRS %[Finding a Shortest Width-& RRS Representing String ajas - - - a,]
Input: aias--:ay: string

wy: alphabet weight function

wp: repetition weight function

satisfying wgr(h + 1) = wr(h) + a for some real number o
Output:r : shortest RRS representing ajas - - - ay

Iy : length of r
1: (I,type) < Shortest WkRRSLengthTable(ajas - - - ay, ws, wg)
2: I1,0[1,0] =0, 5%[0] =0
3: for ; =1ton do

4: lk,O[lai] = lk,j*[i—l}[lai - 1] + 1[7’72]7]*[7’] =0

5. for j =1 to min{i, k} do

6: if j <i/2and a; j110; j12 - a; = a;_2j416; 2512 a;j then

7: if 1, ;[1,i—j]4+a < lk’j*[i_gﬂ[l,i—2j]+l[7l—2j—|-1,i—j]+wR(2)
then

8: lk’j[l,i] = lk’j[l,i —jl+a

9: h[],Z]Zh[j,Z—j]+1

10: else

11: Ik jl1,i] = lk’j*[i,m[l,i —2j]+1[i =254+ 1,i — j] + wgr(2)

12: hlj,i] =2

13: end if

14: else

15: lk’j[l,i] =0

16: end if

17: if lk’j[l,i] < lk,j*[i}[lai] then j*[i] = j

18: end for

19: end for

20: I, + lk,]*[n}[lﬂ n]
21: r < ConstructShortest WEkRRS(aias - - - an, type, j*, h)
22: return (r,[,)

Figure 2: Algorithm ShortestWERRS

Now, we know that width-k RRSs 7y ;[1,4] for j = 0,1,...,k and their shortest
one ri[1,i] can be constructed from 7y ;[1,4'] and r[1,7] for ¢/ < 4, and r[g, h] for
1<g<h<iand h—g+1 < k. A dynamic programming using this fact is algorithm
Shortest WEKRRS shown in Fig. 2.

For all 1 < < j < nwith j —i+ 1 < k, the algorithm first calculates length
I[i,j] of a shortest one 74[i,j] among the RRSs representing s[i,j]. This task is
done by executing algorithm ShortestWkRRSLengthTable shown in Fig. 3. Note that
ShortestWkRRSLengthTable is a modified ShortestRRS in Fig. 1 which is modified

8 ATSuyosHI NAKAMURA TOMOYA SAITO MineIcHI KuDO

so as not to calculate [[i, j] for j —i+1 > k.

Then, the algorithm calculates length [, ;[1,4] of the width-k& RRS 7y ;[1,i] for
i=1,2,..,nand j =0,1,.... k using dynamic programming. Note that r; ;[1,1] is set
to oo when 7y ;[1,1] is not defined at Line 15. In the algorithm, we calculates

J*[i] = arg o%'lgk k511, 7]

instead of calculating the length of r,[1,4], which is equal to lj j-;;[1, 7] using j*[4].

A shortest width-k RRS r,[1,n] representing inputted string ajas---a, can be
constructed using ‘type’ information returned by ShortestWkRRSLengthTable, j*[i]
and h[j,i] for i = 1,2,...,n and j = 1,2,...,k, where h[j,i] is the number of times
repeated in the last repetition of 7y ;[1,:]. The construction can be done as follows.
First, using j*[n| and h[j*[n], n], you know that

re[1, n]

{ rr[1,n = j*[nlhl5* [n], n])(reln — j*[n] + 1,)"0 54 0] > 0

re[1,n — 1]ay, if j*[n] = 0.

RRS r[n — j*[n] + 1, n] can be constructed by calling
ConstructShortestRRS(ap—j+ n)+10n—j+[m]+2 * - - an,type), a function used in Algorithm
ShortestRRS. (See Fig. 1.) Thus, construction problem of r;[1,n] is reduced to a
smaller construction problem of r[1, n — j*[n|h[j*[n], n]] when j*[n] > 0 and r¢[1,n —
1] when j*[n] = 0. Repeated application of this reduction finally leads to con-
struction problem of 74[1,0], which is trivially A\. By this procedure, Algorithm
ConstructShortestWERRS at Line 21 can construct r[1, n] in time O(n).

Proposition 5 Algorithm ShortestWkRRS runs in time O(k*n).

(Proof) Computational time needed for Shortest WkRRSLengthTable is O(k*n) be-
cause the inside of the loop from Line 3 to 19 is executed at k times, the inside of the
loop from Line 5 to 10 is also executed at most k times, and the loop from Line 11 to
17 is executed at most k/h times while time O(h) is necessary at Line 12.

Computational time needed for lines from Line 3 to 19 in Shortest WERRS is also
O(k?n) by the following reason. One execution of the inside of the loop from Line
5 to 18 needs O(k) time because execution of Line 6 needs O(k) and other lines are
executed in constant time. Since the insides of the nested for-loops are executed at
most n times and k times, respectively, O(k?n) time is necessary in total.

Thus, together with the fact ConstructShortestWARRS needs O(n) time, we can
conclude that Shortest WkRRS runs in time O(k?n). O

Algorithms for Finding a Minimum Repetition Structure of a String or a Tree 9

Shortest WiRRSLengthTable %|[Calculate the Length [[i, j] of the Shortest
RRS Representing String a;a;t1---a;j for All 0 < j — i < k]
Input: ajas - ay,: string
wy: alphabet weight function

wp: repetition weight function
Output : lengths of the shortest RRS representing

string a;a;41---a; forall 0 < j —i <k
type : structure information of the shortest RRS representing
string a;a;41---a; forall 0 < j—i <k
1: U[i,1] < wx(a;) for i =1,2,...,n
2: U[i,j] o0 fori=1,2,...,n,7=1,2,.,n.0<j—i<k
3: for h=1to k do
4: fori=1ton—h+1do
5: ford=0toh—2do
6 if l[i,i+d|+1[i+d+1,i+h—1] <l[i,i +h—1] then
7 livi+h—=1]«1iyi+d+I[i+d+1,9+h—1]
8 typeli,i +h — 1] « (2,d)
9

: end if
10: end for
11: for s=i+htoi+k—hbyhdo
12: if asasy1- - asipn_1 # 0041 - ajrp 1 then break
13: if [[i,i+h—1]+wr((s—1i)/h+1) <l[i,s+h—1] then
14: li,s+h—1]«1[i,i+h—1]+wr((s—1)/h+1)
15: typeli,s + h — 1] < (1,h)
16: end if
17: end for
18: end for
19: end for

20: return (I, type)

Figure 3: Algorithm ShortestWkRRSLengthTable

3 Finding a Minimum Repetition Representation
Tree

3.1 Problem Setting

An ordered tree is a rooted tree in which all nodes having the same parent node are
totally ordered. In this paper, all child nodes of a tree in any figure are supposed to
have left-to-right ordering. A labeled ordered tree is an ordered tree in which all nodes
are labeled. We assume that labels are members in X, a finite set of alphabets.

In this section, we introduce the following notation. Let 7(T") denote the root node
of an ordered tree T. A subtree rooted by node v in a tree T is denoted by T,. Let
c(v) denote the number of child nodes of a node v, and let v* denote the ith child

node of v. For notational simplicity, we use 7% instead of TW(T)i, the subtree rooted

10 ATSUYOSHT NAKAMURA TOMOYA SAITO MiNeicHT Kubo

by the ith child node of the root node of T. Let ¢(v) denote the label of a node v.
We let V(T') denote the set of nodes in a tree 7.

Here, we define a repetition representation tree, RRT for short, which is a gener-
alized concept of a labeled ordered tree. Only one difference from a general labeled
ordered tree is that an RRT may contain special nodes called repetition information
nodes whose label is not an alphabet in 3 but a number at least 2. A repetition infor-
mation node v labeled number A represents such a repetition structure that the subtree
sequence rooted by v is repeated h times as a subtree sequence directly rooted by the
v’s parent node p. (See Fig.4.) Any repetition information node must be neither a
root node nor a leaf node.

Figure 4: Repetition information node and its expansion

The operation of transforming an RRT with repetition information node v into
an RRT representing the same tree without node v is called expansion of v, and the
opposite operation is called reduction to v. When all the repetition information nodes
in RRT R are expanded, a general labeled ordered tree T is obtained. Then, we say
that R represents T

For a repetition information node v in an RRT R, the width of v is defined as the
number of v’s child nodes in an RRT R’ which is made by expanding all repetition
information nodes below v. Note that a repetition information node v with width
k in an RRT R represents the repetition of k& subtree sequence in a labeled ordered
tree T represented by R. RRT R is said to be width-k if the width of any repetition
information node is at most k.

@ @
@
2 RO ® ;Y
® b ONON6 @ @ 5)
©@©0 W00 © © © ‘z ;‘ b (c 63? %;b ® ©
T Ri1 Ry T, R; T3 R3

Figure 5: Examples of RRTs

Example 3 T),T, and T; are general labeled ordered trees and also RRTs representing
themselves. Ry and Ris are RRTs representing Ty, Ry is an RRT representing Ts,

Algorithms for Finding a Minimum Repetition Structure of a String or a Tree 11

and Rs is an RRT representing T3. Among Ry1, R12, Ry and R3, the first two RRTs
are width-1, the first three RRTs are width-2, and the all RRTs are width-3.

Similar to the definition of the length of an RRS in the previous section, we define
the size m(R) of an RRT R using given two functions alphabet weight function wy,
and repetition weight function wg as follows.

m(R)
(0 if R is an empty tree
c(m(R)) .
wr(p(m(R))) + m(R') if m(R) is a repetition information
= 3 i=1 node
n(R)
ws(p(m(R))) + m(R') otherwise

RRT-version of our problem is the following.

Problem 2 Given a labeled ordered tree T, an alphabet weight function ws and a
repetition weight function wg, find a minimum RRT R that represents T'.

Remark 1 When the height of T is one, the above problem can be reduced to an RRS-
version problem. Let T be a height-1 tree with leaf node label sequence ay,as, ..., a,.
Then, the reduced RRS-version problem is that of finding a shortest RRS r rep-
resenting string aijas---aq for the same alphabet and repetition weight functions.
There is a one-to-one correspondence between an RRT R representing T and an RRS
¢(m(T))r, which is a concatenation of the root label ¢(m(T')) and an RRS r represent-
ing ajas - - -aq. Do tree traversal of R, and output ‘(" at the first visit of a repetition
information node, output)"’ at the last visit of a repetition information node labeled
h, and output an alphabet a at the first visit of an node labeled a. Then, outputted
string ¢(w(T))r is an RRS corresponding to R. RRS ¢(n(T))r is a unique RRS en-
coding of an RRT R representing a height-1 tree T', and the conversion of the opposite
direction is also possible. Furthermore, m(R) = I(r) + ws(¢(n(T))) when the same
wy and wg are used. Thus, minimizing m(R) is equivalent to minimizing [(r). By
this reduction, the above problem can be solved when the height of T s at most one.

3.2 Algorithm

We show an algorithm for finding a minimum RRT representing a given arbitrary la-
beled ordered tree T', given an arbitrary alphabet weight function wy and an arbitrary
repetition weight function wg.

The algorithm is named MinimumRRT and shown in Fig. 6. It uses divide-and-
conquer strategy. First, it solves subproblems of finding a minimum RRT R; repre-
senting an labeled ordered subtree T for each i = 1,2, ...,c(m(T)). These subprob-
lems are solved by recursively calling algorithm MinimumRRT. Then, the problem

12 ATSUYOSHT NAKAMURA TOMOYA SAITO MiNeicHT Kubo

MinimumRRT %[Construct the Minimum RRT Representing
a Labeled Ordered Tree T
Input: T labeled ordered tree
wy: alphabet weight function

wg: repetition weight function
OutputR: minimum RRT R representing T

mpg: size of a minimum RRT R representing
T

1. if 7(T') has no child node then

s ROT, mp e ws(@(x(T)

3: else

40 v« 7n(T),d <+ c(v)

5. (R;,m;) + MinimumRRT (T, wy, wg) for i =1,2,...,d
6: ¥(v) < AssignLabel(d(v)y(v!)(v?) -+ ¥ (v7))
70wy (@) m; fori=1,2,...d

8 (r,mg) < ShortestRRS(¢)(v") 9 (v?) - - -9 (v?), wsr, wr)
9: R <« ConstructMinimumRRT(r, Ry, Ry, ..., R4, ¢(v))
10: end if

11: return (R, mpg)

Figure 6: Algorithm MinimumRRT

of constructing a minimum RRT R representing T from Ry, R;, ..., R.(z(r)) is reduced
to the problem of finding a shortest RRS r representing a string corresponding to
the sequence T, T2, ..., 7™ The reduced problem is solved by calling algorithm
ShortestRRS developed in the previous section.

Algorithm MinimumRRT uses two other algorithms, AssignLabel and Construct-
MinimumRRT.

AssignLabel is an algorithm that assigns a label in ¥’ D ¥ to an inputted string,
and returns the label. The algorithm assigns an inputted string itself for a string
composed of one alphabet in 3. If the same string as the one inputted before is
inputted, then the already assigned label is returned. Otherwise, the algorithm assigns
a new label. Note that AssignLabel assigns the same label if and only if inputted
strings are the same. In MinimumRRT, AssignLabel is used for labeling each node v
with ¢ (v), which is determined by the subtree T,. This means that

Y(u)=yw) e T, =T, (2)

Though AssignLabel uses labels ¢(v) and 1 (v'), 1 (v?), ..., ¥ (v°")) alone for calculation
of 1(v), (2) holds even for 1(v) calculated like this when (2) holds for ¢ (v'), ¥ (v?), ..., 1 (v°®)
by induction. Since (2) trivially holds for leaf nodes, (2) holds for all nodes in 7.

ConstructMinimumRRT is an algorithm that constructs a minimum RRT R repre-
senting T from an RRS r representing ¢ (v')¢)(v?) - - - ¢ (v)), minimum RRTs Ry, Ry, ..., Re)
representing T, T2, ..., T°™), respectively, and the root label ¢(v) of T, where v =

Algorithms for Finding a Minimum Repetition Structure of a String or a Tree 13

7(T). The algorithm converts an RRS r to the corresponding RRT R by the con-
version described in Remark 1. Only one difference from the conversion is to add R;
instead of a leaf node labeled 1 (v").

Theorem 1 Given a labeled ordered tree T, an alphabet weight function wx, and a
repetition weight function wg, algorithm MinimumRRT outputs a minimum RRT R
representing T and its size m(R).

(Proof) The proof is an induction on the height h of T. When h = 0, 7(T") has no
child node, so the minimum RRT is 7T itself and its size is wyg(¢(7(7T))), which are
outputted by the algorithm.

Let h = hg, and suppose that the theorem holds when h < hg—1. Then, (R;, m;) for
i=1,2,...,¢(r(T)) obtained at Line 5 is a pair of the minimum RRT R; representing
T' and its size m; by the assumption because the height of T% is at most hy — 1. In
any RRT R’ representing T, the subtree R! corresponding to 7%, that is, the subtree
that becomes T¢ by expanding all repetition information nodes included in it, can be
replaced with any R/ representing 7°. This means that a minimum R* representing
T must have a minimum R} representing T as a subtree corresponding to T for
each 4, and any R} representing 7" is possible if R} has minimum size among RRTs
representing T%. Thus, by applying reduction operations to 7" that is an RRT made
from T by replacing each T® with R;, a minimum RRT R* can be obtained. During
such a reduction, R; does not change, so it can be replaced by a node labeled an
alphabet ¢(v') € ¥/ with my (¢ (v')) = m(R;) = m;, where v is the root node of T".
The same result can be obtained by substituting R; for a node labeled (v?) after
the reduction. Therefore the problem is reduced to that of finding a minimum RRT
representing a height-1 tree with a leaf node label sequence ¥ (v'), ¥ (v?), ..., (v®)
and the root labeled ¢(v), where v is the root node of T. By Remark 1, this can
be solved by finding a shortest RRS r representing the string 1 (v')1(v?) - - - ¢ (ve™).
Since MinimuRRT conducts just the same process as we described above, the theorem
holds when h = hy. O

For the class of width-£ RRTs, the following corollary holds.

Corollary 1 Given a labeled ordered tree T', a alphabet weight function ws and a rep-
etition weight function wg satisfying (1), a modified MinimumRRT made by replacing
ShortestRRT with ShortestWkRRT outputs a minimum width-k RRT R representing
T and its size m(R).

Theorem 2 Algorithm MinimumRRT runs in time O(n®) for an arbitrary labeled
ordered tree with n nodes.

(Proof)

14 ATSUYOSHT NAKAMURA TOMOYA SAITO MiNeicHT Kubo

For a given tree T', algorithm MinimumRRT is called just once for each node,
precisely speaking, just once for a subtree rooted by each node. Thus, let us consider
process time needed for each node and its summation. For leaf nodes, constant time
is necessary for the algorithm. Thus, time O(n) is enough for the algorithm to process
all the leaf nodes.

For each internal node v, we claim that O(c(v)?) is necessary for the algorithm.
Since we do not have to take account of the process time of recursively called Mini-
mumRRT here, time O(c(v)) is needed for Line 5. AssignLabel runs in time O(c(v))
under the assumption of no limitation on the amount of memory. ShortestRRS runs
in time O(c(v)?) by Proposition 2. All the other parts passed when the else-clause is
executed including ConstructMinimumRRT are processed in time O(c(v)). Therefore,
time O(c(v)?) is necessary for processing each internal node.

Let I denote the set of internal nodes in 7. Then, > ,c;¢(v) = n — 1 holds.
Therefore, 3,c; c(v)? < n® holds. Thus, timeO(n?) is enough for the algorithm to
process all the internal nodes.

Totally, MinimumRRT runs in time O(n?). 0

The following corollary for width-£ RRTs can be proved similarly.

Corollary 2 A modified MinimumRRT made by replacing ShortestRRT with Shortest Wk RRT
runs in time O(k?n) for an arbitrary labeled ordered tree with n nodes.

4 Discussion

For a string s with length n, one repetition (tandem array) can be specified by a
triple (i,d, h), where i is its starting position, d is its width and & is the number of
repetitions. Since h > 2, the number of triples can be

I Mi

i (li/d] — 1) = ©(n*logn).

The problem of finding a shortest RRS representing s is a kind of finding an optimal
combination of a (possibly large) number of repetitions under a certain criterion. The
RRS-form constraint is equivalent to the condition that any two members (iy, d, hy)
and (is,ds, hy) in a combination must be

dzsyomt (21 + dlhl S 7:2 or i2 + d2h2 S Zl)

or
nested (21 S iQ,iQ + dghg S il + dl or ig S il,il + d1h1 S iQ + dg)

Recently, repetition structure analysis of web pages for information extraction have
been studied by several researchers [2, 5]. In such a analysis, contents such as texts

Algorithms for Finding a Minimum Repetition Structure of a String or a Tree 15

and images are not considered generally, and only HTML or XML tag sequences are
analysed. Such a sequence is a string as it is, and is also represented by a labeled
ordered tree called a “tag tree”. The problems dealt in the analysis can be seen as the
one of finding a good combination of repetitions under the RRS-form or RRT-form
constraint. In this section, we show difference between repetition-analysis results by
the conventional methods [2, 5] and those of our method using concrete examples.

First, let us consider how to select nested repetitions. Approach taken by Nanno,
Saito and Okumura [5] is a bottom-up selection. Their method first finds a non-
overlapped (best) combination of repetitions among those including no repetitions
inside. Then, it replaces every found repetition with one appropriate alphabet and
repeats the same procedure until no repetition is found. For a string abbcaabbca, there
are four repetitions (2, 1,2),(5,1,2),(7,1,2) and (1,5, 2), and only the last repetition
includes other repetitions inside. Thus, the first three repetitions are selected at
the first round', and the string is modified to aBcABca by substitutions of selected
repetitions (aa — A, bb — B). Since the modified string has no repetition, the RRS
made by bottom-up selection approach is a(b)?c(a)?(b)?ca. For ws(a) = wg(b) =
ws(c) =1 and wg(h) =1 for all h > 2, our algorithm outputs (a(b)?ca)? for the input
string abbcaabbea because [(a(b)?c(a)?(b)?ca) = 10 and I((a(b)?ca)?) = 6. By virtue of
global optimization, the combination of repetitions our method selected looks more
non-trivial than the one selected by the bottom-up approach.

Second, consider a greedy approach, which repeatedly selects one best repetition
among the rest repetitions. What is the best repetition depends on what criterion is
used. How long substring is covered by a repetition seems one of proper criterions, and
actually, Liu, Grossman and Zhai [2] used this criterion? to select a repetition. For a
string abaababaabbaab, the repetition covering the longest substring is (1, 5, 2), which
covers the first 10-length string. Thus, using the greedy approach with the above
criterion, RRS (ab(a)?b)?b(a)?b is made finally. However, for the above ws and wg,
the length of (ab(a)?b)?b(a)?b is 10, which is larger than the length 9 of another RRS
(aba)?(b(a)?b)? representing the same string. In this case again, global optimization
makes our method success to find a more non-trivial RRS than the methods using the
greedy approach does. .

5 Concluding Remarks

What set of repetitions in a sequence or a tree is a structurally essential one? Finding
such a set of repetitions is an important task in structural analysis of sequences
and trees. Our O(n?) algorithms seems too slow for practical use, but the O(k?n)
algorithms appears fast enough when the width of repetitions are always smaller than
a certain bound k. For example, width bound 20 seems large enough for extraction

ISince their method finds a combination that maximizes the sum of the number of repetitions,
all the three repetitions are selected.
2Their method also prefers smaller starting position.

16 ATSUYOSHT NAKAMURA TOMOYA SAITO MiNeicHT Kubo

of data records from HTML tag trees. Actually, we are now using our algorithm
in our online application of extracting keyword related items from an arbitrary Web
pages [6]. Unfortunately, repetitions our algorithms deal with are only identical ones.
Extension of our algorithms so as to deal with non-identical repetitions would enable
wide range of applications.

Acknowledgements

We would like to thank Prof. Hiroki Arimura for his valuable comments.

References

[1] Benson, G.: Tandem repeats finder: a program to analyze DNA sequences, Nucleic
Acids Research, 27(2), pp.573-580, 1999.

[2] Liu, B., Grossman, R. and Zhai, Y.: Mining Data Records in Web Pages, In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp.601-606, 2003.

[3] Stoye, J. and Gusfield, D.: Simple and Flexible Detection of Contiguous Repeats
Using a Suffix Tree, Theoretical Computer Science, 270, pp.843-856, 2002.

[4] Main, M. and Lorentz, R.: An O(nlogn) algorithm for finding all repetitions in a
string, Journal of Algorithms, 5, pp.422-432, 1984.

[5] Nanno, T., Saito, S. and Okumura, M.: Structuring Web Pages Based on Repeti-
tion Of Elements, IPSJ Journal, 45(9), pp.2157-2167, 2004. (In Japanese.)

[6] Nakamura, A., Hasegawa, H., Saito, T. and Kudo, M.: Flexible Wrappers for
Keyword-Related Information, Hokkaido University Division of Computer Science
TCS Technical Report Series A, TCS-TR-A-07-24, 2007.

