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Algorithms for Finding a Minimum RepetitionStru
ture of a String or a Tree
February 8, 2008Abstra
tA repetition representation string, RRS for short, is a representation fora set of disjoint or nested tandem arrays in a string. The length of an RRSdepends on a set of tandem arrays it represents. We show an O(n3) dynami
programming algorithm for �nding a shortest RRS representing a given stringwith length n. The algorithm 
an be extended to an algorithm of the sametime 
omplexity for �nding a minimum repetition representation tree, RRT forshort, representing a given labeled ordered tree with n nodes. Furthermore,
orresponding problems for width-k sub
lasses of RRSs and RRTs are shown tobe solved in time O(k2n) when fun
tions of de
iding the size of a RRS and aRRT satisfy a 
ertain 
ondition.1 Introdu
tionContiguous repeats appeared in a sequen
e have spe
ial meanings in many 
ases. Forexample, 
ontiguously repeated melody forms an impressive part of a musi
 pie
e,
ontiguous repeats in a DNA sequen
e have been shown to 
ause human disease [1℄,and a number of data re
ords embedded in a Web page 
an be re
ognized by dete
ting
ontiguously repeated HTML tag stru
ture [2℄.A 
ontiguous repeat of a substring embedded in a string is 
alled a tandem array,and it is also 
alled a tandem repeat when the number of repetition is two. The problemof �nding tandem arrays and repeats have been studied for more than two de
ades inthe �elds of 
omputer s
ien
e, mathemati
s and biology [3℄. EÆ
ient algorithms for�nding all or primitive tandem repeats have been proposed [3, 4℄.A tandem array is representable by (r)h, whi
h means h times repetition of a stringr. By repeatedly substituting this representation for a 
ontiguous substring 
orre-sponding to a tandem array, a number of tandem arrays embedded in a string s 
anbe represented in a spe
ial string r that is 
omposed of not only alphabets appearedin s but also parentheses and supers
ript numbers. We 
all su
h a representation r arepetition representation string, RRS for short. An RRS 
an not represent all tandem1
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hi Kudoarrays but 
an represent a set of disjoint or nested tandem arrays simultaneously.Note that there are many RRS representing a string.In this paper, we show an O(n3) algorithm for �nding a shortest RRS representinga given string with length n. Here, using an alphabet weight fun
tion w� and arepetition weight fun
tion wR, the length l(r) of an RRS r is de�ned as the sumof its 
omponent lengths, whi
h is w�(a) if the 
omponent is an alphabet a and isl(r0) +wR(h) if the 
omponent is a tandem array (r0)h. Our algorithm is very simpleone using a dynami
 programming te
hnique. When the width of tandem arrays (r)h,the length of the string represented by r, represented in an RRS is restri
ted to atmost k, and when wR(2); wR(3); ::: is an arithmeti
 progression sequen
e, an O(k2n)algorithm is shown.Furthermore, our O(n3) and O(k2n) algorithms 
an be extended to algorithms ofthe same time 
omplexity for �nding a minimum repetition representation tree, RRTfor short, representing a given labeled ordered tree with n nodes. Here, an RRT is alabeled ordered tree that may have spe
ial nodes 
alled repetition information nodeslabeled h � 2 whi
h represent an h times repetition of a sequen
e of the subtrees rootedby its 
hild nodes. Our algorithm uses divide-and-
onquer strategy and re
ursivelysolves subproblems for 1-height smaller trees, subtrees rooted by 
hild nodes of theroot node. Using the solutions for the subproblems, the problem is redu
ed to theone for �nding a shortest RRS.2 Finding a Shortest Repetition Representation String2.1 Problem SettingLet � be a �nite set of alphabets. A string is de�ned indu
tively as follows. Spe
ialsymbol �, 
alled a null string, and all alphabets are strings. If s1 and s2 are strings,then s1s2, 
on
atenation of s1 and s2, is also a string. Note that �s = s� = s for allstrings s. Here, we de�ne more general notion 
alled a repetition representation string,RRS for short, as follows. First, all strings are RRSs. If r1 and r2 are RRSs, thenr1r2, 
on
atenation of r1 and r2, is also an RRS. If r is an RRS, then (r)h (h � 2), htimes repetition of r, is also an RRS that is another representation of 
on
atenationrr � � � r| {z }htimes of the same RRSs r. Note that parentheses `(', `)' and 
odes for numbers arespe
ial symbols and not 
ontained in �. Though (r)h is generally 
alled a tandemarray, we use term \repetition" instead of tandem array in the rest of the paper.Expansion of (r)h is 
on
atenation rr � � � r| {z }htimes of the same RRSs r. Reversely, redu
tionof 
on
atenation rr � � � r| {z }htimes of the same RRSs r, is an RRS (r)h. String s is said to berepresented by RRS r if expansions of all repetitions in r 
hange r to s.Example 1 String abaababaab is represented by RRS (ab(a)2b)2. Note that there aremany RRSs representing abaababaab su
h as abaababaab itself and (aba)2b(a)2b.
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ture of a String or a Tree 3Next, we de�ne the length of an RRS. The length of an RRS 
an be 
al
ulatedusing given two weight fun
tions, alphabet weight fun
tion w� and repetition weightfun
tion wR. Fun
tion w� is a real-valued fun
tion on �, and fun
tion wR is a real-valued fun
tion on the set of natural numbers at least 2. Given w� and wR, the lengthl(r) of an RRS r is re
ursively de�ned as follows:l(�) = 0;l(a) = w�(a) for a 2 �,l(r1r2) = l(r1) + l(r2) for all RRSs r1 and r2, andl((r)h) = l(r) + wR(h):Example 2 Let w�(a) = 1 for all alphabets a 2 �, wR(h) = 1 for all h � 2. Then,l(abaababaab) = 10, l((ab(a)2b)2) = 6 and l((aba)2b(a)2b) = 8.Problem we deal with in this se
tion is the following one.Problem 1 Given a string s, an alphabet weight fun
tion w� and a repetition weightfun
tion wR, �nd a shortest RRS r that represents s.2.2 AlgorithmIn this subse
tion, we des
ribe an algorithm for �nding a shortest RRS for an arbitrarystring s(= a1a2 � � �an) with length n, an arbitrary alphabet weight fun
tion w� and anarbitrary repetition weight fun
tion wR. Let s[i; j℄ denote the substring aiai+1 � � �ajof s, and let r[i; j℄ denote a shortest RRS representing s[i; j℄. Then, the followingproposition holds.Proposition 1 For all 1 � i < j � n, one of the following 
ases holds.Case 1 r[i; j℄ = (r[i; i+ h� 1℄)d for some h � 1 and d � 2 with dh = j � i + 1Case 2 r[i; j℄ = r[i; i+ d℄r[i+ d+ 1; j℄ for some 0 � d < j � i(Proof) If r[i; j℄ = (r0)d for some RRS r0, r0 must be an RRS representing s[i; i�1+h℄where h = (j � i + 1)=d. RRS r0 must be a shortest RRS representing s[i; i� 1 + h℄be
ause, if not, l(r0) > l(r[i; i�1+h℄) holds and it leads that l(r[i; j℄) = l(r0)+wR(d) >l(r[i; i� 1 + h℄) + wR(d) = l((r[i; i � 1 + h℄)d), whi
h 
ontradi
ts the fa
t that r[i; j℄is the shortest RRS representing s[i; j℄. Thus, Case 1 holds in this 
ase.If there do not exist r0 and d � 2 su
h that r[i; j℄ = (r0)d, then r[i; j℄ = r1r2for some RRSs r1 and r2. RRSs r1 and r2 must be RRSs representing s[i; i + d℄and s[i + d + 1; j℄, respe
tively, for some 0 � d < j � i. RRSs r1 and r2 must beshortest RRSs representing s[i; i+ d℄ and s[i+ d+ 1; j℄, respe
tively, be
ause, if not,
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hi Kudol(r1) > l(r[i; i + d℄) or l(r2) > l(r[i + d + 1; j℄) holds and it leads to a 
ontradi
tionwith the fa
t that r[i; j℄ is a shortest RRS. Thus, Case 2 holds in this 
ase. 2For given 1 � i < j � n, assume that r[i0; j 0℄ is already known for all 1 � i0 < j 0 � nwith j 0 � i0 < j � i. Using the above proposition, r[i; j℄ is obtainable by sear
hing ashortest RRS among b(j � i + 1)=2
 possibilities of Case 1 and j � i possibilities ofCase 2. If l(r[i0; j 0℄) for all 1 � i0 < j 0 � n with j 0� i0 < j� i is already 
al
ulated, thelength for ea
h possible RRS 
an be 
al
ulated in 
onstant time. Thus, su
h sear
h
an be �nished in O(j � i + 1) time. This means that a shortest RRS r[1; n℄ for agiven string s is eÆ
iently obtainable by dynami
 programming using the fa
t thatr[i; i℄ = s[i; i℄ for all 1 � i � n.ShortestRRS % [Finding a Shortest RRS Representing String a1a2 � � � an℄Input: a1a2 � � � an: stringw�: alphabet weight fun
tionwR: repetition weight fun
tionOutput:r : shortest RRS representing a1a2 � � � anlr : length of r1: l[i; i℄ w�(ai) for i = 1; 2; :::; n2: l[i; j℄ 1 for i = 1; 2; :::; n and j = 2; 3; :::; n with i < j3: for h = 1 to n do4: for i = 1 to n� h+ 1 do5: for d = 0 to h� 2 do6: if l[i; i+ d℄ + l[i+ d+ 1; i+ h� 1℄ < l[i; i + h� 1℄ then7: l[i; i + h� 1℄ l[i; i + d℄ + l[i+ d+ 1; i + h� 1℄8: type[i; i + h� 1℄ (2; d)9: end if10: end for11: for s = i+ h to n� h+ 1 by h do12: if asas+1 � � � as+h�1 6= aiai+1 � � � ai+h�1 then break13: if l[i; i+ h� 1℄ + wR((s� i)=h+ 1) < l[i; s+ h� 1℄ then14: l[i; s+ h� 1℄ l[i; i+ h� 1℄ + wR((s� i)=h+ 1)15: type[i; s+ h� 1℄ (1; h)16: end if17: end for18: end for19: end for20: lr  l[1; n℄21: r  Constru
tShortestRRS(a1a2 � � � an, type)22: return (r; lr) Figure 1: Algorithm ShortestRRSAlgorithm ShortestRRS shown in Fig. 1 is the one that 
onstru
ts a shortest RRSrepresenting a given string using dynami
 programming. In the algorithm, l[i; j℄(1 � i � j � n) is the length of a shortest RRS representing string aiai+1 � � �aj. AtLine 1, all l[i; i℄ for i = 1; 2; :::; n are set to the 
orre
t value. All the other l[i; j℄ areset to 1 at �rst (Line 2), but those are updated in the for-loop from Line 3 to 19,



Algorithms for Finding a Minimum Repetition Stru
ture of a String or a Tree 5and all l[i; j℄ are set to the 
orre
t values by the end of the loop. In the for-loop, hin
reases one by one from 1 to n, and all l[i; i+h0�1℄ for 1 � i � n�h0+1 are set tothe 
orre
t value when h = h0. More pre
isely, in another for-loop from Line 4 to 18inside the for-loop with h = h0, ea
h l[i0; i0 + h0 � 1℄ is set to the 
orre
t value wheni = i0. In the for-loop from Line 5 to 10, the lengths of h0 � 1 Case-2 possibilitiesare 
al
ulated for l[i0; i0 + h0 � 1℄, and l[i0; i0 + h0 � 1℄ is set to the 
orre
t valueat the end of this for-loop. This is be
ause the lengths of all the Case-1 possibilitiesfor l[i0; i0 + h0 � 1℄ are already 
al
ulated when h < h0, that is, Case-1 possibility(r[i; i + h1 � 1℄)d is 
al
ulated when h = h1 < h0. The lengths of all the Case-1possibilities are 
al
ulated in the for-loop from Line 11 to 17. In the for-loop, thelengths of (r[i; i+h� 1℄)d for 2 � d � b(n� i+1)=h
 are 
al
ulated for 
urrent h andi. Finally, at the end of the for-loop with variable h, the length of a shortest RRSrepresenting a1a2 � � �an, l[1; n℄, is 
al
ulated.A shortest RRS r 
an be 
onstru
ted from the given string and `type' be
ause`type' 
ontains the information of whi
h possibility is a shortest RRS: r[i; j℄ = r[i +d℄r[i+ d+ 1; j℄ if type[i; j℄ = (2; d) and r[i; j℄ = (r[i; i+ h� 1℄)(j�i+1)=h if type[i; j℄ =(1; h), where the �rst 
omponent of `type' indi
ates whi
h 
ase is sele
ted. Startingfrom r[1; n℄, re
ursively apply this re�nement using `type' information, an expressionthat only 
ontains r[i; i℄ for i = 1; 2; :::; n ex
ept spe
ial symbols for repetition 
anbe obtained. By repla
ing all r[i; i℄ in the expression with ai, a shortest RRS r is
onstru
ted. Constru
tShortestRRS is the algorithm that exe
utes this pro
edure.Ea
h re�nement and repla
ement above 
an be done in 
onstant time and there areat most n re�nements and at most n repla
ements, so Constru
tShortestRRS runs intime O(n).Proposition 2 Algorithm ShortestRRS runs in time O(n3).(Proof) Computational time needed outside the for-loop from Line 3 to 19 is at mostO(n2). So, we only have to show that 
omputational time needed for lines from Line5 to 17, whi
h are inside the two outer for-loops, is O(n). The �rst for-loop from Line5 to 10 is trivially O(n). The number of exe
uting the inside of the for-loop from Line11 to 17 is at most n=h0 when h = h0, and O(h0) time is ne
essary for Line 12 in this
ase. Thus, O(n) time is also needed for this for-loop. Therefore, 
omputational timeneeded for lines from Line 5 to 17 is O(n). 22.3 Fast Algorithm for Width-k RRSsComputational time O(n3) of algorithm ShortestRRS seems too slow for pra
ti
al use.In this subse
tion, we 
onsider a restri
ted 
lass of width-k RRSs, for whi
h a shortestone 
an be 
onstru
ted more eÆ
iently.Let (r)h be an arbitrary repetition of RRS r. The width of repetition (r)h is de�nedas the length of string s represented by r. Here, the length of string a1a2 � � �an forai 2 � is n, whi
h is di�erent from the length of an RRS.
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hi KudoRRS r is said to be width-k if the width of any repetition appeared in r is at mostk. Let s(= a1a2 � � �an) denote an arbitrary string and let rk[i; j℄ denote a shortestwidth-k RRS representing s[i; j℄. We also de�ne rk;j[1; i℄ as a shortest width-k RRSwith form rk[1; i�jh℄(rk[i�jh+1; i�(j�1)h℄)h for some h � 2 when su
h RRSs exist.Width-k RRS rk;j[1; i℄ is a shortest one among those representing s[1; i℄ and endingwith a width-j repetition. Note that rk;j[1; i℄ is NOT always de�ned. To simplify ournotation, we let rk;0[1; i℄ denote a shortest width-k RRS among those representings[1; i℄ and 
ontaining no ending repetition. Then, the following fa
t trivially holds.fa
t 1 rk[1; i℄ is a shortest width-k RRS among rk;j[1; i℄ for j = 0; 1; :::; k.By the fa
t above, if rk;j[1; i℄ for j = 0; 1; :::; k 
an be eÆ
iently 
onstru
ted fromrk;j[1; i0℄ for j = 0; 1; :::; k and i0 < i, then rk[1; n℄ 
an be eÆ
iently 
al
ulated usingdynami
 programming. We show that this is true. For j = 0, the following propositiontrivially holds, so we omit its proof.Proposition 3 rk;0[1; i℄ = rk[1; i� 1℄aiFor j = 1; 2; :::; k, we need the following property of repetition weight fun
tion wRto eÆ
iently 
onstru
t rk;j[1; i℄.wR(h+ 1) = wR(h) + � for some 
onstant � and for all h � 2. (1)When wR has this property, the following proposition holds.Proposition 4 Assume that wR satis�es (1) and that 1 � j � minfi=2; kg andai�j+1ai�j+2 � � �ai = ai�2j+1ai�2j+2 � � �ai�j. If rk;j[1; i℄ = rk[1; i� jh℄(rk[i� jh+1; i�(j � 1)h℄)h for h � 3, then rk;j[1; i� j℄ = rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h�1.(Proof) Assume thatrk;j[1; i� j℄ = rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0�1for some h0 6= h, and also assume thatl(rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0�1)< l(rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h�1):Then,l(rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0)= l(rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0�1) + wR(h0)� wR(h0 � 1)= l(rk[1; i� jh0℄(rk[i� jh0 + 1; i� (j � 1)h0℄)h0�1) + wR(h)� wR(h� 1)< l(rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h�1) + wR(h)� wR(h� 1)= l(rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h)
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ture of a String or a Tree 7This 
ontradi
ts the fa
t that rk;j[1; i℄ = rk[1; i� jh℄(rk[i� jh+ 1; i� (j � 1)h℄)h. 2By this proposition, rk;j[1; i℄ for j = 1; 2; :::; k is either modi�ed rk;j[1; i � j℄ thatis 
onstru
ted from rk;j[1; i � j℄ by repeating the last repetition one more time, orrk[1; i� 2j℄(rk[i� 2j + 1; i� j℄)2, if it is de�ned.ShortestWkRRS %[Finding a Shortest Width-k RRS Representing String a1a2 � � � an℄Input: a1a2 � � � an: stringw�: alphabet weight fun
tionwR: repetition weight fun
tionsatisfying wR(h+ 1) = wR(h) + � for some real number �Output:r : shortest RRS representing a1a2 � � � anlr : length of r1: (l; type) ShortestWkRRSLengthTable(a1a2 � � � an; w�; wR)2: lk;0[1; 0℄ = 0, j�[0℄ = 03: for i = 1 to n do4: lk;0[1; i℄ = lk;j�[i�1℄[1; i � 1℄ + l[i; i℄, j�[i℄ = 05: for j = 1 to minfi; kg do6: if j � i=2 and ai�j+1ai�j+2 � � � ai = ai�2j+1ai�2j+2 � � � ai�j then7: if lk;j[1; i�j℄+� � lk;j�[i�2j℄[1; i�2j℄+ l[i�2j+1; i�j℄+wR(2)then8: lk;j[1; i℄ = lk;j[1; i � j℄ + �9: h[j; i℄ = h[j; i � j℄ + 110: else11: lk;j[1; i℄ = lk;j�[i�2j℄[1; i� 2j℄ + l[i� 2j + 1; i� j℄ + wR(2)12: h[j; i℄ = 213: end if14: else15: lk;j[1; i℄ =116: end if17: if lk;j[1; i℄ < lk;j�[i℄[1; i℄ then j�[i℄ = j18: end for19: end for20: lr  lk;j�[n℄[1; n℄21: r  Constru
tShortestWkRRS(a1a2 � � � an; type; j�; h)22: return (r; lr) Figure 2: Algorithm ShortestWkRRSNow, we know that width-k RRSs rk;j[1; i℄ for j = 0; 1; :::; k and their shortestone rk[1; i℄ 
an be 
onstru
ted from rk;j[1; i0℄ and rk[1; i0℄ for i0 < i, and rk[g; h℄ for1 � g � h < i and h�g+1 � k. A dynami
 programming using this fa
t is algorithmShortestWkRRS shown in Fig. 2.For all 1 � i � j � n with j � i + 1 � k, the algorithm �rst 
al
ulates lengthl[i; j℄ of a shortest one rk[i; j℄ among the RRSs representing s[i; j℄. This task isdone by exe
uting algorithm ShortestWkRRSLengthTable shown in Fig. 3. Note thatShortestWkRRSLengthTable is a modi�ed ShortestRRS in Fig. 1 whi
h is modi�ed
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hi Kudoso as not to 
al
ulate l[i; j℄ for j � i+ 1 > k.Then, the algorithm 
al
ulates length lk;j[1; i℄ of the width-k RRS rk;j[1; i℄ fori = 1; 2; :::; n and j = 0; 1; :::; k using dynami
 programming. Note that rk;j[1; i℄ is setto 1 when rk;j[1; i℄ is not de�ned at Line 15. In the algorithm, we 
al
ulatesj�[i℄ = arg min0�j�k rk;j[1; i℄instead of 
al
ulating the length of rk[1; i℄, whi
h is equal to lk;j�[i℄[1; i℄ using j�[i℄.A shortest width-k RRS rk[1; n℄ representing inputted string a1a2 � � �an 
an be
onstru
ted using `type' information returned by ShortestWkRRSLengthTable, j�[i℄and h[j; i℄ for i = 1; 2; :::; n and j = 1; 2; :::; k, where h[j; i℄ is the number of timesrepeated in the last repetition of rk;j[1; i℄. The 
onstru
tion 
an be done as follows.First, using j�[n℄ and h[j�[n℄; n℄, you know thatrk[1; n℄= ( rk[1; n� j�[n℄h[j�[n℄; n℄℄(rk[n� j�[n℄ + 1; n℄)h[j�[n℄;n℄ if j�[n℄ > 0rk[1; n� 1℄an if j�[n℄ = 0:RRS rk[n� j�[n℄ + 1; n℄ 
an be 
onstru
ted by 
allingConstru
tShortestRRS( an�j�[n℄+1an�j�[n℄+2 � � �an,type), a fun
tion used in AlgorithmShortestRRS. (See Fig. 1.) Thus, 
onstru
tion problem of rk[1; n℄ is redu
ed to asmaller 
onstru
tion problem of rk[1; n� j�[n℄h[j�[n℄; n℄℄ when j�[n℄ > 0 and rk[1; n�1℄ when j�[n℄ = 0. Repeated appli
ation of this redu
tion �nally leads to 
on-stru
tion problem of rk[1; 0℄, whi
h is trivially �. By this pro
edure, AlgorithmConstru
tShortestWkRRS at Line 21 
an 
onstru
t rk[1; n℄ in time O(n).Proposition 5 Algorithm ShortestWkRRS runs in time O(k2n).(Proof) Computational time needed for ShortestWkRRSLengthTable is O(k2n) be-
ause the inside of the loop from Line 3 to 19 is exe
uted at k times, the inside of theloop from Line 5 to 10 is also exe
uted at most k times, and the loop from Line 11 to17 is exe
uted at most k=h times while time O(h) is ne
essary at Line 12.Computational time needed for lines from Line 3 to 19 in ShortestWkRRS is alsoO(k2n) by the following reason. One exe
ution of the inside of the loop from Line5 to 18 needs O(k) time be
ause exe
ution of Line 6 needs O(k) and other lines areexe
uted in 
onstant time. Sin
e the insides of the nested for-loops are exe
uted atmost n times and k times, respe
tively, O(k2n) time is ne
essary in total.Thus, together with the fa
t Constru
tShortestWkRRS needs O(n) time, we 
an
on
lude that ShortestWkRRS runs in time O(k2n). 2
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ture of a String or a Tree 9ShortestWkRRSLengthTable %[Cal
ulate the Length l[i; j℄ of the ShortestRRS Representing String aiai+1 � � � aj for All 0 < j � i < k℄Input: a1a2 � � � an: stringw�: alphabet weight fun
tionwR: repetition weight fun
tionOutput:l : lengths of the shortest RRS representingstring aiai+1 � � � aj for all 0 < j � i < ktype : stru
ture information of the shortest RRS representingstring aiai+1 � � � aj for all 0 < j � i < k1: l[i; i℄ w�(ai) for i = 1; 2; :::; n2: l[i; j℄  1 for i = 1; 2; :::; n; j = 1; 2; :::; n; 0 < j � i < k3: for h = 1 to k do4: for i = 1 to n� h+ 1 do5: for d = 0 to h� 2 do6: if l[i; i + d℄ + l[i+ d+ 1; i + h� 1℄ < l[i; i + h� 1℄ then7: l[i; i + h� 1℄ l[i; i+ d℄ + l[i+ d+ 1; i+ h� 1℄8: type[i; i + h� 1℄ (2; d)9: end if10: end for11: for s = i+ h to i+ k � h by h do12: if asas+1 � � � as+h�1 6= aiai+1 � � � ai+h�1 then break13: if l[i; i + h� 1℄ + wR((s� i)=h + 1) < l[i; s+ h� 1℄ then14: l[i; s+ h� 1℄ l[i; i + h� 1℄ + wR((s� i)=h + 1)15: type[i; s+ h� 1℄ (1; h)16: end if17: end for18: end for19: end for20: return (l; type)Figure 3: Algorithm ShortestWkRRSLengthTable3 Finding a Minimum Repetition RepresentationTree3.1 Problem SettingAn ordered tree is a rooted tree in whi
h all nodes having the same parent node aretotally ordered. In this paper, all 
hild nodes of a tree in any �gure are supposed tohave left-to-right ordering. A labeled ordered tree is an ordered tree in whi
h all nodesare labeled. We assume that labels are members in �, a �nite set of alphabets.In this se
tion, we introdu
e the following notation. Let �(T ) denote the root nodeof an ordered tree T . A subtree rooted by node v in a tree T is denoted by Tv. Let
(v) denote the number of 
hild nodes of a node v, and let vi denote the ith 
hildnode of v. For notational simpli
ity, we use T i instead of T�(T )i , the subtree rooted
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hi Kudoby the ith 
hild node of the root node of T . Let �(v) denote the label of a node v.We let V (T ) denote the set of nodes in a tree T .Here, we de�ne a repetition representation tree, RRT for short, whi
h is a gener-alized 
on
ept of a labeled ordered tree. Only one di�eren
e from a general labeledordered tree is that an RRT may 
ontain spe
ial nodes 
alled repetition informationnodes whose label is not an alphabet in � but a number at least 2. A repetition infor-mation node v labeled number h represents su
h a repetition stru
ture that the subtreesequen
e rooted by v is repeated h times as a subtree sequen
e dire
tly rooted by thev's parent node p. (See Fig.4.) Any repetition information node must be neither aroot node nor a leaf node.
v

...

Rv

h

p

1st time 2nd time hth time. . .

expansion

reduction

1 Rv
2 Rv

c(v)

Rp
1 Rp

i-1

...

Rp
i+1 Rp

c(p)

...

...

Rp
1 Rp

i-1

...

Rv
1 Rv

2 Rv
c(v) Rv

1 Rv
2 Rv

c(v) Rv
1 Rv

2 Rv
c(v) Rp

i+1 Rp
c(p)

...... ... ......

p ...R R’

Figure 4: Repetition information node and its expansionThe operation of transforming an RRT with repetition information node v intoan RRT representing the same tree without node v is 
alled expansion of v, and theopposite operation is 
alled redu
tion to v. When all the repetition information nodesin RRT R are expanded, a general labeled ordered tree T is obtained. Then, we saythat R represents T .For a repetition information node v in an RRT R, the width of v is de�ned as thenumber of v's 
hild nodes in an RRT R0 whi
h is made by expanding all repetitioninformation nodes below v. Note that a repetition information node v with widthk in an RRT R represents the repetition of k subtree sequen
e in a labeled orderedtree T represented by R. RRT R is said to be width-k if the width of any repetitioninformation node is at most k.
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T3 R3Figure 5: Examples of RRTsExample 3 T1; T2 and T3 are general labeled ordered trees and also RRTs representingthemselves. R11 and R12 are RRTs representing T1, R2 is an RRT representing T2,
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ture of a String or a Tree 11and R3 is an RRT representing T3. Among R11; R12; R2 and R3, the �rst two RRTsare width-1, the �rst three RRTs are width-2, and the all RRTs are width-3.Similar to the de�nition of the length of an RRS in the previous se
tion, we de�nethe size m(R) of an RRT R using given two fun
tions alphabet weight fun
tion w�and repetition weight fun
tion wR as follows.m(R)= 8>>>>>>>><>>>>>>>>:
0 if R is an empty treewR(�(�(R))) + 
(�(R))Xi=1 m(Ri) if �(R) is a repetition informationnodew�(�(�(R))) + 
(�(R))Xi=1 m(Ri) otherwiseRRT-version of our problem is the following.Problem 2 Given a labeled ordered tree T , an alphabet weight fun
tion w� and arepetition weight fun
tion wR, �nd a minimum RRT R that represents T .Remark 1 When the height of T is one, the above problem 
an be redu
ed to an RRS-version problem. Let T be a height-1 tree with leaf node label sequen
e a1; a2; :::; ad.Then, the redu
ed RRS-version problem is that of �nding a shortest RRS r rep-resenting string a1a2 � � �ad for the same alphabet and repetition weight fun
tions.There is a one-to-one 
orresponden
e between an RRT R representing T and an RRS�(�(T ))r, whi
h is a 
on
atenation of the root label �(�(T )) and an RRS r represent-ing a1a2 � � �ad. Do tree traversal of R, and output `(' at the �rst visit of a repetitioninformation node, output `)h' at the last visit of a repetition information node labeledh, and output an alphabet a at the �rst visit of an node labeled a. Then, outputtedstring �(�(T ))r is an RRS 
orresponding to R. RRS �(�(T ))r is a unique RRS en-
oding of an RRT R representing a height-1 tree T , and the 
onversion of the oppositedire
tion is also possible. Furthermore, m(R) = l(r) + w�(�(�(T ))) when the samew� and wR are used. Thus, minimizing m(R) is equivalent to minimizing l(r). Bythis redu
tion, the above problem 
an be solved when the height of T is at most one.3.2 AlgorithmWe show an algorithm for �nding a minimum RRT representing a given arbitrary la-beled ordered tree T , given an arbitrary alphabet weight fun
tion w� and an arbitraryrepetition weight fun
tion wR.The algorithm is named MinimumRRT and shown in Fig. 6. It uses divide-and-
onquer strategy. First, it solves subproblems of �nding a minimum RRT Ri repre-senting an labeled ordered subtree T i for ea
h i = 1; 2; :::; 
(�(T )). These subprob-lems are solved by re
ursively 
alling algorithm MinimumRRT. Then, the problem



12 Atsuyoshi Nakamura Tomoya Saito Minei
hi KudoMinimumRRT %[Constru
t the Minimum RRT Representinga Labeled Ordered Tree T ℄Input: T : labeled ordered treew�: alphabet weight fun
tionwR: repetition weight fun
tionOutput:R: minimum RRT R representing TmR: size of a minimum RRT R representingT1: if �(T ) has no 
hild node then2: R T , mR  w�(�(�(T )))3: else4: v  �(T ); d 
(v)5: (Ri; mi) MinimumRRT(T i; w�; wR) for i = 1; 2; :::; d6:  (v) AssignLabel(�(v) (v1) (v2) � � � (vd))7: w�0( (vi)) mi for i = 1; 2; :::; d8: (r;mR) ShortestRRS( (v1) (v2) � � � (vd); w�0; wR)9: R Constru
tMinimumRRT(r; R1; R2; :::; Rd; �(v))10: end if11: return (R;mR) Figure 6: Algorithm MinimumRRTof 
onstru
ting a minimum RRT R representing T from R1; R2; :::; R
(�(T )) is redu
edto the problem of �nding a shortest RRS r representing a string 
orresponding tothe sequen
e T 1; T 2; :::; T 
(�(T )). The redu
ed problem is solved by 
alling algorithmShortestRRS developed in the previous se
tion.Algorithm MinimumRRT uses two other algorithms, AssignLabel and Constru
t-MinimumRRT.AssignLabel is an algorithm that assigns a label in �0 � � to an inputted string,and returns the label. The algorithm assigns an inputted string itself for a string
omposed of one alphabet in �. If the same string as the one inputted before isinputted, then the already assigned label is returned. Otherwise, the algorithm assignsa new label. Note that AssignLabel assigns the same label if and only if inputtedstrings are the same. In MinimumRRT, AssignLabel is used for labeling ea
h node vwith  (v), whi
h is determined by the subtree Tv. This means that (u) =  (v), Tu = Tv: (2)Though AssignLabel uses labels �(v) and  (v1);  (v2); :::;  (v
(v)) alone for 
al
ulationof  (v), (2) holds even for  (v) 
al
ulated like this when (2) holds for  (v1);  (v2); :::;  (v
(v))by indu
tion. Sin
e (2) trivially holds for leaf nodes, (2) holds for all nodes in T .Constru
tMinimumRRT is an algorithm that 
onstru
ts a minimum RRT R repre-senting T from an RRS r representing  (v1) (v2) � � � (v
(v)), minimumRRTsR1; R2; :::; R
(v)representing T 1; T 2; :::; T 
(v), respe
tively, and the root label �(v) of T , where v =
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ture of a String or a Tree 13�(T ). The algorithm 
onverts an RRS r to the 
orresponding RRT R by the 
on-version des
ribed in Remark 1. Only one di�eren
e from the 
onversion is to add Riinstead of a leaf node labeled  (vi).Theorem 1 Given a labeled ordered tree T , an alphabet weight fun
tion w� and arepetition weight fun
tion wR, algorithm MinimumRRT outputs a minimum RRT Rrepresenting T and its size m(R).(Proof) The proof is an indu
tion on the height h of T . When h = 0, �(T ) has no
hild node, so the minimum RRT is T itself and its size is w�(�(�(T ))), whi
h areoutputted by the algorithm.Let h = h0, and suppose that the theorem holds when h � h0�1. Then, (Ri; mi) fori = 1; 2; :::; 
(�(T )) obtained at Line 5 is a pair of the minimum RRT Ri representingT i and its size mi by the assumption be
ause the height of T i is at most h0 � 1. Inany RRT R0 representing T , the subtree R0i 
orresponding to T i, that is, the subtreethat be
omes T i by expanding all repetition information nodes in
luded in it, 
an berepla
ed with any R00i representing T i. This means that a minimum R� representingT must have a minimum R�i representing T i as a subtree 
orresponding to T i forea
h i, and any R�i representing T i is possible if R�i has minimum size among RRTsrepresenting T i. Thus, by applying redu
tion operations to T 0 that is an RRT madefrom T by repla
ing ea
h T i with Ri, a minimum RRT R� 
an be obtained. Duringsu
h a redu
tion, Ri does not 
hange, so it 
an be repla
ed by a node labeled analphabet  (vi) 2 �0 with m�0( (vi)) = m(Ri) = mi, where vi is the root node of T i.The same result 
an be obtained by substituting Ri for a node labeled  (vi) afterthe redu
tion. Therefore the problem is redu
ed to that of �nding a minimum RRTrepresenting a height-1 tree with a leaf node label sequen
e  (v1);  (v2); :::;  (v
(v))and the root labeled �(v), where v is the root node of T . By Remark 1, this 
anbe solved by �nding a shortest RRS r representing the string  (v1) (v2) � � � (v
(v)).Sin
e MinimuRRT 
ondu
ts just the same pro
ess as we des
ribed above, the theoremholds when h = h0. 2For the 
lass of width-k RRTs, the following 
orollary holds.Corollary 1 Given a labeled ordered tree T , a alphabet weight fun
tion w� and a rep-etition weight fun
tion wR satisfying (1), a modi�ed MinimumRRT made by repla
ingShortestRRT with ShortestWkRRT outputs a minimum width-k RRT R representingT and its size m(R).Theorem 2 Algorithm MinimumRRT runs in time O(n3) for an arbitrary labeledordered tree with n nodes.(Proof)
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hi KudoFor a given tree T , algorithm MinimumRRT is 
alled just on
e for ea
h node,pre
isely speaking, just on
e for a subtree rooted by ea
h node. Thus, let us 
onsiderpro
ess time needed for ea
h node and its summation. For leaf nodes, 
onstant timeis ne
essary for the algorithm. Thus, time O(n) is enough for the algorithm to pro
essall the leaf nodes.For ea
h internal node v, we 
laim that O(
(v)3) is ne
essary for the algorithm.Sin
e we do not have to take a

ount of the pro
ess time of re
ursively 
alled Mini-mumRRT here, time O(
(v)) is needed for Line 5. AssignLabel runs in time O(
(v))under the assumption of no limitation on the amount of memory. ShortestRRS runsin time O(
(v)3) by Proposition 2. All the other parts passed when the else-
lause isexe
uted in
luding Constru
tMinimumRRT are pro
essed in time O(
(v)). Therefore,time O(
(v)3) is ne
essary for pro
essing ea
h internal node.Let I denote the set of internal nodes in T . Then, Pv2I 
(v) = n � 1 holds.Therefore, Pv2I 
(v)3 � n3 holds. Thus, timeO(n3) is enough for the algorithm topro
ess all the internal nodes.Totally, MinimumRRT runs in time O(n3). 2The following 
orollary for width-k RRTs 
an be proved similarly.Corollary 2 A modi�ed MinimumRRT made by repla
ing ShortestRRT with ShortestWkRRTruns in time O(k2n) for an arbitrary labeled ordered tree with n nodes.4 Dis
ussionFor a string s with length n, one repetition (tandem array) 
an be spe
i�ed by atriple (i; d; h), where i is its starting position, d is its width and h is the number ofrepetitions. Sin
e h � 2, the number of triples 
an bebn=2
Xd=1 nXi=d(bi=d
 � 1) = �(n2 logn):The problem of �nding a shortest RRS representing s is a kind of �nding an optimal
ombination of a (possibly large) number of repetitions under a 
ertain 
riterion. TheRRS-form 
onstraint is equivalent to the 
ondition that any two members (i1; d1; h1)and (i2; d2; h2) in a 
ombination must bedisjoint (i1 + d1h1 � i2 or i2 + d2h2 � i1)or nested (i1 � i2; i2 + d2h2 � i1 + d1 or i2 � i1; i1 + d1h1 � i2 + d2):Re
ently, repetition stru
ture analysis of web pages for information extra
tion havebeen studied by several resear
hers [2, 5℄. In su
h a analysis, 
ontents su
h as texts



Algorithms for Finding a Minimum Repetition Stru
ture of a String or a Tree 15and images are not 
onsidered generally, and only HTML or XML tag sequen
es areanalysed. Su
h a sequen
e is a string as it is, and is also represented by a labeledordered tree 
alled a \tag tree". The problems dealt in the analysis 
an be seen as theone of �nding a good 
ombination of repetitions under the RRS-form or RRT-form
onstraint. In this se
tion, we show di�eren
e between repetition-analysis results bythe 
onventional methods [2, 5℄ and those of our method using 
on
rete examples.First, let us 
onsider how to sele
t nested repetitions. Approa
h taken by Nanno,Saito and Okumura [5℄ is a bottom-up sele
tion. Their method �rst �nds a non-overlapped (best) 
ombination of repetitions among those in
luding no repetitionsinside. Then, it repla
es every found repetition with one appropriate alphabet andrepeats the same pro
edure until no repetition is found. For a string abb
aabb
a, thereare four repetitions (2; 1; 2); (5; 1; 2); (7; 1; 2) and (1; 5; 2), and only the last repetitionin
ludes other repetitions inside. Thus, the �rst three repetitions are sele
ted atthe �rst round1, and the string is modi�ed to aB
AB
a by substitutions of sele
tedrepetitions (aa ! A; bb ! B). Sin
e the modi�ed string has no repetition, the RRSmade by bottom-up sele
tion approa
h is a(b)2
(a)2(b)2
a. For w�(a) = w�(b) =w�(
) = 1 and wR(h) = 1 for all h � 2, our algorithm outputs (a(b)2
a)2 for the inputstring abb
aabb
a be
ause l(a(b)2
(a)2(b)2
a) = 10 and l((a(b)2
a)2) = 6. By virtue ofglobal optimization, the 
ombination of repetitions our method sele
ted looks morenon-trivial than the one sele
ted by the bottom-up approa
h.Se
ond, 
onsider a greedy approa
h, whi
h repeatedly sele
ts one best repetitionamong the rest repetitions. What is the best repetition depends on what 
riterion isused. How long substring is 
overed by a repetition seems one of proper 
riterions, anda
tually, Liu, Grossman and Zhai [2℄ used this 
riterion2 to sele
t a repetition. For astring abaababaabbaab, the repetition 
overing the longest substring is (1; 5; 2), whi
h
overs the �rst 10-length string. Thus, using the greedy approa
h with the above
riterion, RRS (ab(a)2b)2b(a)2b is made �nally. However, for the above w� and wR,the length of (ab(a)2b)2b(a)2b is 10, whi
h is larger than the length 9 of another RRS(aba)2(b(a)2b)2 representing the same string. In this 
ase again, global optimizationmakes our method su

ess to �nd a more non-trivial RRS than the methods using thegreedy approa
h does. .5 Con
luding RemarksWhat set of repetitions in a sequen
e or a tree is a stru
turally essential one? Findingsu
h a set of repetitions is an important task in stru
tural analysis of sequen
esand trees. Our O(n3) algorithms seems too slow for pra
ti
al use, but the O(k2n)algorithms appears fast enough when the width of repetitions are always smaller thana 
ertain bound k. For example, width bound 20 seems large enough for extra
tion1Sin
e their method �nds a 
ombination that maximizes the sum of the number of repetitions,all the three repetitions are sele
ted.2Their method also prefers smaller starting position.
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hi Kudoof data re
ords from HTML tag trees. A
tually, we are now using our algorithmin our online appli
ation of extra
ting keyword related items from an arbitrary Webpages [6℄. Unfortunately, repetitions our algorithms deal with are only identi
al ones.Extension of our algorithms so as to deal with non-identi
al repetitions would enablewide range of appli
ations.A
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