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Abstract

We propose a novel frequent approximate pattern mining that suits esti-
mation of occurrence regions. Given a string s, our mining enumerates its
substrings that locally optimally match many substrings of s. We show an
algorithm for this problem in which candidate patterns are generated without
duplication using the suffix tree of s. This problem can be extended to the prob-
lem of enumerating approximate frequent subforests of a given ordered labeled
tree T . Our mining was applied to the task of extraction of search result records
from a web page returned by a search engine, and had good performance for
benchmark data sets.

1 Introduction

Now, frequent mining is one of the most popular study areas in data mining. In

the area of frequent mining, strings and trees are popular objects that people are

interested in, and various problems on them have been studied so far in order to find

useful patterns. Frequent contiguous exact patterns like substrings and bottom-up

subtrees can be enumerated easily, but such restriction on patterns is too strict to

find useful patterns in real data.

Two approaches are there to overcome this problem. One approach is to remove

contiguous restriction, namely, to consider flexible matching. In this approach, subse-

quences for strings [1], induced [2] and embedded [12] subtrees for trees were studied

in the context of frequent mining. The other approach is to remove exact restriction,

namely, to consider approximate patterns. As for frequent substring mining in this

approach, a frequent mining that counts the number of similar substrings with respect

to Hamming distance was studied [15].

In this paper, we study frequent mining of the latter approach for strings and

labeled ordered trees. The problem considered here is to find patterns frequently

appearing in one string or tree instead of a set of strings or trees. Applications of

such mining include impressive melody part extraction by finding frequent contiguous
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subsequences (substrings) in a melody sequence and data record extraction by finding

frequent subforests in a tag tree of a web page. In such applications, the region of

each occurrence must be estimated because the purpose is not to find patterns but to

extract occurrences correctly.

In frequent approximate mining from one given string or tree, previous Hamming

distance approach is not sufficient because one insertion or deletion changes Hamming

distance drastically while it changes edit distance a little. However, edit distance ap-

proach makes a counting problem arise: essentially the same part may be counted

many times because a small change in range boundaries does not produce a big dif-

ference in edit distance. This is not a problem when frequency is counted by how

many strings contain occurrences of a pattern in a given set of strings. But, this is a

big problem when every occurrence in a string is counted. Furthermore, we are con-

sidering a problem of extracting occurrences correctly, which means that occurrence

boundaries must be estimated appropriately.

To overcome this problem, for each pattern, we count its locally optimal occurrences

in a given string, where a substring s[h..j] of s[1..n] is said to be a locally optimal

occurrence of pattern p[1..m] if the pair of s[h..j] and p[1..m] is locally optimal [6] as

substrings of s[1..n] and p[1..m]. Here, s[h..j] denotes the substring of s from position

h to position j. A locally optimal occurrence of pattern p has optimized boundaries

in the meaning that the boundaries are best fitted to p in terms of alignment score

when one of the boundaries is fixed. By counting locally optimal occurrences alone,

only the optimal one among occurrences with slightly different boundaries is counted

and such an optimal occurrence is considered to be appropriate as an estimated oc-

currence region of a pattern. By restricting patterns to substrings in a given sting,

and by generating all substring without duplication using the suffix tree of the string,

approximate patterns with frequent locally optimal occurrences can be enumerated in

O(n3) time and O(n3) space for a given string with length n. All locally optimal pairs

are known to be calculated by both forward and backward executions of a local align-

ment algorithm [9], and our algorithm is a harmonic combination of the algorithm

and pattern generation using a suffix tree.

Since a labeled ordered tree can be regarded as a layered strings by seeing the

sequence of child subtrees for each internal node as a string, the problem and the

algorithm for a string can be extended to those for a labeled ordered tree, where child

subtrees for an internal node d are subtrees rooted by child nodes of d. As local

optimality, we add one more condition, upward-downward optimality, which requests

that an occurrence subforest has the best score among all the subforests contained

in it or containing it. We show O(n4)-time O(n3)-space algorithm for enumerating

subforest patterns in a given tree with n nodes. Compared to the algorithm for a

string, its time complexity is O(n) factor larger, which is the time needed to check

upward-downward optimality. O(n4)-time seems too slow for practical use, but it took

about O(m1.73) only according to our experiments on search result record extraction,

where m is the total length of distinct child subtree sequences for all internal nodes,



Mining Approximate Patterns with Frequent Locally Optimal Occurrences 3

which is at most n.

As an application of our algorithm for a labeled ordered tree, we propose a method

for search result record (SRR) extraction based on mining approximate subforest pat-

terns with frequent locally optimal occurrences. One merit of using frequent mining

for this problem is to be able to extract SRRs even if any pair of SRRs does not appear

contiguously, which is impossible for popular methods [8, 10, 14] that detect contigu-

ous occurrences to find SRRs. This merit could be demonstrated in our experiments

using ViNTs data sets. According to our experimental comparison with ViNTs [14],

which is a state-of-the-art system for SRR extraction, our method performed between

the two versions of ViNTs, a version using visual features and a version using no

such feature, with respect to F-measure, namely, the harmonic average of precision

and recall. Considering performance improvement potential of our method by using

visual features, this result demonstrates effectiveness of our method as a base method

of SRR extraction.

2 Mining Approximate Strings

2.1 Problem Setting

Let Σ be a finite alphabet, whose elements are called letters. A string s is a sequence

of letters with finite length. The length of string s is the number of letters in s

which is denoted by |s|. We let s[i] denote the ith letter of s, so s is also expressed

by s[1]s[2] · · · s[n] when |s| = n. We also use notation s[i..j] for j ≥ i − 1 which

is equal to s[i]s[i + 1] · · · s[j], namely, a substring of s that begins at the ith letter

and ends at the jth letter. Note that s[i..i − 1] denotes a null (empty) string, which

is a substring of any string. Let ‘-’ denote the gap symbol which is assumed not to

belong to Σ. A pair (s′1, s
′
2) of strings is said to be a (global) alignment of strings s1

and s2 if the following three conditions are satisfied: (1) s′1 and s′2 are made from

s1 and s2, respectively, by inserting gap symbols, (2) |s′1| = |s′2|, and (3) s′1[i] =

s′2[i] =‘-’ for no i ∈ {1, 2, ..., |s′1|}.A score function w(x, y) is a real-valued function

on (Σ ∪ {-})× (Σ ∪ {-}) that have the following properties: w(x, y) = w(y, x) for all

x, y ∈ Σ ∪ {-} and w(x, -) < 0 < w(x, x) for all x ∈ Σ. For an alignment (s′1, s
′
2) of

strings s1 and s2, its score SAL(s′1, s
′
2) is defined as

SAL(s′1, s
′
2) =

|s′1|∑
i=1

w(s′1[i], s
′
2[i])

Let AL(s1, s2) denote the set of all alignments of strings s1 and s2. An alignment

(s∗1, s
∗
2) ∈ AL(s1, s2) is said to be optimal if

SAL(s∗1, s
∗
2) = max

(s′1,s′2)∈AL(s1,s2)
SAL(s′1, s

′
2).

We let SOPT(s1, s2) denote max
(s′1,s′2)∈AL(s1,s2)

SAL(s′1, s
′
2).



4 Atsuyoshi Nakamura Hisashi Tosaka Mineichi Kudo

We define an approximate occurrence of a pattern p with locally optimal boundaries

in terms of alignment score.

Definition 1 A substring s[h..j] of s[1..n] is said to be a locally optimal occurrence

of string p[1..m] if the following conditions are satisfied:

CS1 SOPT(p[1..m], s[h..j]) > 0,

CS2 SOPT(p[1..m], s[h..j]) ≥ SOPT(p[g..m], s[h′..j]) for all 1 ≤ g ≤ m + 1, 1 ≤ h′ ≤
j + 1, and

CS3 SOPT(p[1..m], s[h..j]) ≥ SOPT(p[1..m′], s[h..j′]) for all 0 ≤ m′ ≤ m, h− 1 ≤ j′ ≤
n.

Condition CS1 says that s[h..j] must be similar to p[1..m], and condition CS2(CS3)

says that the left(right) end of s[h..j] is optimal when the right(left) ends of both s[h..j]

and p[1..m] are fixed. Note that the definition above can be also expressed using a

notion of a locally optimal pair introduced by Erickson and Sellers [6]: a substring

s[h..j] of s[1..n] is said to be a locally optimal occurrence if a pair of s[h..j] and p[1..m]

is locally optimal as substrings of s[1..n] and p[1..m]. The purpose of introducing a

new notion is to distinguish a pattern from an occurrence.

Example 1 Let p =”abca” and s=”abcaabcdabddacad”. Define score function w as

follows:

w(x, y) =




2 (x = y, x, y ∈ Σ)
−2 (x �= y, x, y ∈ Σ)
−1 (x = - or y = -)

Then, locally optimal occurrences of p in s are the following four substrings of s: (See

the left figure.)

s[1..4] = “abca” (SOPT(p, s[1..4]) = 8),
s[5..9] = “abcda” (SOPT(p, s[5..9]) = 7),
s[9..15] = “abddaca” (SOPT(p, s[9..15]) = 5),
s[13..15] = “abca” (SOPT(p, s[13..15]) = 5).

p=abca
             1   2   3   4   5   6   7   8    9  10  11 12 13 14 15 16  

s=abcaabcdabddacad

abca 
abca 

8

optimal
alignment:

Score:

abc-a 

abcda 

7

ab---ca 

abddaca 

5

abca 
a-ca 

5

Note that String s[9..13] =”abdda” is not
a locally optimal occurrence of p even if
s[14..15] �=”ca” because 3 = SOPT(p, s[9..13]) <
SOPT(p[1..2], s[9..10]) = 4, which violates CS3.
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As you can see from the above example, a locally optimal occurrence matches to

the pattern very well near boundaries, which reduces the number of occurrences for

essentially the same parts comparing to the simple method counting all the substrings

whose edit distance from the pattern is at most a given threshold. Boundary fitness

also seems desirable for region estimation.

Definition 2 A substring s[h..j] of s[1..n] is said to be a minimal locally optimal

occurrence of string p[1..m] if s[h..j] is a locally optimal occurrence of p[1..m] and

satisfies the following minimality conditions:

CS2M SOPT(p[1..m], s[h..j]) > SOPT(p[g..m], s[h′..j]) for all 1 ≤ g ≤ m+1, h ≤ h′ ≤
j + 1 but (g, h′) = (1, h), and

CS3M SOPT(p[1..m], s[h..j]) > SOPT(p[1..m′], s[h..j′]) for all 0 ≤ m′ ≤ m, h − 1 ≤
j′ ≤ j but (m′, j′) = (m, j).

Note that there might be more than one locally optimal occurrences s[h..j] for each

h (for each j) but the minimal one s[h..j0] (s[h0..j]) is unique.

For computational efficiency, pattern strings are limited to substrings in a given

string s in this paper. We consider the following frequent mining problem.

Problem 1 Given a string s, a score function w and a natural number σ, enumerate

distinct substrings s[h..j] such that the number of minimal locally optimal occurrences

of s[h..j] in s is at least σ.

Example 2 Consider s and w defined in Example 1. Then, the number of minimal

locally optimal occurrences of s[1..4] =“abca” is three because s[9..15] =“abddaca”

only is not minimal among its four locally optimal occurrences. Note that the set of

occurrences becomes disjoint in this case by virtue of minimality introduction. When

σ = 3, the solution of the mining problem defined above is “a”, “b”, “c”, “d”, “ab”,

“ac”, “ca”, “abc”, “aca”, “cda”, “abca”, “abcda”. Notice that frequent substrings do

not have anti-monotone property in this problem.

2.2 Algorithm

Given a pattern string p[1..m], the number of minimal locally optimal occurrences

of p[1..m] in s[1..n] can be obtained utilizing an algorithm for the local alignment

problem. Actually, all locally optimal pairs are known to be enumerated by running

such an algorithm in both backward and forward directions [9]. Here, we propose an

algorithm into which this technique is incorporated together with efficient generation

of patterns without duplication using a suffix tree.
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EnumSubstrFLOO(s)
Input: s[1..n]: string

1: Make the suffix tree T of string s.
2: for j = 0 to n do (D[j],H[j])← (0, (j + 1, 1))
3: v ←the root node of T
4: Optimality Check(s, v, 0, D, H,‘F’)
5: Make the suffix tree T r of the reversed string sr .
6: for j = 0 to n do (D[j],H[j])← (0, (j + 1, 1))
7: vr ←the root node of T r

8: Optimality Check(sr , vr , 0, D, H,‘B’)

Optimality Check(s, v, l, D0, H0,mode)
Input: s[1..n]: (reversed) string

v: a node of the suffix tree of s
l: the depth of node v
D0: D0[j] = D[l, j]
H0: H0[j] = H[l, j]

1: for each child node u of node v do
2: (f, t)← label of edge (v, u)
3: for j = 0 to n do (D[j],H[j])← (D0[j],H0[j])
4: for j = f to t do
5: if mode=F then
6: Forward Check(s, s[f − l..j],D, H)
7: else
8: occ list← list stored at the position j of edge (v, u)
9: if Backward Check(s, s[f − l..j],D, H, occ list) ≥ σ then
10: Print s[n−j+1..n−(f−l)+1] as one of the answers
11: end if
12: end if
13: end for
14: EnumFreqPat(s, u, l + t− f + 1, D, H,mode)
15: end for

Figure 1: Algorithms EnumSubstrFLOO and Optimality Check

Let D[i, j] be the maximum score among the scores

SOPT(p[g..i], s[h..j]) for all 1 ≤ g ≤ i + 1, 1 ≤ h ≤ j + 1. This value is known to be

calculated by dynamic programming based on the following recursive formula:

D[i, j]←




0 if i = 0 or j = 0,
and otherwise,

max




0
D[i− 1, j] + w(p[i], -)
D[i, j − 1] + w(-, s[j])
D[i− 1, j − 1] + w(p[i], s[j]).

From the definition of D[i, j], condition CS2 is satisfied for s[h..j] if and only if

SOPT(p[1..m], s[h..j]) = D[m, j].

Let H [i, j] be the largest pair (h, g) of starting indexes in lexicographical order

among those (h, g) that satisfies

SOPT(p[g..i], s[h..j]) = D[i, j]:

H [i, j] = max{(h, g) : 1 ≤ h ≤ j + 1, 1 ≤ g ≤ i + 1,

SOPT(p[g..i], s[h..j]) = D[i, j]}.

The definition of H [i, j] implies that conditions CS2 and CS2M are satisfied for s[h..j]

if and only if H [m, j] = (h, 1).
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Forward Check(s,p,D,H)
Input: s[1..n]: string, p[1..m]: pattern
Update: D: D[j] = D[m− 1, j]→ D[m, j]

H: H[j] = H[m− 1, j]→ H[m, j]

1: CalDH(s,p[m],D,H)
2: occ list←NULL
3: for j = 1 to n do
4: (h, g)← H[j]
5: if D[j] > 0 and g = 1 then
6: Add (h, j) to the head of occ list
7: end if
8: end for
9: Store occ list at an appropriate position of the edge corresponding to pr in the suffix tree T r

Backward Check(sr , pr , D, H,occ list)
Input: sr[1..n]: reversed string, pr[1..m]: reversed pattern
Update: D: D[j] = D[m− 1, j]→ D[m, j]

H: H[j] = H[m− 1, j]→ H[m, j]
Output: f : number of minimal locally optimal occurrences of p

1: CalDH(sr, pr[m], D, H)
2: if occ list= NULL then return 0
3: f ← 0
4: (hF , jF )← the first element of occ list
5: for j = 1 to n do
6: if j = n− hF + 1 then
7: (h, g)← H[j]
8: if D[j] > 0, g = 1 and h = n− jF + 1 then
9: f ← f + 1
10: end if
11: if no next element in occ list then return f
12: (hF , jF )← the next element of occ list
13: end if
14: end for

CalDH(s,c,D,H)
Input: s[1..n]: string

c: the last letter p[m] of pattern p[1..m]
Update: D: D[j] = D[m− 1, j]→ D[m, j]

H: H[j] = H[m− 1, j]→ H[m, j]

1: (d∗, (h∗, g∗))← (0, (1, 2))
2: for j = 1 to n do
3: (d−1, (h−1, g−1))← (d∗, (h∗, g∗))
4: (d∗, (h∗, g∗))← max{(0, (j + 1, 2)),

(D[j] + w(c, -), H[j]),
(d−1 + w(-, s[j]), (h−1, g−1)),
(D[j − 1] + w(c, s[j]),H[j − 1])}

5: (D[j − 1], H[j − 1])← (d−1, (h−1, g−1))
6: end for
7: (D[n], H[n])← (d∗, (h∗, g∗))

Figure 2: Algorithms Forward Check, Backward Check and CalDH

Note that H [i, j] can be also calculated using the following recursive formula:

H [i, j]←
{

(j + 1, 1) if i = 0
max J [i, j] otherwise,

where

J [i, j]

= {(j + 1, i + 1) : D[i, j] = 0}
∪{H [i− 1, j] : D[i, j] = D[i− 1, j] + w(p[i], -)}
∪{H [i, j − 1] : D[i, j] = D[i, j − 1] + w(-, s[j])}
∪{H [i− 1, j − 1] : D[i, j] = D[i− 1, j − 1] + w(p[i], s[j])}.
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Conditions CS3 and CS3M can be checked by doing the same thing for the reverse

stings of p and s. Let pr and sr be the reverse strings p and s, respectively. Let Dr

and Hr for pr and sr be the correspondences of D and H for p and s. Then, conditions

CS3 and CS3M are satisfied for s[h..j] if and only if Hr[m, n− h +1] = (n− j + 1, 1).

We use the suffix tree of s for generating all substrings of s as candidate patterns

without duplication. Suffix tree T of string s[1..n] is a labeled tree that has n leaves1.

Each leaf is labeled by different natural number i ∈ {1, 2, ..., n}, and the path from

the root node to the leaf labeled i corresponds to suffix s[i..n]. Each edge (v, u) also

has label (f, t) ∈ {1, 2, ..., n} × {1, 2, ..., n} which represents string s[f..t]. Each suffix

s[i..n] is the concatenation of the sequence of strings represented by edge labels on

the path from the root node to the leaf node labeled i. It is well known that the suffix

tree of a string s[1..n] can be constructed in O(n) time [7].

Example 3 The suffix tree for the string s in Example 1 is shown below.

(1,1)

4

(5,17)

(2,2)

(3,3)

(4,17)

1

(8,17)

5

(11,17)

9

(14,17)
13 15

(16,17) (2,2)

(3,3)

(4,17)

2

(8,17)

6

(11,17)

10

(3,3)

(5,17)

3

(8,17)

7

(4,4)

(16,17)

14

(8,8)

(9,9)

(10,17)

8

(14,17)

12

(12,17)

11

(17,17)

16

17

(17,17)

Our algorithm, named EnumSubstrFLOO (Enumerate Substrings with Frequent

Locally Optimal Occurrences), is shown in Figure 1. The algorithm is composed of

two stages, forward stage (lines 1-4) and backward stage (lines 5-8). In forward stage,

all the occurrences that satisfy conditions CS1, CS2 and CS2M are listed for each

candidate pattern string. In backward stage, in which the given string and candidate

patterns are reversed, all the occurrences that satisfy conditions CS1, CS3 and CS3M

are counted for each candidate pattern string if it also belongs to the list made in

the forward stage. When the count is at least the minimum support σ, the pattern is

printed out (line 10 in algorithm Optimal Check in Figure 1).

Our algorithm generates all the substrings of s (or its reversed string sr) by depth

first traversal of the suffix tree of s (or sr). The traversal is done by algorithm Opti-

mality Check. Given node v in a suffix tree, for each its child node u, the algorithm

generates all the substrings of s (or sr) that are concatenations of the substring cor-

responding to the path from the root node to v and non-empty prefixes of the label

string of the edge (v, u) as candidate patterns (s[f − l..j] at lines 6 and 9) and calls

itself recursively for u.

If patterns’ prefixes with length l are the same, then D[i, j] and H [i, j] are the

same for all 0 ≤ l, 0 ≤ j ≤ n. Thus, we can use D and H calculated at a parent

node in the calculation for a child node. In the calculation of D[m, j] and H [m, j],

1Precisely speaking, there are n + 1 leaves including the end mark.
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the algorithm keeps only the last rows of table D and H , which is a popular technique

to enhance space efficiency for alignment algorithms. Also note that, in algorithm

CalDH in Figure 2, the value (h, g) of H [m, j] is not calculated correctly but always

set to (h, 2) when g > 1 because the value g is not necessary in such a case. (See lines

1 and 4 in CalDH.)

Let us consider the time complexity of EnumSubstrFLOO. First, CalDH trivially

runs in O(n) time. Both Forward Check and Backward Check run in O(n) time

because not only CalDH but also other parts of the algorithm runs in O(n) time.

Forward Check and Backward Check are called at most O(n2) times because there

are n leaves and they are called at most n times for the path from the root to each

leaf. Thus, total computational time of them is O(n3). The inside of the for-loop

beginning at line 1 and ending at line 15 in algorithm Optimality Check is executed

O(n) times in total, and the inside of the for-loop beginning at line 4 and ending at

line 13 is executed O(n2) times in total by the above reason, so O(n3) time is needed

for all the executions of Optimal Check without the time needed for executions of

Forward Check and Backward Check. In algorithm EnumSubstrFLOO, other parts

needs only O(n) time, so it runs in O(n3) time totally. The space complexity is O(n3)

because O(n2) occurrence lists are saved and each of them is O(n).

Theorem 1 Algorithm EnumSubstrFLOO runs in O(n3) time and (n3) space.

Since frequent patterns do not have anti-monotone property, pruning of the search

space using the property cannot be applied. However, maximally possible frequency is

the number of H [j] with the second component g = 1, which can be used for pruning

the search space. In our experiments, we used an algorithm using such pruning.

Remark 1 Algorithm EnumSubstrFLOO is separated into two stages and all the

candidate occurrences must be kept at the beginning of the second(backward) stage.

This is why O(n3) space is needed instead of O(n2) space. Actually, we can achieve

O(n2) space calculation by executing Backward Check right after each execution of For-

ward Check. However, time complexity becomes O(n4) by this modification because Dr

and Hr must be calculated from the beginning in every execution of Backward Check.

3 Mining Approximate Forests

3.1 Problem Setting

Let T be a labeled ordered tree whose nodes are labeled a letter in an alphabet Σ.

Let n denote the number of nodes in T . The id of node v in T is defined as d if v is

visited dth in the postorder traversal of T . We call the node with id d as node d.

The (bottom-up) subtree of T rooted by node d, which is denoted by Td, is the

subtree that is composed of all the descendants of node d. Child, ancestor and de-

scendant subtrees of subtree Td are subtrees rooted by child, ancestor and descendant
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nodes of node d, respectively. Subtrees rooted by nodes whose parent is the same

node is said to be sibling subtrees. A subtree rooted by an internal node is called

an internal subtree. We regard all isomorphic subtrees as the same subtrees. Let

ρ(T ) denote the number of distinct subtrees in T , and let ρ1(T ) denote the number of

distinct internal subtrees. We define the id of each distinct (internal) subtree as q if

the subtree is the qth-appeared distinct (internal) subtree in the sequence of subtrees

T1, T2, ..., Tn, where Ti is the subtree rooted by node i, namely, the subtree rooted by

the node visited ith in the postorder traversal of T . We also call the (internal) subtree

with id q as (internal) subtree q.

A contiguous sibling subtrees of T is called a subforest of T . Every subforest except

T itself can be represented by a triple (d, h, j): subforest (d, h, j) of T is a subforest

that is composed of a child subtree sequence of Td from the hth one to the jth one.

Let ΣT denote the set of subtree ids of T , namely, {1, 2, ..., ρ(T )}. Any forest that

is composed of subtrees in T can be denoted by a string on ΣT . Let sq(= sq[1..nq])

denote the id sequence of the child subtrees of internal subtree q, where nq denotes the

number of child subtrees of internal subtree q. A subforest (d, h, j) is also represented

by sq[h..j] when the internal subtree id of Td is q. A distinct subforest of T can be

uniquely represented by an id sequence of its component subtrees.

Example 4 Consider a labeled ordered tree T shown below.

b

c a

b a c
2 6 7 8

9

15

2
3

4 5

6
s  =’’1’’1

b

b

a1

c

14

b

c

a
3

4

11

12

13

1

1
a5

1

2
3

3

7

8

9

1 1

2 3

4

5

6

s  =’’23’’2 s  =’’213’’3

s  =’’3’’4

s  =’’67’’5

s  =’’4538’’6
T

c10

3

Tree T contains 15 nodes, 9(= ρ(T )) distinct subtrees, and 6(= ρ1(T )) distinct inter-

nal subtrees. A number written above each node is its node id, a circled number near

each node is the id of the subtree rooted by the node, and a boxed number near each

internal node is the id of the internal subtree rooted by the node. Subforest (9, 1, 2) of

T is the forest that is composed of three nodes 5, 6, and 7. For each internal node

q, sq defined above is also shown near q. Subforest (9, 1, 2) is also represented by

s3[1..2] =“21”.

As a real-valued score function on (ΣT ∪ {-}) × (ΣT ∪ {-}), we consider a score

function wT based on tree mapping [11]. Let T 1 and T 2 be labeled ordered trees whose

nodes are labeled a letter in Σ. A tree mapping M from T 1 to T 2 is a set of node

pairs M ⊆ V (T 1)×V (T 2) satisfying u1 = u2 ⇔ v1 = v2 for any (u1, v1), (u2, v2) ∈ M ,

where V (T i) denotes the set of nodes in T i for i = 1, 2. The score of mapping M is

defined as

score(M) =
∑

(u,v)∈M

w(l(u), l(v))
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+
∑

u:u∈T1,{v:(u,v)∈M}=∅
w(l(u), -)

+
∑

v:v∈T2,{u:(u,v)∈M}=∅
w(-, l(v)),

where l(u) and l(v) are labels of nodes u and v, and w is a score function on (Σ ∪
{-}) × (Σ ∪ {-}). Let MMC(x, y) denote a set of tree mapping from subtree x of T

(or an empty tree ‘-’) to subtree y of T (or an empty tree ‘-’) satisfying a certain

condition MC. Then, a score function wT on (ΣT ∪ {-})× (ΣT ∪ {-}) is defined as

wT (x, y) = max
M∈MMC(x,y)

score(M).

As a condition MC, we adopt the condition that M must be a constrained Tai

mapping [13]. Tree Mapping is said to be a constrained Tai mapping if, for any

(u1, v1), (u2, v2), (u3, v3) ∈M , the following conditions are satisfied:

MC1 M must be Tai mapping [11], that is,

(1) u2 is a proper ancestor of u1 ⇔ v2 is a proper ancestor of v1,

(2) u2 is placed at the left of u1 in the sibling order ⇔ v2 is placed at the left

of v1 in the sibling order, and

MC2 the least common ancestor of u1 and u2 is a proper ancestor of u3 ⇔ the least

common ancestor of v1 and v2 is a proper ancestor of v3.

Note that the score function using Tai mapping condition only is known to cor-

respond to general tree edit distance. However, the time complexity of the best

known algorithm calculating that score function is O(n3). On the other hand, the

score function using constrained Tai mapping condition can be calculated in O(n2)

time [13]. Furthermore, condition MC2 seems a reasonable constraint as a structure

correspondence.

We extend locally optimal occurrences of a pattern string to those of a pattern

forest represented by a string p[1..m] on ΣT .

Definition 3 Let p[1..m] a string on ΣT . Subforest (d, h, j) of T is said to be a

locally optimal occurrence of forest p[1..m] if the following conditions are satisfied for

the internal subtree id q of Td:

CT1 (left-right optimality) substring sq[h..j] of sq is a locally optimal occurrence of

string p[1..m].

CT2 (upward-downward optimality)

SOPT(p[1..m], sq[h..j]) ≥ SOPT(p[1..m], sq′ [h
′..j′]) for all q′( �= q) that is the in-

ternal subtree id of an ancestor or descendant subtree of Td and for all 1 ≤ h′ ≤
nq′ + 1, h′ − 1 ≤ j′ ≤ nq′.
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Example 5 Let T be a labeled ordered tree considered in Example 4. Let score func-

tion w on (Σ∪{-})×(Σ∪{-}) be the same one defined in Example 1. Then, the locally

optimal occurrences of forest “23” in T are subforests (4, 1, 2), (9, 1, 3) and (14, 1, 2).

(See the figure below.)

b

c a

b a c

b

b

a

c b

c

a

a

c

b

a

c

s  [1..2]=’’23’’2 (4,1,2) (9,1,3) (14,1,2)
(15,2,3)

Note that substring s6[2..3] of s6 is a locally optimal occurrence of string “23” but

subforest (15, 2, 3) is not a locally optimal occurrence of forest “23” because 3 =

SOPT(“23”, s6[2..3]) < SOPT(“23”, s3[1..3]) = 5 which means that CT2 does not hold

for subforest (15, 2, 3). Subforest (15, 2, 3) includes subforest (9, 1, 3) and only one of

them is a locally optimal occurrence of forest “23” by virtue of the introduction of

upward-downward optimality.

We also extend minimality of a locally optimal occurrence defined for a string

to that for a tree. Condition CT2M guarantees that no minimal locally optimal

occurrence contains other such occurrences.

Definition 4 Let p[1..m] a string on ΣT . Subforest (d, h, j) of T is said to be a

minimal locally optimal occurrence of forest p[1..m] if (d, h, j) is a locally optimal

occurrence of p[1..m] and satisfies the following minimality conditions for the internal

subtree id q of Td:

CT1M substring sq[h..j] of string sq is a minimal locally optimal occurrence of string

p[1..m]

CT2M SOPT(p[1..m], sq[h..j]) > SOPT(p[1..m], sq′[h
′..j′]) for all q′( �= q) that is the

internal subtree id of a descendant subtree of Td and for all 1 ≤ h′ ≤ nq′ +1, h′−
1 ≤ j′ ≤ nq′.

Problem 2 Given a labeled ordered tree T , a score function w and a natural number

σ, enumerate distinct subforests sq[h, j] of T such that the number of minimal locally

optimal occurrences of sq[h..j] in T is at least σ.

Example 6 Let a labeled ordered tree T and a score function w be those considered

in Example 5. When σ = 3, the solution of Problem 2 is the set of subforests s1[1],

s5[1], s2[2], s2[1], s2[1..2], s5[1..2], namely, three height-0 subtrees composed of the

node labeled “a”,“b” or “c”, one height-1 subtree composed of two nodes labeled “b”

and “a”, and two height-1 subforests composed of three nodes labeled “a”, “b” and

“c”.
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EnumSubforestFLOO(T )
Input: T : labeled ordered tree having n nodes

1: Calculate the subtree id and internal subtree id for each subtree of T
2: For all q = 1, 2, ..., ρ1(T ),

N [q] ← the number of internal subtrees q in T

I[q][k] ← the root node id of the kth occurrence of

internal subtree q for k = 1, 2, ..., N [q]

3: For all 0 ≤ q ≤ r ≤ ρ(T ),
wT (q, r)← tree edit distance between subtree q and r.

4: For all q = 1, 2, ..., ρ1(T ),
sq ← subtree-id seq. of child subtrees of internal subtree q.

5: Make the generalized suffix tree T
for the set of strings {sq : q = 1, 2, ..., ρ1(T )}.

6: for all 1 ≤ q ≤ ρ1(T ), 0 ≤ j ≤ nq do
7: (Dq [j],Hq[j])← (0, (j + 1, 1))
8: end for
9: v ← the root node of T
10: Optimality Check T({sq}, v, 0, {Dq}, {Hq},‘F’)
11: sr

q ← reversed string of sρ1(T )−q+1 for q = 1, 2, ..., ρ1(T )

12: Make the generalized suffix tree T r

for the set of reversed strings {sr
q : q = 1, 2, ..., ρ1(T )}.

13: for all 1 ≤ q ≤ ρ1(T ), 0 ≤ j ≤ nq do
14: (Dq [j],Hq[j])← (0, (j + 1, 1))
15: end for
16: vr ← the root node of T r

17: Optimality Check T({sr
q}, vr , 0, {Dq}, {Hq},‘B’)

Optimality Check T({sq}, v, l, {D0
q}, {H0

q },mode)
Input: {sq}: set of (reversed) strings

v: a node of the generalized suffix tree of {sq}
l: the depth of node v
{D0

q}: D0
q [j] = Dq[l, j]

{H0
q }: H0

q [j] = Hq [l, j]

1: for each child node u of node v do
2: (q0, (f, t))← label of edge (v, u)
3: for all 1 ≤ q ≤ ρ1(T ), 0 ≤ j ≤ nq do
4: (Dq [j],Hq[j])← (D0

q [j],H0
q [j])

5: end for
6: for j = f to t do
7: if mode=F then
8: Forward Check T({sq}, sq0 [f − l..j],{Dq}, {Hq})
9: else
10: occ list← list stored at the position j of edge (v, u)
11: if Backward Check T({sq}, sq0 [f − l..j],{Dq}, {Hq}, occ list) ≥ σ then
12: Print sq0 [n−j+1..n−(f−l)+1] as one of the answers
13: end if
14: end if
15: end for
16: Optimality Check T({sq}, u, l+t−f+1, {Dq}, {Hq},mode)
17: end for

Figure 3: Algorithms EnumSubforestFLOO and Optimality Check T

3.2 Algorithm

Since the half of the conditions, CT1 and CT1M, that occurrences must satisfy

in Problem 2 are the same as conditions CS1-3 and CS2-3M in Problem 1, an algo-

rithm for Problem 2 can be designed by extending EnumSubstrFLOO. The extended

algorithm is called EnumSubforestFLOO shown in Figure 3.
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The extensions are mainly the following two points.

E1 For a pattern forest which is represented by a string p[1..m] on ΣT , the number of

locally optimal occurrences of p[1..m] in string sq are summed up for all internal

subtree ids q = 1, 2, ..., ρ1(T ). (Precisely speaking, the number of occurrences

in sq must be multiplied by N [q], where N [q] is the number of internal subtrees

q in T .)

E2 Occurrences must also satisfy upward-downward optimality and minimality,

namely, CT2 and CT2M.

For extension E1, EnumSubforestFLOO makes the generalized suffix tree [7] for the

set of strings {s1, s2, ..., sρ1(T )} in order to generate all candidate patterns efficiently

without duplication. (See lines 5 and 12 in EnumSubforestFLOO.) In the generalized

suffix tree, each edge label also contains the information of which string: edge label

(q0, (f, t)) means string sq0[f..t]. (See line 2 in Optimality Check T in Figure 3.)

Example 7 The generalized suffix tree for the set of strings {s1, s2, s3, s4, s5, s6} =

{“1”, “23”, “213”, “3”, “67”, “4538”}, which is the set of child subtree id sequences

of internal subtrees for T in Example 4, is shown below. Note that leaf label q, i

corresponds to sq[i..nq].

(1,(1,1))

1,1

(1,(2,2))

(3
,(3

,4)
)

(2,(1,1))

3,2

(3,(2,4))

3,1
(2

,(2
,3)

)

2,1

(2
,(2

,2)
)

2,2
6,1

(6
,(

1,
5)

)

6,2

(6
,(

2,
5)

)

5,1

(5
,(

1,
3)

)

5,2

(5
,(2

,3
))

6,4

(6
,(4

,5)
)

1,2

(1,(2,2))

(2,(2,3))

6,3

(6
,(

3,
5)

)

For extension E2, downward optimality and minimality, which is described by

CT2M alone, are checked in Forward Check T and upward optimality of CT2 is

checked in Backward Check T.

In Forward Check T, which is shown in Figure 4, CT2M is checked using array E

after Dq[m, j] and Hq[m, j] are calculated for all q and j. The value to be stored in

E[i] is the maximum alignment score SOPT(p[1..m], sq′ [h, j]) among those for sq′[h..j]

such that internal subtree q′ is a descendant subtree of internal subtree q (subtree i)

and 1 ≤ h ≤ nq′ + 1, 0 ≤ j ≤ nq′. Then, CT2M holds for subforest (d, h, j) of any

Td with internal subtree id q if and only if Dq[m, j] > E[sq[k]] for all h ≤ k ≤ j and

Hq[m, j] = (1, h), which are checked at lines 8 and 9 in Forward Check T. The values

of E[i] for i = 1, 2, ..., ρ(T ) can be calculated in a bottom-up manner by propagating

the value for child subtrees of subtree i (line 14) and maximum score for forests

composed of those child subtrees (line 12) to subtree i. Note that E-values for child

subtrees are calculated before E-values for their parent subtrees in Forward Check T

because internal subtree ids are in node-id order of their root nodes, and node ids are

in visit order by the postorder traversal of T .
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Forward Check T({sq}, p, {Dq}, {Hq})
Input: {sq}: set of strings

p[1..m]: pattern
Update: {Dq}: Dq[j] = Dq[m− 1, j]→ Dq[m, j]

{Hq}: Hq [j] = Hq [m− 1, j]→ Hq [m, j]

1: for q = 1 to ρ1(T ) do CalDH(sq, p[m], Dq, Hq)
2: for k = 1 to ρ(T ) do E(k)← 0
3: occ list←NULL
4: for q = 1 to ρ1(T ) do
5: i← subtree id of internal subtree q
6: for j = 1 to nq do
7: (h, g)← Hq[j]
8: if Dq[j] > 0 and g = 1 then
9: if Dq [j] > E[sq[k]] for all h ≤ k ≤ j then
10: Add (q, h, j) to the head of occ list
11: end if
12: if Dq[j] > E[i] then E[i]← Dq [j]
13: end if
14: if E[sq[j]] > E[i] then E[i]← E[sq[j]]
15: end for
16: end for
17: Store occ list at an appropriate position of the edge corresponding to pr in the generalizes suffix tree T r

Backward Check T({sr
q}, pr, {Dq}, {Hq},occ list)

Input: {sr
q}: set of reversed strings

pr[1..m]: reversed pattern
Update: {Dq}: Dq[j] = Dq[m− 1, j]→ Dq[m, j]

{Hq}: Hq[j] = Hq[m− 1, j]→ Hq[m, j]
Output: f : number of minimal locally optimal occurrences of p

1: for q = 1 to ρ1(T ) do CalDH(sr
q, pr[m], Dq, Hq)

2: if occ list= NULL then return 0
3: f ← 0
4: (qF , hF , jF )← the first element of occ list
5: for k = 1 to n do F [k]← 0
6: for q = 1 to ρ1(T ) do
7: q ← ρ1(T )− q + 1
8: for k = 1 to N [q] do
9: for all child node d of node I[q][k] do
10: if F [I[q][k]] > F [d] then F [d]← F [I[q][k]]
11: end for
12: end for
13: for j = 1 to nq do
14: if q = ρ1(T )− qF + 1 and j = nq − hF + 1 then
15: (h, g)← Hq[j]
16: if Dq[j] > 0, g = 1 and h = nq − jF + 1 then
17: for k = 1 to N [qF ] do
18: if Dq[j] ≥ F [I[qF ][k]] then f ← f + 1
19: end for
20: end if
21: if no next element in occ list then return f
22: (qF , hF , jF )← the next element of occ list
23: end if
24: if Dq [j] > 0, g = 1 then
25: for k = 1 to N [q] do
26: for d = (nq−j+1)th to (nq−h+1)th child node id of node I[q][k] do
27: if Dq[j] > F [d] then F [d]← Dq[j]
28: end for
29: end for
30: end if
31: end for
32: end for

Figure 4: Algorithms Forward Check T and Backward Check T

In Backward Check T, which is also shown in Figure 4, upward optimality of CT2 is

checked using array F after Dq[m, j] and Hq[m, j] for reversed strings sr
q are calculated

for all q and j. The value to be stored in F [d] for node d is the maximum alignment
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score SOPT(p[1..m], sq′[h..j]) among those for sq′ [h..j] such that internal subtree q′

is an ancestor subtree of subtree Td with internal subtree id q. Then, the upward

optimality part of CT2 holds for subforest (d, h, j) of subtree Td with subtree id q

if and only if Dq[m, j] ≥ F [d] and Hq[m, j] = (1, h), which are checked at line 18

in Backward Check T. The value of F [d] for d = 1, 2, ..., n can be calculated in a

top-down manner by propagating the value of its parent subtree (lines 8-12) and the

maximum score for the substrings of sq that contains the correspondence of Td (lines

24-30) to subtree Td, where q is the internal subtree id of the parent subtree of Td.

Note that F -values for parent subtrees are calculated before F -values for their child

subtrees in Backward Check T because the order of reversed strings sr
q is also reversed.

(See line 11 in EnumSubforestFLOO.)

Let us consider the complexity of EnumSubforestFLOO. First, consider the prepa-

ration phase of EnumSubforestFLOO. Subtree ids can be calculated in O(n) time in

average using hashing technique. Internal subtree ids can be calculated in O(n) time

from subtree ids. It is easy to check that N and I can be calculated in O(n) time at line

2 in algorithm EnumSubforestFLOO. Score function wT (q, r) for all 0 ≤ q ≤ r ≤ σ(T )

can be calculated in O(n2) time when constrained Tai mapping is adopted to define wT

because wT (q, r) for a pair of subtrees q and r can be calculated in O(nqnr) time and

wT (q, r) for all subtree pairs are calculated on the way to calculating wT (σ(T ), σ(T )),

where nq and nr are number of nodes in subtrees q and r, respectively. All strings sq

can be set in O(n) time because the length sum of all strings is O(n). Unfortunately,

Forward Check T and Backward Check T run in O(n2) time in worst case because

pattern with length O(n) may occur O(n) times. (See line 9 of Forward Check T and

line 26 of Backward check T.) Since complexity of the other parts is the same as that

for EnumSubstrFLOO, the total time complexity is O(n4) in average and the space

complexity is (n3).

Theorem 2 Algorithm EnumSubforestFLOO runs in O(n4) time in average and O(n3)

space.

4 Application to SRR Extraction

In this section, we propose a method using algorithm EnumSubforestFLOO to ex-

tract search result records (SRRs) from result pages returned by search engines for

submitted keywords.

4.1 Method

Given the tag trees of result pages of a search engine, our method outputs a fre-

quent forest as a wrapper for the search engine. Then, SRR extraction is done by

enumerating all minimal locally optimal occurrences of the wrapper forest.
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In almost all search sites, SRRs appear as repetitions of almost the same tag

structure, namely, as occurrences of a frequent approximate pattern forest. Thus,

given an appropriate minimum support σ, an approximate pattern forest for SRRs is

contained in the set of frequent forests. However, it also contains approximate pattern

forests for the following ones:

1. SRRs with shifted boundaries,

2. SRRs with wrong unit size (connected SRRs),

3. other data records and

4. popular small components.

First, candidate patterns are narrowed by removing patterns consisting of only one

node and patterns with overlapping occurrences. Most patterns of 2 and some patterns

of 4 above are removed by this operation. Let C denote the narrowed candidate set.

Then, each candidate pattern p in C is evaluated from the following three measures:

ave sz(p) average number of nodes over all occurrences of p;

total text len(p) summed text length of all occurrences of p;

ave text len(p) average text length over all occurrences of p.

The patterns of 1 above tend to have smaller total text len because its frequency is

one smaller when SRRs appears contiguously. The patterns of 3 above tend to have

smaller ave size and total text len in a search result page, and the patterns of 4 above

tend to have smaller ave text size. Each of these three measures is normalized by

dividing by its maximum value among those of all candidates in C, and weighted

combined score

ave sz(p)

maxp′∈C ave sz(p′)
+ α

total text len(p)

maxp′∈C total text len(p′)

+ β
ave text len(p)

maxp′∈C ave text len(p′)

is calculated for each candidate p, where α and β are parameters to be specified. In

our experiments, we set α = 1.0 and β = 0.2. Finally, we select one candidate pattern

with the maximum above score.

For performance improvement, the following three heuristics are incorporated into

our method.

• For utilizing a no result page when it is available, the score of a candidate pattern

that has occurrences in a no result page is discounted by factor γ. We set γ to

0.7 in our experiment.
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• In result pages generated by some search engine, all appearances of a search

keyword are emphasized using tag <b> or tag <strong>, which causes low sim-

ilarity of tag structure between two distinct SRRs. So, we added a preprocessing

in which every such emphasis tag and its corresponding end tag are removed

when non-space text appears between its last preceding tag and itself.

• When the variance on the number of nodes in a subforest corresponding to

an SRR is large, pattern forest corresponding to a large SRR might not be so

similar to subforests corresponding to small SRRs. In order to find a pattern

forest that is similar to all the subforests corresponding to the SRRs in a given

tree, we finally select a pattern forest p with the largest total text len(p) among

those that is similar to the one with the maximum above score.

4.2 Experiments

We conducted experiments on SRR extraction to demonstrate effectiveness of our

method proposed in Sec. 4.1.

4.2.1 Methodology

We used data set 1 and data set 2 collected for performance evaluation of ViNTs

[14]. Data set 1 and 2 are composed of result pages of 100 and 101 search engines,

respectively. The data sets contain 11 pages for each search engine, the six pages of

them are for training and the rest five pages are for test. One of the training pages

for each search engine is no result page. Here, the set of all the training pages in data

set x(= 1, 2) is called data set x TR, and the set of all the test pages is called data

set x TE.

As in the experiments conducted by Zao et al. [14], target SRRs are records of

just the major section for each search result page. If more than 25 target SRRs are

contained in one result page, just 25 records are counted as target ones2 to avoid that

the overall performance depends too much on the performance for the result pages

that contains many records.

We implemented our method using C++ language and ran our programs on Dell

Dimension 8200 (Pentium-4 2.20GHz, 512KB cache, 1GB memory) with Ubuntu 8.10.

For each search engine, we first made a wrapper by our proposed method using all

the six training pages. Then, we extracted estimated SRRs from each training or test

page using the wrapper. Note that no result page contained in the training data set

2In [14], they regarded the first 25 records as the target ones, but if do so, the problem of how
to calculate precision measure arises. Without decreasing target records, we normalized the number
of extracted records and the number of correct records by multiplying them by 25/(the number of
target records) in our evaluation.
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Table 1: Extraction performance comparison with ViNTs. FLOO stands for our
method and parenthesized numbers in ViNTs column are the performance of its NV
version.

Data set 1 TR Data set 1 TE Data set 2 TR Data set 2 TE
FLOO ViNTs FLOO ViNTs FLOO ViNTs FLOO ViNTs

#SRRs 6940 6919 6172 6219 6980 6905 5859 5822
#Extracted 6883.0 6905(6833) 6072.0 6169(6111) 6909.8 6872(6465) 5936.2 5801(5525)
#Correct 6832.0 6901(6722) 6017.0 6164(6001) 6702.0 6740(6283) 5729.2 5673(5390)
Recall(%) 98.4 99.7(97.2) 97.5 99.1(96.5) 96.0 97.6(91.0) 97.8 97.4(92.6)
Precision(%) 99.3 99.9(98.4) 99.1 99.9(98.2) 97.0 98.1(97.2) 96.5 97.8(97.6)
F-measure(%) 98.8 99.8(97.8) 98.3 99.5(97.3) 96.5 97.8(94.0) 97.1 97.6(95.0)

was used only for training and not for the SRR extraction. In wrapper construction,

minimum support σ was set to 25. We used the following score function w:

w(x, y) =




2 (x = y, x, y ∈ Σ)
−6 (x �= y, x, y ∈ Σ)
−3 (x = - or y = -)

Note that the optimal alignment score of two trees defined by this score function is

at least 0 if and only if 75% of nodes in the two trees coincide.

We evaluated the extraction performance by recall and precision measures that

were calculated by

Recall =
#Correct

#SRRs
, Precision =

#Correct

#Extracted
.

F-measure, the harmonic mean of the above two measure, is also used for performance

evaluation:

F-measure =
2Precision ·Recall

Precision + Recall.

4.2.2 Results

Performance of our method is shown in Table 1 together with performance of ViNTs3.

The most notable characteristic of ViNTs is use of visual (rendering) information, and

its NV version of ViNTs is the one without such information use.

Our method performed worse than the normal version of ViNTs but better than its

NV version in terms of F-measure. Considering performance improvement potential

of our method by using visual information, this result demonstrates effectiveness of

our method as a base method of SRR extraction.

To investigate computational efficiency of our method, we measured running time

of wrapper construction and SRR extraction for all data.

The average CPU times are shown below together with some measured values

indicating input data complexities.
3The small difference on the number of target SRRs between our method and ViNTs is due to

the difference on interpretation between us and them because the data sets contain no description
about what are target SRRs.
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phase wrap. const. extraction
#page per run 6 1
ave. #node 3710.4 622.0
ave. #subtree 153.8 91.4
ave. len. of subtree seq. 633.6 269.0
ave. CPU time 0.8861 0.0202

According to the above table, wrapper construction takes less than one second in

average and SRR extraction takes about only 20 msec. This result for wrapper con-

struction is surprising because it uses EnumSubforestFLOO as a subprocedure that

runs in O(n4) time for a tag tree with n nodes. See the left figure in Figure 5, which

is the log-log scale graph plotting the relation between the total length m of distinct

subtree sequence of tree T , namely, m =
∑ρ(T )

q=1 |sq|, and the wrapper construction time

for T . (Precisely speaking, not a single tree but 6 trees are inputted to the algorithm

that is extended for such a input.) According to the log-log scale linear regression
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Figure 5: Running times of wrapper construction phase (left) and extraction phase
(right)

analysis, wrapper construction takes only O(m1.73) time for our data sets. Note that

m is at most the number of nodes n and was about 1/6 of n in average for our training

data sets. (See ‘ave. len. of subtree seq.’ of the above table.) As for SRR extraction,

its running time looks linearly depending on the number of nodes according to the

right figure in Figure 5.

4.2.3 Discussion

A strong point of using frequent mining to extract SRRs, or data records more gen-

erally, is to be able to extract SRRs even if none of them appears consecutively. This

could be demonstrated in our experiment using ViNTs data sets. The result pages

returned by ’health library’ search engine in data set 1 are composed of SRRs in

several categories and SRRs in each category are displayed separately following the

category name. (See Figure 6.) Our method extracted every SRRs separately without

extracting all the SRRs in one category together with its category name as one big
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Figure 6: A part of ‘care.htm,’ which is a result page by ’health library’ search engine.
The result of three categories are shown in this part.

SRR. Such extraction is basically impossible using methods that detect contiguous

occurrences such as MDR [8], ViPER [10] and ViNTs4 [14].

When the number of SSRs are smaller than given minimum support σ, a wrapper

for target SRRs cannot be constructed, which is one weak point of our method.

Development of a method that determines σ automatically is desired in the future.

In the case that variance on the size of subforests corresponding to SRRs is large,

some of them cannot be extracted by the methods using edit score or distance to

detect repetitions. Such methods include not only our method but also MDR and

ViPER5. For this case, methods that detect a record separator like ViNTs seem to

work. Taking account of such a separator may improve our method.

4.3 Related Works

Representative methods on automatic data record extraction from web pages are the

method in [5], Omini [3], IEPAD [4], MDR [8], ViNTs [14] and ViPER [10]. IEPAD

applies string algorithms to a string representation of a web page and the others

applies tree algorithms to a tag tree of a web page. IEPAD enumerates maximal

4In the experiments on ViNTs, SRRs including a categorical name might have been regarded as
correct ones.

5ViPER improves this weak point a little by calculating edit score so as to give no penalty to the
contiguous repetitions.
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frequent substrings as candidate wrapper patterns by means of exact matching, and

uses multiple string alignment to generalize the patterns. It is NOT fully automatic

because the best pattern is selected by users. The other tree-algorithm-based methods

are classified into two categories. One is the methods of identifying record boundaries

[5, 3, 14]. Omini and the method in [5] first locate the subtree that contains the records

of interest and then find a record separator using several heuristics. ViNTs first finds

all candidates of a record separator and consecutive similar blocks separated by it, and

then selects the best scored separator among them using a heuristically designed score

function. The other is the methods of detecting consecutive repetitions [8, 10]. MDR

finds repetitions composed of similar forests with the same number of subtrees using

tree edit distance to measure the similarity between two subtrees. ViPER finds not

only such repetitions but also those composed of similar forests with variable number

of subtrees using a tree edit distance modified so as to make any repetitions of the

same forests match without any additional cost even if the numbers of repetitions are

different.

Our method is neither a method of identifying record boundaries nor a method

of detecting consecutive repetitions. Our approach, which uses frequent mining to

find a record structure common among all web pages in a target site, is the same as

IEPAD’s approach but our method is composed of only one stage to find approximate

patterns while IEPAD is composed of two stages, a stage finding exact patterns and

a stage generalizing them to approximate ones. Also note that our method is a fully

automatic. Our method uses edit distance to obtain approximate patterns like MDR

and ViPER but occurrences of a pattern do NOT need to appear consecutively.

According to the previous experimental results [8, 14, 10], ViNTs and ViPER,

which use rendering information, are the best performers among all previous systems

for SRR extraction task.

5 Concluding Remarks

Main stream of frequent mining on strings or trees is to find patterns that are contained

in many strings or trees belonging to a given set of strings or trees. Obtained patterns

by such mining can be used as features for classification. In this paper, we proposed a

frequent mining appropriate for another use of obtained patterns, namely, estimation

of occurrence regions. We believe the importance of such mining and existence of

other applications of our mining method.
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