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Abstract

An improved STVF coding algorithm is presented in this paper. STVF code
is a novel variable-length-to-fixed-length code (VF code) in which the parse tree
is constructed by pruning a suffix tree for an input text. It gives a better com-
pression ratio rather than the previous VF codes, and it is a promising scheme
for compressed pattern matching and applications to large-scale text databases.
However, its compression ratio is still worse than that of a state-of-the-art com-
pression method. The improvement of the compression ratio of STVF code is
required. In our method, all the incomplete inner nodes in addition to leaves in
the parse tree are assigned codewords, while just leaves are assigned in the orig-
inal STVF coding. This code assignment leads an improvement in compression
ratio because we can prune the parse tree of infrequent leaves and extend the
other frequent edges. In practice experimental results show that the proposed
method improves more than 18% in compression ratio for natural language texts
in comparison with the original STVF coding.

1 Introduction

STVF code [Kid09, KS09] is a data compression method that is suitable for com-
pressed pattern matching. We present an improvement algorithm of the STVF coding
and discuss its performance in this paper.

Data compression is one of the most fundamental operations in text processing,
whose aim is to reduce the storage space usage and the cost of transfer for massive
amounts of data. Compression ratio is usually considered as the most important
factor in this research area. Many compression methods have been proposed so far
(see [Sal06, Say02]). Among them, the Ziv-Lempel family [ZL77, ZL78] is one of the
most popular in practice because of their good compression ratios and fast processing.
Since a significant and global increase in the use of the Internet and electronic mail
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in recent years has caused the explosion of unformatted text data, data compression
becomes more and more important as the foundations of textual databases for such
enormous text data.

For large-scale textual databases, however, a state-of-the-art compression method
is unsuitable. Although well-known compression tools like gzip and bzip2, which are
based on the state-of-the-art algorithms, can compress text data extremely, they en-
code with variable-length codewords and the encoded texts are highly complicated.
Therefore, it is difficult for users to search or modify a part of data without decom-
pressing. An efficient compression method so that we can reuse easily the compressed
text data is desired.

On the other hand, from the theoretical viewpoint, an idea of merging search and
compression is emerged in the early 90’s. The compressed pattern matching problem
was first defined in the work of Amir and Benson [AB92] as the task of performing
string matching in a compressed text without decompressing it. Given a text 7T,
a corresponding compressed string Z = z;...z,, and a pattern P, the compressed
matching problem is the problem of finding all occurrences of P in 7', using only
P and Z. A naive algorithm, which first decompresses the string Z and then per-
forms standard string matching, takes time O(m + u). An optimal algorithm for this
problem takes O(m + n + R) in the worst-case time, where R is the number of the
occurrences. However, this combined requirement of searching and compressing is not
easy to achieve together, as the only solution before the 90’s was to process queries
by decompressing the texts and then searching into them.

From the late 90’s to the beginning of 2000, several methods that achieve both
requirements were appeared [SMT100, RTT02]. Surprisingly, they could improve the
search speed in almost linear to the compression ratio, namely, they can perform
pattern matching on compressed texts faster than an ordinary search algorithm on
uncompressed texts. This broke out of the paradigm, as we can use data compression
to make pattern matching fast [TSM*01], and gives a new criterion of adopting a
compression method.

The key point for the achievement is to select a compression method that is suitable
for pattern matching. Such compression method has the following features from the
view of compression fields:

e It is a fixed length code (variable-length-to-fixed-length code). Especially a code
whose length is constant times of bytes is better.

e It has a static and/or compact dictionary.

Some variable-length-to-fixed-length codes (VF codes for short) have these fea-
tures. A VF code is a coding scheme that assign fixed length codewords to variable
length substrings in the original text. Well-known compression methods like Huffman
codes, arithmetic codes, and LZ-families, are based on variable-length codewords, and
unsuitable for compressed pattern matching. In practical applications, a compression
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method that achieves a good compression ratio with preserving the above features,
is strongly desired. However, these features are disadvantages in compressing data.
There has long been no VF codes for practical use in fact.

Recently, Maruyama et al. [MTSTO8] presented an excellent compression method
named as BPEX for compressed pattern matching, which is a variation of Byte-Pair-
Encoding [Gag94] (BPE for short) that is a kind of VF codes. In BPE scheme,
the encoding procedure scans the input text many times and repeats conversion of a
frequent pair of bytes (characters) into an unused codeword. Although BPEX achieves
a good compression ratio comparable to gzip, its compression speed is quite slow.

Klein and Shapira [KS09] and Kida [Kid09] presented independently a VF code
based on suffix tree (STVF! for short). In STVF code, a frequency-base-pruned suffix
tree is used as a parse tree. The compression ratio of STVF code is better than the clas-
sical VF codes like Tunstall code [Tun67]. Although the compression speed is faster
than that of BPEX, its compression ratio is worse. Therefore, our aim is to improve
STVF code in compression ratio without the sacrifices of compression/decompression
speed.

A general idea of improvement for VF codes is to assign a codeword to a longer
and/or more frequent substring of the input text. In STVF code, some codewords can
be assigned to shorter and less frequent substrings, because the parse tree must be
constructed so that any internal nodes are complete, namely, for any internal nodes u
in the parse tree all the children of u in the suffix tree are contained in the parse tree.
If we can assign codewords to the internal nodes, we can prune such useless leaves
from the parse tree.

In the proposed algorithm, we adopt an almost-instantaneous encoding strategy,
which enables us to assign codewords to the internal nodes in the parse tree. This
idea is based on AIVF code proposed by Yamamoto and Yokoo [YY01]. Here we also
adopt a method that chooses nodes one by one in descending order of their frequencies
from the suffix tree and added them to the parse tree.

The rest of this paper is organized as follows. In Section 2, we make a brief sketch
of the original STVF code. In Section 3, we introduce our method. In Section 4,
we show the experimental results and discuss about them. Finally, we conclude this
paper in Section 5.

2 Preliminaries

2.1 Basic Definitions

Let X be a finite alphabet. We denote the set of all strings over ¥ by ¥*. The length
of a string T' = t1ty - - - t, € ¥* (t; € ¥ for any 7) is denoted by |T| = n. The string of

1Strictly, the methods of [Kid09] and [KS09] are slightly different in detail.
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Figure 1: Suffix tree for T'= BABCABABBABCBAC.

The squares represent leaves. The circles represent internal nodes and the numbers

in the circles are their frequencies.

length zero, denoted by ¢, is called the empty string. Let T" be a string in ¥*. Then,
strings x, y and z are called a prefiz, substring, and suffiz of T'if T' = xyz, respectively.

2.2 Suffix Tree
For a given text T, the suffiz tree ST(T) of T is a compacted trie which represents
all the suffixes of T, as shown in Fig. 1. Formally, ST(T') is defined as follows.

1. Each internal node, except the root of ST(T'), has at least two children.

2. Each edge is labeled by a non-empty substring of 7.
3. For any internal node u, any labels of outgoing edges start with different char-

acters each other.

4. Let the representing string str(v) of a node v in ST(T) be the string obtained
by concatenating the labels of the edges in the path from the root to v. Then,
any suffix of 7" is represented by a node in ST(7).

For a node v in ST(T") and a symbol ¢ € X, the function child returns the child of

v whose label of the ingoing edge starts with c.
For a node v in ST(T), the frequency of v is defined as the number of occurrences

of str(v) in T, and denoted by f(v). Since the frequency is equal to the number of
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Algorithm STVF(T, k):
Input: A text T and the length [ of codewords.
Output: A parse tree T for 7.

1: Construct the suffix tree ST(7T) of T}
2: Construct the parse tree 7 which only contains the root of ST(7');
3: U = {root};
4: while |U| < 2* do
v =argmax,ey f(v);
U=U\{v};
for each child w of v do
U=UU{w};
if v is a leaf of ST(T) then
10: truncate the label of w to length 1;
11: add w to T;
12:  end for
13: end while
14: assign codewords to the elements in U;
15: return 7

Figure 2: Algorithm of constructing a parse tree of STVF code.

A/B

Figure 3: Parse tree of STVF code for ' = BABCABABBABCBAC.

The squares represent leaves. The circles represent internal nodes and the numbers
in the circles are their frequencies.

leaves in the subtree rooted at v, we can compute all the frequencies of nodes in a
post-order traversal. Note that the suffix tree for T" can be constructed in linear time
to the length of T

2.3 STVF code

Figure 2 is the parse tree construction algorithm of STVF code, and Fig. 3 shows the
parse tree for 7= BABCABABBABCBAC constructed by the algorithm.

The algorithm first constructs the suffix tree ST'(7) for an input text 7". Next,
for each step of the outer loop (from Lines 4 to 11), the most frequent node v among
the leaves in the temporal T is selected, and then all the children of v in ST(T) are
added to 7, where all the labels for leaves in ST(T') are truncated to length one.
After the above expansion steps, the algorithm assigns codewords to all the leaves in
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Figure 4: The first four iterations of constructing process of the parse tree
The black circles represent the internal nodes. Ounly leaves are assigned codewords.

Algorithm encode(T, T):
Input: A text T and a parse tree 7.
Output: An encoded sequence of codewords.
1: 1 =0;
2: while i < |T|
3: v =root;
4 while v is a internal node of 7 do
5 v =the node that represents str(v) - T'[i];
6 1 =14 1;
7 end while
8: output the codeword assigned to v;
9: end while

Figure 5: Encoding algorithm of STVF code.

a left-to-right manner. The first four iterations of the constructing process for the
running example is shown in Fig. 4. This construction strategy is similar to that of
Tunstall code.

Once the parse tree is constructed, encoding and decoding are simple. The encod-
ing and the decoding algorithms are shown in Fig. 5 and Fig. 6, respectively. For the
running example in Fig. 4, the text is parsed into seven substrings as BA/BC/ABA/
BB/ABC/BA/C, and encoded to 100110000101010100111.

When we store the compressed data, we have to encode the parse trees together.
Here we divide the parse tree into two components: the tree structure and labels on
it. The tree structure is encoded by balanced parenthesis [Mun01]. Thus the encoded
size for the tree of M nodes is 2M bits. For the set of labels, we store by a simple
way: enumerate pairs of the label length and the label string and then attach to the
compressed text. Assuming that each label length is smaller than 256, which can be
represented by one byte, the set of labels can be stored by >,z |l + 1| bytes, where
L is the number of labels.
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Algorithm decode(7, C):
Input: A parse tree 7 and a sequence C' of codewords.
Output: Decoded text T
: for each i € {0,...,|C| -1} do
v = the node such that code(v) = Ci];
output str(v);
end for

oW

Figure 6: Decoding algorithm of STVF code

Algorithm new-encode(7, T ):
Input: A text T and a parse tree 7.
Output: An encoded sequence of codewords.
1: ¢ = 0;
2: while i < |T|
3: v =root;
4:  while str(v) - T'[i] is represented by 7 do
5 v =the node that represents str(v) - T'[i];
6: 1=1+1;
7.  end while
8 output the codeword assigned to v;
9: end while

Figure 7: Modified encoding algorithm.

3 The proposed method

In this section, we introduce our algorithm.

First, we modify the encoding algorithm as in Fig. 7. The algorithm traverses
the parse tree while it can move by the character read from the input text. If the
traversal cannot be made, the algorithm suspends to consume the current character
and outputs the codeword of the current node, and then resumes the traversal from
the root. This encoding process is not instantaneous. Reading-ahead of just one
character is needed. Therefore, we say it as the almost-instantaneous encoding.

Next, we introduce the algorithm for constructing a parse tree as in Fig. 8. The
basic idea of the algorithm is to choose a node from the suffix tree, which is the most
frequent node that has not been included into the parse tree. The algorithm extends
the parse tree on a node-by-node basis in contrast to the original STVF algorithm
extends all the children of the chosen node at once. Figure 9 is an example of the
parse tree constructed by the algorithm of Fig. 8 for "= BABCABABBABCBAC.

Now we explain the algorithm of constructing the parse tree. For a given text T,
we first construct the suffix tree ST(T') of T and truncate the labels of the leaves in
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Algorithm ImprovedSTVF(T, k):
Input: A text T and the length [ of codewords.
Output: A parse tree T for T.

1: Construct the suffix tree ST(T) of T

2: Construct the parse tree 7 which only contains the root of ST'(T');
3: U=,V = {v | child of the root of ST(T)};

4: for each v € V do

50 add v to T;

6: if v is a leaf then

7: truncate label(v) to length 1;

8 U=UUuw

9: V=V \{v})U{w]|wis achild of v};

10: end for

11: while |U] < 2* do

12: v =argmaxyey f(v);

13: addwvtoT;

14: U =UUu;

15: V=(V\{v})U{w]|wis a child of v};

16: p = v’s parent;

17: if #{v € V | w is a child of p} = 1 and p’s parent # root then
18: w = p’s only child in V;

19: U= (U\{p}) u{w}

20: V=V \{w})U{z |z is a child of w};

21:  end if

22: end while

23: assign codewords to the elements in U,
24: return T ;

Figure 8: Construction Algorithm for Parse Trees.

ST(T) to length one. Let V' be the set of nodes in ST(T") and U also be the set of
nodes that will be in the parse tree. Next, to ensure the algorithm can encode the
text correctly, we add the root and all the children of the root to U. Then, we repeat
the following procedure while |U| < 2%: we first choose the node v whose frequency
is maximal in V' \ U and add it to U. If there is only one child w € V' of the node p,
which is also the parent of v, is not in U, we add w to U and remove p from U. An
internal node u in the parse tree is complete if the parse tree contains all the children
of u in the suffix tree. We do not assign a codeword to a complete node because the
traversal in the encoding process never fails at any complete nodes. The node p is
now complete and thus it is not assigned a codeword. Finally, we assign uniquely
codewords to the elements in U in a left-to-right manner.

Figure 10 shows the construction process of the parse tree for the running example
by the algorithm. We can parse the input text to five substrings by using the parse
tree, as BABC/AB/AB/BABC/BAC, and encoded to 101000000101110. Note that
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Figure 9: Parse tree of our method for 7= BABCABABBABCBAC.

The squares represent leaves. The circles represent internal nodes and the numbers
in the circles are their frequencies.

the encoded length becomes shorter than that of STVF code in the previous section.
Also note that the algorithms of decoding and storing the parse tree are common to
STVEF expect for storing incomplete nodes. We add an extra bit indicating whether
the node is complete or not for each node. Then the tree structures of a parse tree of
M nodes are encoded to 3M bits.

The following lemma is important for the correctness of the encoding algorithm
using the parse trees constructed by the algorithm in Fig. 8.

Lemma 1 Let T be a given text and T be a parse tree constructed by the algorithm in
Fig. 8. For any suffix s of T, there exists more than one nodes in T which represent
nonempty prefives of s and the node which represents the longest prefix of s in T s
assigned a codeword.

proof. The former is clear because all the children of root are contained in 7 and
the children will be assigned codewords regardless of whether they are complete or
not. We next prove the latter by reduction to absurdity. Assume that the node v
in 7 which represents the longest prefix of s is not assigned a codeword. Then, v
is a complete internal node because all the leaves and all the incomplete nodes are
assigned codewords. However, since all the children of any complete nodes exists in
T, it contradicts our assumption that there exists a descendant of v which represents
a longer prefix of s than v. U

4 Experimental Results

We have implemented Tunstall code, STVF code, and our proposed VF code. All
programs are written in C++ and compiled by g++ of GNU, version 4.3. The output
files of STVF and our method include parse trees. We ran our experiments an Intel
Pentium 4(R) processor of 3.00 GHz and 2 GB of RAM on Debian GNU/Linux 5.0.
The texts to be used are selected from “the Canterbury corpus®.” For each detail,
please refer Table 1.

2http://corpus.canterbury.ac.nz/descriptions/
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Figure 10: Proposed algorithm for constructing a parse tree
The black circles represent the complete internal nodes, which are not assigned

codewords.
Table 1: About text files to be used
Texts size(byte) |X| Content
bible.txt 4047392 63 The King James version of the bible
world192.txt 2473400 94 The CIA world fact book
E.coli 4638690 4  Complete genome of the E.Coli bacterium

In order to decide the best length of codewords, we first experimented on com-
pression ratios, compression times, and decompression times against the length [ of
codewords. In this experiment, we used only bible.txt.

Figure 11 shows the compression ratios. The compression ratio is defined as the fol-
lowing formula: (compressed file size)/(original file size). Proposed algorithm achieved
a better performance than the others, especially when the codeword length is short.

Figure 12 compares the compression times. We measured the CPU times by the
time command on Linux. As shown in this figure, Tunstall is the fastest.

The results in Fig. 13 of decompression times are opposite to the results of com-
pression times. Tunstall required much time for decompression. All the algorithms
achieved their best compression ratio when [ = 16. Thus, we set the codeword length
to 16 in the following experiment.

Next, we have compared five compression algorithms: Tunstall [Tun67], STVF
[Kid09], the proposed method (Proposed for short), BPEX [MTSTO08], and bzip2.
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Figure 12: Compression time against codeword length.

bzip2 is a widely used and one of the state-of-the-art compression tools. Thus, we
include bzip2 as a reference. We used the three texts in Table 1 as test data.

The compression ratios are shown in Table 2. The proposed method improves the
compression ratio approximately by 18% on bible.txt, and by 12% on world192.txt in
comparison with the original STVF. Tunstall compresses most effectively on E.coli.
BPEX totally achieves a high compression ratio among VF codes.

The compression times are shown in Table 3. STVF and Proposed are two times
faster than BPEX. However, compared with Tunstall, STVF and Proposed take much
time, because they take much time to construct the suffix tree.

The decompression times are shown in Table 4. STVF and BPEX take less time
in comparison with the others. Proposed and STVF take less time than the others in
almost all the cases.

5 Conclusion

We proposed an improvement algorithm of STVF code and carried out several ex-
periments for evaluating its performance. The experimental results showed that it
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Figure 13: Decompression time against codeword length.

Table 2: Compression ratios

method bible.txt world192.txt E.coli
Tunstall 61.16% 69.97% 25.00%
STVF 42.13% 49.93% 28.90%
Proposed 34.67% 43.97% 28.89%
BPEX 28.05% 26.58% 28.72%
bzip2 20.89% 19.79% 26.97%

improves in compression ratio for a natural language text at almost no expense of
compression speed. They also showed that the compression speed of our method is
faster than that of BPEX and the decompression speed is faster than that of bzip2 and
comparative to BPEX. However, it revealed that the compression ratio of our method
does not reach yet to the level of a state-of-the-art compression and the compression
speed is rather slow.

We have to reduce the cost of constructing the parse tree for speeding up compres-
sion process. In the STVF coding and the proposed method, we construct the suffix
tree for the whole input text at once to construct the parse tree, which takes much
time and space. One of the improvement ideas is to prune the suffix tree dynamically
while constructing it. We have already implemented a part of this idea and obtained
some good results.

To improve the compression ratio, we also have to develop a succinct representation
of the parse tree, which contributes to the total compression size. Moreover, we can
consider that we adopt the idea of BPEX into STVF codings. These are our future
works.
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Table 3: Compression times (msec)

method bible.txt  world192.txt E.coli
Tunstall 965 651 7718
STVF 14185 9398 9028
Proposed 14942 8196 18994
BPEX 25957 18611 15914
bzip2 1310 851 1505
Table 4: Decompression times (msec)
method bible.txt  world192.txt E.coli
Tunstall 944 623 7845
STVF 279 206 268
Proposed 291 223 320
BPEX 335 209 361
bzip2 037 361 794
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