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Abstract

Nonconstructive computations by various types of machines and automata
have been considered by e.g., Karp and Lipton [17] and Freivalds [9, 10]. They
allow to regard more complicated algorithms from the viewpoint of much more
primitive computational devices. The amount of nonconstructivity is a quanti-
tative characterization of the distance between types of computational devices
with respect to solving a speci�c problem.

This paper studies the amount of nonconstructivity needed to learn classes
of formal languages. Di�erent learning types are compared with respect to
the amount of nonconstructivity needed to learn indexable classes and recur-
sively enumerable classes, respectively, of formal languages from positive data.
Matching upper and lower bounds for the amount of nonconstructivity needed
are shown.

1. Introduction

The research subject studied in this paper derives its motivation from various

sources which we shortly present below. Nonconstructive methods of proof in mathe-

matics have a rather long and dramatic history. The debate was especially passionate

when mathematicians tried to overcome the crisis concerning the foundations of math-

ematics.
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The situation changed slightly in the forties of the last century, when nonconstruc-

tive methods found their way to discrete mathematics. In particular, Paul Erd®s used

nonconstructive proofs masterly, beginning with the paper [8].

Another in�uential paper was B	arzdi�n² [3], who introduced the notion of advice

in the setting of Kolmogorov complexity of recursively enumerable sets. Karp and

Lipton [17] introduced the notion of a Turing machine that takes advice to understand

under what circumstances nonuniform upper bounds can be used to obtain uniform

upper bounds. Damm and Holzer [7] adapted the notion of advice for �nite automata.

Later Cook and Kraji£ek [6] initiated the study of proof systems that use advice for

the veri�cation of proofs. Even more recently, Beyersdor� et al. [4] continued along

this line of research.

Quite often, we experience that �nding a proof for a new deep theorem is triggered

by a certain amount of inspiration. Being inspired does not mean that we do not have

to work hard in order to complete the proof and to elaborate all the technical details.

However, this work is quite di�erent from enumerating all possible proofs until we

have found the one sought for. Also, as experience shows, the more complicated the

proof, the higher is the amount of inspiration needed. These observations motivated

Freivalds [9, 10] to introduce a qualitative approach to measure the amount of non-

constructivity (or advice) in a proof. Analyzing three examples of nonconstructive

proofs led him to a notion of nonconstructive computation which can be used for

many types of automata and machines and which essentially coincides with Karp and

Lipton's [17] notion when applied to Turing machines.

As outlined by Freivalds [9, 10], there are several results in the theory of inductive

inference of recursive functions which suggest that the notion of nonconstructivity

may be worth a deeper study in this setting, too. Subsequently, Freivalds and Zeug-

mann [11] introduced a model to study the amount of nonconstructivity needed to

learn recursive functions.

In the present paper we generalize the model of Freivalds and Zeugmann [11]

to the inductive inference of formal languages. That is, we aim to characterize the

di�culty to learn classes of formal languages from positive data by using the amount of

nonconstructivity needed to learn these classes. We shortly describe this model. The

learner receives, as usual, growing initial segments of a text for the target language L,

where a text is any in�nite sequence of strings and a special pause symbol # such that

the range of the text minus the pause symbol contains all elements of L and nothing

else. In addition, the learner receives as a second input a bitstring of �nite length which

we call help-word. If the help-word is correct, the learner learns in the desired sense.

Since there are in�nitely many languages to learn, a parameterization is necessary, i.e.,

we allow for every n a possibly di�erent help-word and we require the learner to learn

every language contained in {L0, . . . , Ln} with respect to the hypothesis space (Li)i∈N

chosen (cf. De�nition 6). The di�culty of the learning problem is then measured by

the length of the help-words needed, i.e., in terms of the growth rate of the function d

bounding this length. As in previous approaches, the help-word does not just provide
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an answer to the learning problem. There is still much work to be done by the learner.

First, we consider the learnability of indexable classes in the limit from positive

data and ask for the amount of nonconstructivity needed to learn them. This is quite

a natural choice, since even simple indexable subclasses of the class of all regular lan-

guages are known not to be inferable in the limit from positive data (cf. [13, 15, 22]).

Second we investigate the amount of nonconstructivity needed to infer recursively

enumerable classes of recursively enumerable languages. Moreover, several variations

of Gold's [13] model of learning in the limit have been considered (cf., e.g., [15, 20]

and the references therein). Thus, it is only natural to consider some of these varia-

tions, too. In particular, we shall study conservative learning and strong-monotonic

inference.

We then prove upper and lower bounds for the amount of nonconstructivity in

learning classes of formal languages from positive data. The usefulness of this ap-

proach is nicely re�ected by our results which show that the function d may consider-

ably vary. In particular, the function d may be arbitrarily slow growing for learning

indexable classes in the limit from positive data (cf. Theorem 1), while we have an

upper bound of log n and a lower bound of log n − 2 for conservative learning of in-

dexable classes from positive data (cf. Theorems 2 and 3). Furthermore, we have a

2 log n upper bound and a 2 log n − 4 lower bound for strong-monotonic inference of

indexable classes from positive data (cf. Theorems 4 and 5).

Moreover, the situation changes considerably when looking at recursively enumer-

able classes of recursively enumerable languages. For learning in the limit from positive

data we have an upper bound of log n and a lower bound of log n− 2, while for con-

servative learning even any limiting recursive bound on the growth of the function d

is not su�cient to learn all recursively enumerable classes of recursively enumerable

languages from positive data (cf. Theorems 7, 8 and 9).

2. Preliminaries

Any unspeci�ed notations follow Rogers [21]. In addition to or in contrast with

Rogers [21] we use the following. By N = {0, 1, 2, . . . } we denote the set of all natural
numbers, and we set N+ = N \ {0}.

The cardinality of a set S is denoted by |S|. We write ℘(S) for the power set

of set S. Let ∅, ∈, ⊂, ⊆, ⊃, and ⊇ denote the empty set, element of, proper

subset, subset, proper superset, and superset, respectively. Let S1, S2 be any sets;

then we write S14S2 to denote the symmetric di�erence of S1 and S2, i.e., S14S2 =

(S1 \ S2) ∪ (S2 \ S1). By maxS and minS we denote the maximum and minimum of

a set S, respectively, where, by convention, max ∅ = 0 and min ∅ = ∞.

We use T to denote the set of all total functions of one variable over N. Let

n ∈ N+; then the set of all partial recursive functions and of all recursive functions of

one and n variables over N is denoted by P , R, Pn, Rn, respectively. Furthermore,
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let f ∈ P , then we use dom(f) to denote the domain of the function f , that is,

dom(f) = {x | x ∈ N, f(x) is de�ned}. By range(f) we denote the range of f , i.e.,

range(f) = {f(x) | x ∈ dom(f)}.

It is technically most convenient to de�ne recursively enumerable families of re-

cursively enumerable languages as follows. Any ψ ∈ P2 is called a numbering. Let

ψ ∈ P2, then we write ψi instead of λx.ψ(i, x). Furthermore, we set Wψ
i = dom(ψi)

and refer to it as the ith enumerated language. Clearly, the sets Wψ
i ⊆ N are recur-

sively enumerable.

A numbering ϕ ∈ P2 is called a Gödel numbering for P (cf. Rogers [21]) if Pϕ = P ,
and for every numbering ψ ∈ P2, there is a compiler c ∈ R such that ψi = ϕc(i) for

all i ∈ N. If ϕ ∈ P2 is any arbitrarily �xed Gödel numbering then we also use Wi as

a shorthand for Wϕ
i .

A function f ∈ P is said to be strictly monotonic provided for all x, y ∈ N with

x < y we have, if both f(x) and f(y) are de�ned then f(x) < f(y). By Rmon we

denote the set of all strictly monotonic recursive functions.

Let Σ be any �xed �nite alphabet, and let Σ∗ be the free monoid over Σ. Any

L ⊆ Σ∗ is a language. Furthermore, we �x a symbol # such that # /∈ Σ. We denote

the empty string by λ and use |w| to denote the length of any string w ∈ Σ∗. By REG
we denote the class of all regular languages (cf., e.g., [23]). Furthermore, we use C or

L to denote any (in�nite) class and family of languages, respectively.

De�nition 1 (Gold [13]). Let L be any language. Every total function t : N → Σ∗ ∪
{#} with {t(j) | j ∈ N} \ {#} = L is called a text for L.

Note that the symbol # denotes pauses in the presentation of data. Furthermore,

there is no requirement concerning the computability of a text. So, any order and

any number of repetitions is allowed. For any n ∈ N we use t[n] to denote the initial

segment (t(0), . . . , t(n)). Additionally we use content(t[n]) =df {t(0), . . . , t(n)} \ {#}
and content(t) =df {t(j) | j ∈ N} \ {#} to denote the content of an initial segment

and of a text, respectively.

An algorithmic learner M �nds a rule (grammar) from growing initial segments of

a text. On each initial segment the learner M has to output a hypothesis which is a

natural number, i.e., M(t[n]) ∈ N. Then the sequence (M(t[n]))n∈N has to converge

(to some representation of the input), i.e., there is a j ∈ N such that M(t[n]) = j for

all but �nitely many n ∈ N.

So, we still have to specify the semantics of the numbers output by M . In order

to do so, we need the following.

De�nition 2 (Angluin [2]). A family (Lj)j∈N of languages is said to be uniformly

recursive if there exists a recursive function f : N× Σ∗ → {0, 1} such that Lj = {w |
w ∈ Σ∗, f(j, w) = 1} for all j ∈ N. We refer to f as a decision function.
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De�nition 3. A class C of non-empty recursive languages is said to be indexable if

there is a family (Lj)j∈N of uniformly recursive languages such that C = {Lj | j ∈ N}.
Such a family is said to be an indexing of C.

By ID we denote the collection of all indexable classes.

Note that REG is an indexable class. Also, the class of all context-free languages

and the class of all context-sensitive languages form an indexable class. Further

information concerning indexable classes and their learnability can be found in [20, 22].

So, when dealing with the learnability of indexable classes, it is only natural to

interpret the hypotheses output by M with respect to a chosen indexing of a class

containing the target class C (cf. De�nition 4 below). On the other hand, when

considering recursively enumerable classes C of recursively enumerable languages then

we always take as hypothesis space the family (Wψ
i )i∈N, where ψ ∈ P2 is the numbering

de�ning the class C.

De�nition 4. Let C be an indexable class. A family H = (Lj)j∈N is said to be an

indexed hypothesis space for C if (Lj)j∈N is uniformly recursive and C ⊆ {Lj | j ∈ N}.

Following Lange and Zeugmann [19], if C = {Lj | j ∈ N} then we call H class

preserving and if C ⊆ {Lj | j ∈ N} then the hypothesis space H is said to be class

comprising.

Now we are ready to provide the formal de�nition of learning in the limit from

text. Following Gold [13] we call our learners inductive inference machines (abbr.

IIM). To unify notations, in the de�nitions below we use H = (hj)j∈N to denote our

hypothesis spaces, where we assume the interpretation given above.

De�nition 5 (Gold [13]). Let C be any class of languages, let H = (hj)j∈N be a

hypothesis space for C, and let L ∈ C. An IIM M is said to learn L in the limit from

text with respect to H if

(1) for every text t for L there is a j ∈ N such that the sequence (M(t[n]))n∈N

converges to j, and

(2) L = hj.

An IIM M learns C in the limit from text with respect to H if M learns all L ∈ C in

the limit from text with respect to H.

The collection of all classes C for which there is an IIMM and a hypothesis space H
such that M learns C in the limit from text with respect to H is denoted by LimTxt.

Since, by the de�nition of convergence, only �nitely many data of L were seen

by the IIM upto the (unknown) point of convergence, whenever an IIM learns the

possibly in�nite language L, indeed some form of learning must have taken place. For

this reason, hereinafter the terms learn, infer, and identify are used interchangeably.
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In the following modi�cations of De�nition 5 additional requirements are made. An

IIM M is said to be consistent if for all relevant texts t and all n ∈ N the condition

content(t[n]) ⊆ hM(t[n]) is satis�ed (cf. Angluin [1]).

Following Angluin [2], an IIMM is said to be conservative if for all relevant texts t

and all n,m ∈ N the following condition is satis�ed. If j = M(t[n]) 6= M(t[n + m])

then content(t[n+m]) 6⊆ hj.

We call an IIM M strong-monotonic if for all relevant texts t and all n,m ∈ N
the following condition is satis�ed. If j = M(t[n]) 6= M(t[n +m]) = k then hj ⊆ hk
(cf. Jantke [16], Lange and Zeugmann [18]).

We denote the resulting learning types by ConsTxt, ConsvTxt, and SmonTxt, re-

spectively.

After having de�ned several learning models, it is only natural to ask why should

we study learning with nonconstructivity. The answer is given by the fact that many

interesting language classes are not learnable from text. As shown in [22], even quite

simple classes cannot be learned from text, e.g., the class

C = (Lj)j∈N, where L0 = {aj | j ∈ N+} and Lj = {a` | 1 ≤ ` ≤ j} . (1)

We aim to characterize quantitatively the di�culty of such learning problems by

measuring the amount of nonconstructivity needed to solve them.

The learners used for nonconstructive inductive inference take as input not only

growing initial segments t[n] of a text t but also a help-word w. The help-words

are assumed to be encoded in binary. So, for such learners we write M(t[n], w) to

denote the hypothesis output by M . Then, for all the learning types de�ned above,

we say that M nonconstructively identi�es L with the help-word w provided that

for every text t for L the sequence (M(t[n], w))n∈N converges to a number j such

that hj = L (for LimTxt) and M is consistent (conservative, strong-monotonic) for

ConsTxt (for ConsvTxt, and SmonTxt), respectively. More formally we have the

following de�nition.

De�nition 6. Let C be any class of languages, let H = (hj)j∈N be a hypothesis space

for C, and let d ∈ R. An IIMM infers C with nonconstructivity d(n) in the limit with

respect to H, if for each n ∈ N there is a help-word w of length at most d(n) such that

for every L ∈ C∩{h0, h1, . . . , hn} and every text t for L the sequence (M(t[m], w))m∈N

converges to a hypothesis j satisfying hj = L.

Clearly, De�nition 6 can be directly modi�ed to obtain nonconstructive conserva-

tive and strong-monotonic learning.

Looking at De�nition 6 it should be noted that the IIM may need to know either

an appropriate upper bound for n or even the precise value of n in order to exploit

the fact that the target language L is from C ∩ {h0, h1, . . . , hn}.
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To simplify notation, we make the following convention. Whenever we talk about

nonconstructivity log n, we assume that the logarithmic function to the base 2 is

replaced by its integer valued counterpart blog nc+ 1, where log 0 =df 1.

Now we are ready to present our results. Note that some proofs have been in�u-

enced by ideas developed in the quite a di�erent context, i.e., the paradigm of learning

by erasing (also called co-learning). We do not explain it here but refer the reader to

Jain et al. [14] as well as to Freivalds and Zeugmann [12].

3. Results

Already Gold [13] showed that REG /∈ LimTxt and as mentioned in (1), even quite

simple subclasses of REG are not in LimTxt. So, we start our investigations by asking

for the amount of nonconstructivity needed to identify any indexable class in the limit

from text with respect to any indexed hypothesis space H.

3.1. Nonconstructive Learning of Indexable Classes

As we shall see, the needed amount of nonconstructivity is surprisingly small. In

order to show this result, for every function d ∈ Rmon we de�ne its inverse dinv as

follows dinv(n) = µy[d(y) ≥ n] for all n ∈ N. Recall that range(d) is recursive for

all d ∈ Rmon . Thus, for all d ∈ Rmon we can conclude that dinv(n) ∈ R.

Theorem 1. Let C ∈ ID be arbitrarily �xed, let d ∈ Rmon be any function, and

let H = (Lj)j∈N be any indexed hypothesis space for C. Then there is a computable

IIM M such that the class C can be identi�ed with nonconstructivity log dinv(n) in the

limit from text with respect to H.

Proof. Assuming any help-word w of length precisely log dinv(n), the IIMM creates a

bitstring containing only 1s that has the same length as w. This bitstring is interpreted

as a natural number k.

So, k ≥ dinv(n), and thus

u∗ =df d(k) ≥ d(dinv(n)) ≥ n . (2)

We continue to de�ne the IIM M in a way such that it will learn every language

L ∈ C ∩ {L0, . . . , Lu∗} from every of its texts. So, �x any such L, let t be any text

for L, and let m ∈ N.

Now, the idea to complete the proof is as follows. In the limit, the IIM M can

determine the number ` of di�erent languages enumerated in L0, . . . , Lu∗ as well as

the least indices j1, . . . , j` of them and can then �nd the language among them which

is equal to L. We assume the lexicographical ordering ≤lo of all strings from Σ∗, i.e.,

si ≤lo si+1 for all i ∈ N.
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Using m, t[m], and the decision function f for H, the IIM M computes the least

number r such that m ≤ r and s ≤lo sr for all s ∈ content(t[m]). Next, M computes

Lr0 = {w | w ≤lo sr, f(0, w) = 1}
Lr1 = {w | w ≤lo sr, f(1, w) = 1}
·
·
·

Lru∗ = {w | w ≤lo sr, f(u∗, w) = 1} ,

and chooses the least indices j1, . . . , j`m from 0, 1, . . . , u∗ of all the distinct languages

in the list Lr0, . . . , L
r
u∗ . From these languages Lrjz all those are deleted for which

content(t[m]) 6⊆ Lrjz (the inconsistent ones). From the remaining indices, the least

index j is output such that |Lrj \ content(t[m])| is minimal.

Now, it easy to see that the sequence (`m)m∈N converges to `, the number of the

di�erent languages enumerated in L0, . . . , Lu∗ , and that the IIM M �nds in the limit

the least indices j1, . . . , j` for these pairwise di�erent languages.

From these languages Lj1 , . . . , Lj` the ones satisfying L \ Ljz 6= ∅ are deleted.

That leaves all those Ljz with L ⊆ Ljz . Now, by assumption there is a least

j ∈ {0, . . . , u∗} with Lj = L. If L ⊂ Ljz , then there is a string s ∈ Ljz \ L, and as

soon as this string appears in the competition, the index j wins. Thus, the sequence

(M(t[m], w))m∈N converges to j.

So there is no smallest amount of nonconstructivity needed to learn REG and any

subset thereof in the limit from text. But the amount of nonconstructivity cannot be

zero, since then we would have REG ∈ LimTxt. One can de�ne a total function t ∈ T

such that t(n) ≥ d(n) for all d ∈ Rmon and all but �nitely many n. Consequently,

log tinv is then a lower bound for the amount of nonconstructivity needed to learn

REG in the limit from text for the technique used to show Theorem 1.

We continue by asking what amount of nonconstructivity is needed to obtain con-

servative learning from text for any indexable class. Now, the situation is intuitively

more complex, since ConsvTxt ⊂ LimTxt (cf. [2, 19]). Also, it is easy to see that

the IIM M given in the proof of Theorem 1 is in general not conservative. But the

basic idea still works mutatis mutandis provided we know the number ` of di�erent

languages enumerated in L0, . . . , Ln.

Theorem 2. Let C ∈ ID be arbitrarily �xed, and let H = (Lj)j∈N be an indexed

hypothesis space for C. Then there is a computable IIM M such that the class C can

be conservatively identi�ed with nonconstructivity log n from text with respect to H.

Proof. Let H = (Lj)j∈N be any indexed hypothesis space for C, and let n ∈ N. The

help-word w is de�ned as follows. Since the IIM also needs to know a bound on n, we

always assume n to be a power of 2. Intuitively, we then add one bit and write the
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binary representation of the exact number ` of pairwise di�erent languages enumerated

in L0, . . . , Ln behind the leading 1 including leading zeros. But of course we do not

need the leading 1 in the help-word, since it can be added by the IIM M . So if the

help-word w has length k, then the added leading 1 with k − 1 zeros gives n and the

bitstring w without the added leading 1 gives `.

Given `, the desired IIM M can �nd the least indices of these ` pairwise di�erent

languages by using the decision function f from the proof of Theorem 1 above, where

we additionally require r to be large enough to detect ` di�erent languages.

The rest is done inductively. The IIM M checks whether or not t(0) ∈ Lrjz , where
z = 1, . . . , `, and deletes all languages which fail. Then M orders the remaining

sets Lrjz with respect to set inclusion, and outputs the index of the minimal one with

the smallest index. For m > 0, M checks whether or not content(t[m]) ⊆ LM(t[m−1]).

If it is, it outputs M(t[m− 1]).

Otherwise, it checks whether or not content(t[m]) ⊆ Lrjz , z = 1, . . . , `, and deletes

all languages which fail. Then M orders the remaining sets Lrjz with respect to set

inclusion, and outputs the index of the minimal one with the smallest index.

We also have the following lower bound.

Theorem 3. There is a class C ∈ ID and an indexed hypothesis space H for it such

that for every IIM that learns C conservatively with respect to H less than log n − 2

many bits of nonconstructivity are not enough.

Proof. This proof is done by diagonalization. We have to de�ne a family (Lj)j∈N

of uniformly recursive languages and then to show that is satis�es the assertion of

the theorem. Let ϕ ∈ P2 be any �xed Gödel numbering of P . We interpret every

partial recursive function ϕi as an IIM, i.e., we set Mi = ϕi. Below we shall use

the alphabet Σ = {a, b} and assume any �xed recursive encoding 〈·, ·〉 of all �nite
sequences from Σ∗×{0, 1}∗ onto the natural numbers. To simplify notation we shortly

writeM(σ, β) instead ofM(〈σ, β〉), where σ is any �nite sequence of elements from Σ∗

and β ∈ {0, 1}∗. Also, we write M(σ, β) ↓= ` provided the computation of M(σ, β)

stops in a �nite number of steps and outputs `.

Our construction is organized in blocks, where in Block i, i ∈ N, we shall de�ne

languages L2i+j for all 0 ≤ j ≤ 2i− 1, i.e., the languages L2i , . . . , L2i+1−1 by diagonal-

izing against Mi−1 and all possible help-words β ∈ {0, 1}∗ with 0 ≤ |β| < i including

the empty one λ. Note that there are 2i − 1 many such β.

Part of the construction is based on an idea developed by Angluin [2]. For the sake

of completeness we set L0 = {b} and de�ne L1 = {bb}.

For i ≥ 1 we have to de�ne 2i many languages. In addition, we also de�ne a text ti
incrementally. This is done in Block i as follows.

For j = 0, . . . , 2i − 1 execute the following.
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Initialize L2i+j := {ai}, set Ci = {β | β ∈ {0, 1}∗, 0 ≤ |β| < i}, Di = ∅, and initialize

the text ti by de�ning ti(0) = ai.

Execute Step 1.

Step k. Execute Instruction (A).

(A) Let ti(k) = aibk. Execute Instruction (B).

(B) Let L2i+j := L2i+j ∪ {aibk} for all j ∈ {0, . . . , 2i − 1} \Di.

Execute Instruction (C).

(C) For all β ∈ Ci and all ` = 0, 1, . . . , k check whether or not

Mi−1(ti[`], β)↓= 2i + j for some j ∈ {0, . . . , 2i − 1} \Di (3)

can be veri�ed within at most k steps of computation until the �rst such β, j

and ` are found, if ever.

If β and j are found then let j∗ := min({0, . . . , 2i − 1} \ (Di ∪ {j}));
Ci := Ci \ {β} and Di := Di ∪ {j∗}.
Else do nothing.

Goto Step k + 1.

Now, it is easy to see that (L`)`∈N is a family of uniformly recursive languages.

Let i ≥ 1 be arbitrarily �xed and suppose by way of contradiction that Mi−1

conservatively learns all the languages L2i+j, where 0 ≤ j ≤ 2i− 1, de�ned in Block i

by using help-words of size less than i. Note that i − 1 = blog(2i+1 − 1)c + 1 − 2 =

log(2i+1 − 1)− 2 by the convention made at the very end of the Preliminaries.

Note that in Instruction (C), if β and j have been found, then exactly one element

is added to Di. Since there are only 2i − 1 possible help-words β, we conclude that

the set {0, 1, 2, . . . , 2i − 1} \Di is never empty. So, there is always a number j∗ and

by construction j 6= j∗.

Let β be any of the admissible help-words. We distinguish the following cases.

Case 1. The help-word β is not removed from Ci in any of the steps.

In this case Mi−1 fails to identify L2i+j for all j ∈ {0, 1, 2, . . . , 2i − 1} \ Di when

using the help-word β. Note that the Di used here is the �eventual value of Di.� Since

{0, 1, 2, . . . , 2i − 1} \Di 6= ∅, at least one language is not learned, a contradiction.

Case 2. The help-word β is removed from Ci in some Step k.

Let j and j∗ be as described in Instruction (C) above when executing this Step k.

Then by construction we know that content(ti[k]) = L2i+j∗ , since j∗ is added toDi and

so L2i+j∗ is not changed any further in Instruction (B). On the other hand, j is still not

in Di and thus L2i+j∗ ⊂ L2i+j after the execution of step k+1. Consequently, the IIM

Mi−1 cannot learn L2i+j∗ conservatively when using the help-word β, a contradiction.
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Therefore, for every help-word, at least one of the languages in Block i is not

learned by Mi−1 or on which Mi−1 is not conservative.

Finally, suppose that there is an IIM M that learns the indexable class (L`)`∈N

with nonconstructivity log n − 2 with respect to the hypothesis space (L`)`∈N. Then

there must be an i ∈ N such that M = Mi. Consequently, for n = 2i+2− 1 there must

be a help-word w of length less than i + 1 such that Mi conservatively learns all the

languages L0, . . . , L2i+2−1 from any of its texts and w.

Now, we consider in particular Block i + 1, i.e., the languages L2i+1 , . . . , L2i+2−1.

Since |w| < i + 1 there must be a β such that w = β for some β ∈ Ci+1. But as

our discussion above showed, this is impossible. So, we have a contradiction and our

supposition must be false. Hence, the theorem is shown.

Finally, we look at strong-monotonic learning. Again the situation is more complex,

since SmonTxt ⊂ ConsvTxt (cf. [19]). We also add L0 = ∅ to every hypothesis space

allowed, i.e., we always consider class comprising hypothesis spaces.

Theorem 4. Let C ∈ ID be arbitrarily �xed, and let H = (Lj)j∈N be an indexed

hypothesis space for C. Then there is a computable IIM M such that the class C can

be strong-monotonically identi�ed with nonconstructivity 2 log n from text with respect

to H.

Proof. The key observation is that it su�ces to know the following number

p = |{(i, j) | Li 6⊆ Lj, i, j = 0, . . . , n}| .

So, the help-word is just the binary encoding of p and n which is donemutatis mutandis

as in the proof of Theorem 2. The rest is not too di�cult, and thus omitted.

Again, the bound given in Theorem 4 cannot be improved substantially, since we

have the following lower bound.

Theorem 5. There is a class C ∈ ID and an indexed hypothesis space H for it

such that for every IIM that learns C strong-monotonically with respect to H less than

2 log n− 4 many bits of nonconstructivity are not enough.

Proof. Again we use diagonalization to show the desired result. We construct a family

(Lj)j∈N of uniformly recursive languages. As in the proof of Theorem 3 we setMi = ϕi,

where ϕ ∈ P2 is any �xed Gödel numbering of P , and we use the same notations as

there for IIMs. The construction is done in Blocks, where in Block i, i ∈ N, we shall
de�ne languages L2i+j for all j ∈ {0, . . . , 2i − 1} by diagonalizing against Mi−1 and

the length-lexicographically �rst 22(i−1) possible help-words β ∈ {0, 1}∗. For the sake
of completeness we set L0 = ∅ and L1 = {b}.

For every i ≥ 1 we have to de�ne 2i many languages. We divide these languages

in two groups of size 2i−1, where the �rst group contains the languages L2i+j for
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j = 0, . . . , 2i−1−1. In order to simplify notation, we refer to the languages in the �rst

group as Lpj
, j = 0, . . . , 2i−1 − 1, i.e., Lpj

= L2i+j. The second group contains the

remaining languages L2i+j for j = 2i−1, . . . 2i − 1. We refer to these languages as Lqk ,

where k = 0, . . . , 2i − 1, i.e., Lqk = L2i+2i−1+k. Since the construction is a bit more

complicated, for each Lpj
we incrementally de�ne a text tji , where j = 0, . . . , 2i−1− 1.

In Block i do the following.

Initialize the languages Lpj
:= {ai} for all j = 0, . . . , 2i−1 − 1 and Lqk := {ai} for

all k = 0, . . . , 2i−1− 1, set Ci = {β | 0 ≤ |β| < 2(i− 1)}∪ {02(i−1)}, and let tji (0) := ai

for all j = 0, . . . , 2i−1 − 1. Furthermore, set x = 0 and set Dj = ∅.

Start Step 1.

Step s. Execute the following loop.

For j = 0 to 2i−1 − 1 do

x := x+ 1;

Lpj
:= Lpj

∪ {aibx};

tji (x) := aibx;

tzi (x) := tzi (x− 1) for all z ∈ {0, . . . , 2i−1 − 1} \ {j};

Lqz := Lqz ∪ {aibx} for all z = 0, . . . , 2i−1 − 1;

For k = 0 to 2i−1 − 1 do

If k ∈ Dj pass;

For all β ∈ Ci and ` = 0, . . . , x check whether or not

Mi−1(t
j
i [`], β)↓= pj (4)

can be veri�ed within at most s steps of computation.

If the test (4) is satis�ed for a β ∈ Ci then
Ci := Ci \ {β};
x := x+ 1;

Lpj
:= Lpj

∪ {aibx};
tji (x) := aibx;

tzi (x) := tzi (x− 1) for all z ∈ {0, . . . , 2i−1 − 1} \ {j};
Lqz := Lqz ∪ {aibx} for all z ∈ {0, . . . , 2i − 1} \ {k};
Dj = Dj ∪ {k};

Else do nothing.

end

end

If Ci 6= ∅ start Step k + 1.
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Note that the instruction pass in the second loop is used to indicate that in the

case that k ∈ Dj nothing has to be done. That is, the program continues the loop

with k + 1 if k + 1 ≤ 2i−1 − 1; otherwise it returns to the �rst loop.

It should also be noted that we introduced the variable x above just to make

sure that all texts have the same length and that any new element added to the

corresponding languages has not been inserted in an earlier execution of the nested

loops in the current step nor did we insert the new element in a previous step.

Now, it is easy to see that (L`)`∈N is a family of uniformly recursive languages.

Let i ≥ 1 be arbitrarily �xed and suppose by way of contradiction that Mi−1

strong-monotonically learns all the languages L2i+j, where 0 ≤ j ≤ 2i − 1, de�ned in

Block i by using help-words of size less than 2(i − 1) or the help word 02(i−1). Note

that 2(i− 1) = 2(blog(2i+1− 1)c+1)− 4 = 2 log(2i+1− 1)− 4 by the convention made

at the very end of the Preliminaries.

Furthermore, note that by construction for every j the set Dj can be updated at

most 2i−1 many times. As soon as Dj = {0, . . . , 2i−1−1} the second loop does nothing

for this j. Also note that for any change of some Dj a success in Test (4) is necessary.

Thus, when Dj = {0, . . . , 2i−1− 1} for all j, we must have also deleted all help-words.

Let β be any of the admissible help-words. We distinguish the following cases.

Case 1. The help-word β is not removed from Ci in any of the steps.

In this case, there must be at least one j∗ such that Dj∗ ⊂ {0, . . . , 2i−1 − 1}. So,

if the Test (4) does never succeed for such a j∗, when using the help-word β then

for Lpj∗ we have a text tj∗i on which the IIM Mi−1 fails to learn Lpj∗ when using β.

So, the IIM Mi−1 does not learn Lpj∗ when using β as help-word for at least one text,

a contradiction.

Case 2. The help-word β is removed from Ci in some step.

Let s be the step in which this happens. Then there must be a j∗ and a k∗ such

that the variable j in the �rst loop takes the value j∗ and the variable k in the second

loop takes the value k∗ and the Test (4) is satis�ed for some `. This also implies

that k∗ /∈ Dj∗ .

Now, by construction we know that tj∗i [x] ⊆ Lqk∗ and t
j∗
i [x] ⊆ Lpj∗ , where x is as at

the time when Test (4) is executed. However, now the language Lpj∗ obtains the new

element aibx+1 while Lqk∗ does not. Consequently, we have Lpj∗ 6⊆ Lqk∗ . So, we have

an initial segment of a text for Lqk∗ , i.e., t
j∗
i [x], such that the IIM Mi−1, using the

help-word β, cannot strong-monotonically learn Lqk∗ from any text extending tj∗i [x],

since it has output pj∗ on t
j∗
i [`] for some ` ≤ x. This is a contradiction.

Consequently, for each help-word β there is at least one language in Block i that

is not learned at all by Mi−1 or for which Mi−1 is not strong-monotonic.

The rest is done mutatis mutandis as in the proof of Theorem 3 and therefore

omitted.
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Having these general results, we can also ask what happens if we allow a suitably

chosen hypothesis space for REG such as all DFAs. Then for all i, j ∈ N equality

Li = Lj and subset Li ⊆ Lj are decidable, and thus we are in the setting described

in the proof of Theorem 1. That is we have the following theorem.

Theorem 6. Let C ⊆ REG be arbitrarily �xed, let d ∈ Rmon be any function, and

let H = (Lj)j∈N be any indexed hypothesis space for C such that H has a decidable

subset problem. Then there is a computable IIMM such that the class C can be strong-

monotonically identi�ed with nonconstructivity log dinv(n) from text with respect to H.

3.2. Nonconstructive Learning of Recursively Enumerable Classes

Next, we turn our attention to the amount of nonconstructivity needed to learn

recursively enumerable classes of recursively enumerable languages.

Theorem 7. Let ψ ∈ P2 be any numbering. Then there is always an IIM M learning

the family (Wψ
i )i∈N+ in the limit from text with nonconstructivity log n with respect

to (Wψ
i )i∈N+.

Proof. The help-word w is essentially the same as in the proof of Theorem 2, i.e., it

is a bitstring of b of length log n which is the binary representation of `, the number

of pairwise di�erent languages enumerated in Wψ
1 , . . . ,W

ψ
n plus n.

Let L ∈ C ∩{Wψ
1 , . . . ,W

ψ
n } and let t be any text for L. On input any t[m] and the

help-word w the desired IIM M executes the following.

(1) For all 0 < i ≤ n enumerate Wψ
i for m steps, that is M tries to compute

ψi(0), . . . , ψi(m) for at most m steps and enumerate those arguments x for

which ψi(x) turns out to be de�ned. Let Wψ
i,m be the resulting sets, 0 < i ≤ n.

(2) For all pairs (i, j) with 0 < i, j ≤ n check whether or not Wψ
i,m \W

ψ
j,m 6= ∅. If

it is, let d(i, j) be the least element in Wψ
i,m \W

ψ
j,m. If there is no such element,

we set d(i, j) = ∞.

(3) Having the numbers d(i, j) the IIMM checks whether or not there are at least `

pairwise di�erent languages among Wψ
1,m, . . . ,W

ψ
n,m. If not, then M(t[m]) = 0.

Otherwise, let S = {i | 0 < i ≤ n, Wψ
j,m 6= ∅} and consider all sets S̃ ⊆ S

satisfying |S̃| = `. For each such set S̃ = {j1, . . . , j`} compute the numbers

xj,k =df min(Wψ
j,m4Wψ

k,m) for all j, k ∈ S̃, where j < k and let s(S̃) be the

maximum of all those xj,k. Furthermore, for each set S̃ we consider the `-tuple

(j1, . . . , j`), where ji < ji+1, i = 1, . . . , ` − 1. Using these tuples, we can order

them lexicographically and then choose the �rst set S̃ in this order for which s(S̃)

is minimized, i.e., s(S̃) ≤ s(Ŝ) for all Ŝ with Ŝ ⊆ S and |Ŝ| = `. Let i1, . . . , i`
be the elements of this set S̃ in their natural order.
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Then M takes the languages Wψ
i1,m

, . . . ,Wψ
i`,m

into consideration. From these

candidate hypotheses i1, . . . , i` the least i is output for which t[m] contains all

�nite d(i, j), j = i1, . . . , i`, and t[m] does not contain any of the �nite d(j, i),

j = i1, . . . , i`. If there is no such i, then M(t[m]) = 0.

It remains to argue that M learns L in the limit from t. Note that the ` pairwise

di�erent languages are found in the limit, since the minimal element in the symmetric

di�erence of the two languages tends to in�nity if the two languages are equal (if any

element is found at all).

So, the set of candidate hypotheses stabilizes in the limit, and by construction M

then outputs the correct i as soon as the initial segment is large enough. We omit

further details.

Note that the IIM de�ned in the proof of Theorem 7 even witnesses a much stronger

result, i.e., it always converges to the minimum index i of the target language.

The following lower bound shows that Theorem 7 cannot be improved substantially.

In order to show this result we need the following proposition.

Proposition 1. Given a set M = {M1,M2,M3, . . . ,Mm} of m IIMs, one can e�ec-

tively �nd grammars gM0 , gM1 , . . . , gMm such that none of M1,M2, . . . ,Mm learns in the

limit all the languages WgM0
,WgM1

, . . . ,WgMm
.

Theorem 8. There is a numbering ψ ∈ P2 such that no IIM M can learn the

family (Wψ
i )i∈N+ in the limit from text with nonconstructivity log n − 2 with respect

to (Wψ
i )i∈N+.

Proof. Using Proposition 1, the theorem can be shown as follows.

For any learner M , let Mβ be the learner which behaves just like M with the

advice β as additional input.

We de�ne the numbering ψ as follows. Let ϕ be any �xed Gödel numbering of P .
We interpret every partial recursive function ϕi as an IIM M , i.e., Mi = ϕi for

every i ∈ N.

The set Wψ
j , for 2i ≤ j < 2i+1, is de�ned to be WgM

j−2i
, whereM = {Mβ

i | |β| < i}.
Note that there are 2i − 1 many help-words β with 0 ≤ |β| < i, and we thus have

the needed number 2i of grammars (cf. Proposition 1). Thus, for any i, and any β of

length at most i − 1, the IIM Mβ
i does not learn at least one of the languages Wψ

j ,

where 2i ≤ j < 2i+1.

Now, suppose by way of contradiction that there is an IIMM that learns the whole

family (Wψ
i )i∈N+ using nonconstructivity log n−2. Then there must be an i ∈ N such

that M = Mi.

So this IIMMi learns the family (Wψ
i )i∈N+ using nonconstructivity log n−2. Then,

the IIM Mβ
i , for some β with length at most i − 1, learns all the languages Wψ

j , for

2i ≤ j < 2i+1. A contradiction.
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So, it remains to show Proposition 1. We shall show a bit stronger result.

Proposition 2. Given a set M = {M1,M2,M3, . . . ,Mm} of m IIMs, and two dis-

joint �nite sets S1 and S2, S1, S2 ⊆ N, one can e�ectively (in M) �nd grammars

gM,S1,S2

0 , gM,S1,S2

1 , . . . , gM,S1,S2
m such that for some i ≤ m, none of M1,M2, . . . ,Mm

learns in the limit all the languages W
g
M,S1,S2
0

,W
g
M,S1,S2
1

, . . . ,W
g
M,S1,S2
m

, where we ad-

ditionally have the properties that

(a) S1 ⊆ W
g
M,S1,S2
i

, for i ≤ m, and

(b) S2 ∩Wg
M,S1,S2
i

= ∅, for i ≤ m.

Proof. We show below how to de�ne gM,S1,S2

j , for every 0 ≤ j ≤ |M|. These grammars

are generated implicitly by using the operator recursion theorem [5]. If M = ∅ then

we let W
g
M,S1,S2
0

= S1.

Suppose M = {M1,M2, . . . ,Mm}, with m > 0, and let disjoint �nite sets S1, S2

be given. The sets W
g
M,S1,S2
j

, for 1 ≤ j ≤ m, are de�ned via a staging construction as

follows. Note that the construction is di�erent for each di�erent input M, S1, S2.

Let σ0 be a sequence with content S1. Enumerate S1 in each of Whj
, j ≤ m.

It will be the invariant that at the beginning of stage s, content(σs) = Whj
enu-

merated before Stage s, for 1 ≤ j ≤ m.

Go to Stage 0.

Stage s.

Dovetail Steps 1 and 2, until, if ever, Step 1 succeeds. If Step 1 succeeds, then stop

Step 2 and go to Step 3.

Step 1. Search for an extension σ of σs, where content(σ) ∩ S2 = ∅, such that

M(s mod m)+1(σs) 6= M(s mod m)+1(σ).

Step 2. Let x be such that x 6∈ content(σs) ∪ S2.

Enumerate x in Whm .

Let S ′2 = S2 ∪ {x}. Let S ′1 = content(σs).

Let M′ = M−{M(s mod m)+1}.

Let Whj
, for j < m, follow W

g
M′,S′1,S′2
j

(until, if ever search in Step 1 succeeds).

Step 3. If and when Step 1 succeeds, let X =
⋃
j≤mWhj

∪ content(σ) enumerated

upto now.

Enumerate X in Whj
, for j ≤ m.

Let σs+1 be an extension of σ such that content(σs+1) = X.

Go to Stage s+ 1

End Stage s.
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We now claim that gM,S1,S2

j as de�ned above satisfy the proposition. This is by

induction on size ofM. Suppose the proposition properties hold for allM of size less

than m. Then, we show that it holds for M of size m.

FixM (of size m), and S1, S2 and consider the following cases for the construction

given above.

Case 1. There are in�nitely many stages.

In this case, all Whj
, j ≤ m, are the same language given by content(

⋃
s∈N σs), and

each of the learnersM1,M2, . . . ,Mm, makes in�nitely many mind changes on the text⋃
s∈N σs.

Case 2. Stage s starts but does not �nish.

In this case, clearly, M(s mod m)+1 converges on all texts extending σs which do not

contain any element from S2. Thus, either M(s mod m)+1 does not learn Whm , (which

contains x as de�ned in Stage s), or does not learn any of Whj
, j < m, which do

not contain x. Furthermore, by the induction hypothesis, none of the learners in M′

learns all the languages in Whj
, where 0 ≤ j < m.

Thus, the proposition follows.

The situation considerably changes if we require conservative learning. In order to

present this result, we need the following. A function h : N → N is said to be limiting

recursive if there is a function h̃ ∈ R2 such that h(i) = lim
t→∞

h̃(i, t) for all i ∈ N.

Theorem 9. For every limiting recursive function h there is a recursively enumerable

family (Wψ
i )i∈N of recursively enumerable languages such that no IIM with noncon-

structivity at most h can learn (Wψ
i )i∈N conservatively with respect to (Wψ

i )i∈N.

Proof. Let the limiting recursive function h : N → N be arbitrarily �xed. Furthermore,

we assume any �xed function h̃ ∈ R2 such that h(i) = lim
n→∞

h̃(i, n) for all i ∈ N.

Again, we �x any Gödel numbering ϕ of P and interpret each ϕi as an IIM, i.e.,

we have Mi = ϕi for all i ∈ N.
For every number i ∈ N we construct two recursively enumerable sets Wψ

2i and

Wψ
2i+1 such that for each help-word β ∈ {0, 1}∗ with 0 ≤ |β| ≤ h(2i+ 1) there will be

a text such that Mi fails to learn at least one of the languages Wψ
2i and W

ψ
2i+1 or Mi

is not conservative. This is done as follows.

For each number i ∈ N do the following. Set t := 0.

Initialize Wψ
2i = {〈i, 2x〉 | x ∈ N} and Wψ

2i+1 = {〈i, 2x+ 1〉 | x ∈ N}.
Goto (1).

(1) Compute mt := h̃(2i+ 1, t) and let rt = 2mt+1 − 1.

Set Ct = {1, . . . , rt} and enumerate in lexicographic order all β ∈ {0, 1}∗ with
0 ≤ |β| ≤ mt. We refer to these elements as βj, where j ∈ Ct.

Dovetail the execution of (α) and (2).
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(α) do forever

t := t+ 1;

if h̃(2i+ 1, t− 1) < h̃(2i+ 1, t) then

let mt := h̃(2i+ 1, t) and rt = 2mt+1 − 1;

Update Ct := {1, . . . , rt} and update (A) by including the newly

found j ∈ Ct.
end

(2) Start (A).

(A) For each j ∈ Ct try to �nd, by dovetailing the following search, a �nite

sequence σβj
of elements from {〈i, x〉 | x ∈ N} such that the condition

Mi(σβj
, βj)↓= 2i is veri�ed.

Once such a sequence σβj
is found, if ever, stop (A) for the j for which the

search succeeded but continue for the remaining values of j, and update

Wψ
2i := Wψ

2i ∪ content(σβj
) , (5)

Wψ
2i+1 := Wψ

2i+1 ∪ content(σβj
) . (6)

Now start (B) for the j for which the search succeeded.

(B) Try to �nd a �nite sequence τβj
of elements from {〈i, x〉 | x ∈ N} such that

Mi(σβj
� τβj

, βj)↓= 2i+1, where σβj
� τβj

denotes the concatenation of the

�nite sequences σβj
and τβj

.

If such a τβj
is found, if ever, stop (B) for the j for which the search

succeeded and update

Wψ
2i := Wψ

2i ∪ content(τβj
) , (7)

Wψ
2i+1 := Wψ

2i+1 ∪ content(τβj
) . (8)

Furthermore, set Ct := Ct \ {j}. If Ct 6= ∅ continue (A) or (B) for the

remaining j ∈ Ct.
If Ct = ∅ then stop (A) and (B) until, if ever, in (α) the set Ct is updated.

Now, it is easy to see that (Wψ
` )`∈N is a recursively enumerable family of recursively

enumerable languages. It remains to show that no IIM M can learn (Wψ
` )`∈N conser-

vatively with nonconstructivity h with respect to (Wψ
` )`∈N.

Suppose the converse, i.e., there is an IIM M that learns (Wψ
` )`∈N conservatively

with respect to (Wψ
` )`∈N. In order to obtain a contradiction, it su�ces to show that

there is some n ∈ N such that for each help-word w with 0 ≤ |w| ≤ h(n) there is

a language W from our family such that W ∈ {Wψ
0 , . . . ,W

ψ
n } but W is not learned

conservatively by M .

SinceM is an IIM, there must be an i ∈ N such thatM = Mi. Furthermore, since h

is limiting recursive, there must be t0 ∈ N such that h(2i + 1) = h̃(2i + 1, t0 + k)
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for all k ∈ N. That is, as soon as our t in (α) satis�es t ≥ t0 no further update

of Ct is occurring in (α). It should also be noted that we may have included more

help-words βj in our construction than actually necessary, since we only checked if

h̃(2i+ 1, t) does increase. But this does not matter as we shall see below.

We claim that for n = 2i+1 the desired contradiction can be obtained. We consider

the sets Wψ
2i and W

ψ
2i+1.

As said above, as soon as t ≥ t0 the set Ct does not change any further in the

loop (α). So, let m = h(2i+1) and r = 2m+1−1. It su�ces to consider all help-words

β1, . . . , βr, where 0 ≤ |βj| ≤ m for all j = 1, . . . , r.

Let any such βj be arbitrarily �xed. Then we try in (A) in particular any �nite

sequence σ of elements of Wψ
2i. Thus, if for all sequences σ either Mi(σ, βj) remains

unde�ned or turns out to be de�ned butMi(σ, βj) 6= 2i thenMi fails to learnW
ψ
2i when

using the help-word βj, since there is no other index for this language in (Wψ
` )`∈N.

Here it should be noted that Wψ
2i 6= Wψ

2i+1, since the at most �nitely often occurring

updates in (5), (6), (7), and (8) do only add �nitely often �nitely many elements

to Wψ
2i and W

ψ
2i+1, respectively.

Otherwise, the search must eventually succeed, i.e., we �nd a �nite sequence σβj

such that Mi(σ, βj)↓= 2i.

Now, by construction we know that content(σβj
) ⊆ Wψ

2i+1, too (see (6)). So, in (B)

we try in particular any �nite sequence τ of elements of Wψ
2i+1, and by construction

also each sequence σβj
� τ is an initial segment of a text for Wψ

2i+1. Consequently, if

we never verifyMi(σβj
�τ, βj)↓= 2i+1 in (B) thenMi fails to learn W

ψ
2i+1 from every

text starting with σβj
.

Otherwise, in (B) we �nd a τβj
such that Mi(σβj

� τβj
, βj)↓= 2i+ 1.

Now, by construction we know that content(σβj
)∪ content(τβj

) ⊆ Wψ
2i+1 as well as

content(σβj
) ∪ content(τβj

) ⊆ Wψ
2i (see (8) and (7)).

Thus, σβj
� τβj

is an initial segment of a text for both Wψ
2i and W

ψ
2i+1. But since

Mi(σβj
, βj)↓= 2i 6= 2i+ 1 = Mi(σβj

� τβj
, βj)↓ ,

we see that Mi(σβj
, βj) 6= Mi(σβj

� τβj
, βj) even though content(σβj

� στj) is contained
in Wψ

2i. This is a contradiction to Mi (with help-word βj) being conservative.

So, for every help-word βj, 0 ≤ |βj| ≤ m the IIM Mi either does not learn Wψ
2i

or Wψ
2i+1 or it is not conservative. Thus, the theorem is shown.

Since SmonTxt ⊂ ConsvTxt, Theorem 9 directly allows for the following corollary.

Corollary 1. For every limiting recursive function h there is a recursively enumerable

family (Wψ
i )i∈N of recursively enumerable languages such that no IIM with noncon-

structivity at most h can learn (Wψ
i )i∈N strong-monotonically with respect to (Wψ

i )i∈N.
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4. Conclusions

We have presented a model for the inductive inference of formal languages from text

that incorporates a certain amount of nonconstructivity. In our model, the amount

of nonconstructivity needed to solve the learning problems considered has been used

as a quantitative characterization of their di�culty.

We studied the problem of learning indexable classes under three postulates, i.e.,

learning in the limit, conservative identi�cation, and strong-monotonic inference. As

far as learning in the limit is concerned, the amount of nonconstructivity needed to

learn any indexable class can be very small and there is no smallest amount that can

be described in a computable way (cf. Theorem 1).

Moreover, we showed upper and lower bounds for conservative learning of index-

able classes and for strong-monotonic inference roughly showing that the amount

of nonconstructivity needed is log n for conservative learning and 2 log n for strong-

monotonic inference.

However, if we allow canonical indexed hypothesis spaces for REG such that equal-

ity of languages is decidable, then the amount of nonconstructivity needed to learn

REG even strong-monotonically can be made very small.

Finally, we studied the problem to learn recursively enumerable classes of recur-

sively enumerable languages. In this setting, the amount of nonconstructivity needed

to learn in the limit is log n, while there is not even a limiting recursive bound for the

amount of nonconstructivity to learn all recursively enumerable classes of recursively

enumerable languages conservatively or strong-monotonically.
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