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(Abstract)

Counting the number of paths in a graph, for example the number of nonintersecting
(or self-avoiding) rook paths joining opposite corners of an n× n grid, is not an easy
problem since no mathematical formula is found and the number becomes too large to
enumerate one by one except for small graphs. We have implemented software based on
the ZDD technique in Knuth’s “The Art of Computer Programming” carefully so as to
achieve better memory efficiency, and have succeeded in computing the exact numbers
for some graphs that were not known until now.

1 Introduction

Knuth introduced an interesting algorithm in his book [1, exercise 225 in 7.1.4], named
SIMPATH, which constructs a zero-suppressed binary decision diagram (ZDD) [2] repre-
senting a set of all paths between two vertices in a graph. It is so efficient that a ZDD
representing

227449714676812739631826459327989863387613323440 ' 2.27×1047

paths on a 15× 15 grid graph can be constructed in a few minutes. To the best of our
knowledge, SIMPATH is the most powerful and flexible among the algorithms that solves
the same problem. ZDDs for cycles, Hamiltonian paths, and path matchings can also be
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(a) Binary decision tree (b) BDD (c) ZDD

Figure 1: Diagrams for f (x1,x2,x3) = x1x2x3 + x1x3

constructed in almost the same algorithms [1], and they have many real-world applications
such as network reliability analysis [3], solving and generating puzzle instances [4], and
finding configurations minimizing the loss of energy in the electric power network [5].

We have been developing a framework for applications of SIMPATH-like algorithms,
which we call frontier-based search [6][7]. In this technical report, we demonstrate possi-
bilities of the frontier-based search by an example application, which computes the num-
ber of paths in a graph efficiently. We have implemented software by modifying Knuth’s
algorithm carefully in order to improve memory efficiency without sacrificing execution
time efficiency. In the experiments, we have succeeded in computing the exact numbers
of nonintersecting (or self-avoiding) rook paths joining opposite corners of an n× n grid
[8][9] up to n = 21, which had not been computed so far.

2 BDDs and ZDDs

Binary decision diagrams (BDDs) [10][11] and zero-suppressed BDDs (ZDDs) [2] are
labeled directed acyclic graphs derived by reducing binary decision tree graphs, which
represent decision making processes through binary input variables. As is illustrated in
Figure 1, there are two kinds of terminal nodes, 0-terminal and 1-terminal, which rep-
resent the output binary value. Every nonterminal node is labeled by an input variable
and has two outgoing edges, namely 0-edge and 1-edge. The 0-edge (1-edge) points to
the node called 0-child (1-child), which represent a state after the decision that 0 (1) is
assigned to the variable. We only deal with ordered BDDs/ZDDs in this paper, where
input variables are indexed as x1, . . . ,xn according to their total order. The index of the
input variable of a nonterminal node is just called the index of the node, and the index of
a terminal node is assumed to be n+1 for convenience. The index of any node is properly
smaller than that of its children.

Figure 2 and Figure 3 show the reduction rules of BDDs and ZDDs respectively. Equiv-
alent nodes, which have the same indices and the same 0- and 1-child nodes, can be shared
both in BDDs and in ZDDs (Figure 2a and Figure 3a). A node with edges to the same des-
tination can be deleted in BDDs (Figure 2b). In contrast, a node with a 1-edge directly
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(a) Sharing (b) Deletion

Figure 2: BDD reduction rules

(a) Sharing (b) Deletion

Figure 3: ZDD reduction rules

pointing to the 0-terminal node can be deleted in ZDDs (Figure 3b). The entire diagram
can be reduced completely as BDD or ZDD by applying these rules from the bottom (in-
dex n) to the top (index 1) as follows:

Reduce(D)
1: for i = n to 1 do
2: for each node p at index i in diagram D do
3: for each c ∈ {0,1} do
4: replace the c-child of p with the reduced one;
5: end for
6: end for
7: end for
8: replace the root of D with the reduced one.

BDDs and ZDDs are efficient data structures for representing not only Boolean func-
tions but also families of sets. A set of n items can be represented by input variables
x1, . . . ,xn, where xi ∈ {0,1} indicates if the i-th item is contained in the set. The diagrams
in Figure 1 can be considered as {{x1,x2},{x2,x3},{x3}} in that sense. Paths from the root
to the 1-terminal in BDDs and ZDDs, called 1-paths, correspond to item sets included in
the family. ZDDs have the interesting property that every 1-path represents an individual
set, while a 1-path may represent multiple sets in BDDs, because of the difference of their
node deletion rules.



4 Hiroaki Iwashita, Jun Kawahara, and Shin-ichi Minato

(a) G3,3 (b) Paths between v1 and v9

Figure 4: Path enumeration on G3,3

Graph enumeration and indexing problems are important applications of BDDs and
ZDDs, which include enumeration of paths, cycles, cliques, spanning trees, cut sets, parti-
tioning, and matching. They are tightly related to various real-life problems, such as geo-
graphic information systems, dependency analysis, and demarcation problems. Each enu-
meration problem is solved implicitly as a problem of constructing a monolithic BDD/ZDD
representing a family of all instances, where each instance (path, cycle, etc.) is represented
by a set of graph edges or vertices.

3 ZDD Construction Algorithm

The SIMPATH algorithm constructs a ZDD representing a set of paths (ways to go from
a point to another point without visiting any point twice) in a graph [1, exercise 225
in 7.1.4][12]. For example, a 3×3 grid graph (G3,3) in Figure 4a has 12 paths between v1

and v9 as shown in Figure 4b. The input to the algorithm is an undirected graph G= (V,E)
where V = {v1, . . . ,vm} is a set of vertices and E = {e1, . . . ,en} is a set of edges. The out-
put is a ZDD representing all the set of edges that form paths between v1 and vm.

SIMPATH performs breadth-first search in the 2E space to construct a directed acyclic
graph (DAG), and then reduces the DAG as a ZDD. Figure 5 illustrates an example of
the constructed DAG before reduction, where the 0-terminal node and edges to it are not
drawn for visibility.

Each node of the DAG has the configuration 〈i,mate〉 that indicates node equality,
which consists of a node index i and a table called mate. A configuration of node p with
index i corresponds to a state after decisions on edges e1, · · · ,ei−1 are made, in which
the set of selected edges Ep ⊆ {e1, · · · ,ei−1} forms path fragments. The mate table on p
represents a map from Vi to Vi∪{0}, where Vi ⊆V is called frontier for index i:

matep[v] =


v if vertex v is not a part of any path fragment,
u if vertices u and v are endpoints of a path fragment,
0 if vertex v is an intermediate point of a path fragment.

As we are not interested in the vertex states that does not influence future edge selection
for ei, · · · ,en, the frontier is limited to a set of vertices contiguous with both decided and
undecided edges. An entry for mate[v] is created when vertex v is entering the frontier and
an entry for mate[v] is deleted when vertex v is leaving the frontier.
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Figure 5: DAG for paths on G3,3 constructed by SIMPATH
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In Figure 5, the mate table is drawn graphically on each node. Circles and lines repre-
sent vertices in the frontier and path fragments among them respectively. An isolated open
circle represents a vertex not included in any path fragments (mate[v] = v). An isolated
filled circle represents an intermediate point of some path fragment (mate[v] = 0).

For simplicity of the algorithm, the mate table is initially set to the value that has two
entries mate[v1] = vm and mate[vm] = v1 as if there were a built-in path between v1 and vm,
and as if we were enumerating all the virtual cycles that include it. When a virtual cycle is
formed and no other path fragment remains, the current set of selected edges is accepted
and the DAG node is connected to the 1-terminal. It is rejected and the DAG node is
connected to the 0-terminal when a virtual cycle is formed and some other path fragment
remains, or an edge to an intermediate point is added, or the final chance to attach an edge
to some endpoint is not taken.

We encapsulate the above details in SIMPATH by recursive specification S of SIM-
PATH’s configurations, which are described by two functions:

• S.getRoot() for getting the initial configuration of the root node,

• S.getChild(〈i,mate〉 ,c) for getting the configuration of c-child (c ∈ {0,1}) of the
node that have configuration 〈i,mate〉.

Data structure for DAG node p has three fields: p.state for the mate table, p.child[0] for
the 0-child pointer, and p.child[1] for the 1-child pointer. Using these notations, the ZDD
construction algorithm is summarized as follows:

Construct(S)
1: Pi← /0 for i = 1, . . . ,n+1;
2: let r be a new node;
3: 〈i,r.state〉 ← S.getRoot();
4: Pi←{r};
5: for i = 1 to n do
6: for each p ∈ Pi do
7: for each c ∈ {0,1} do
8: let q be a new node;
9: 〈 j,q.state〉 ← S.getChild(〈i, p.state〉 ,c);

10: if we already have node q′ ∈ Pj such that q′.state = q.state then
11: delete q;
12: p.child[c]← q′;
13: else
14: Pj← Pj ∪{q};
15: p.child[c]← q;
16: end if
17: end for
18: end for
19: end for
20: reduce the DAG rooted by r as a ZDD.
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4 Computing the Number of Paths in a Graph

4.1 Computing the Number of Paths as 1-Paths in a ZDD

Once a ZDD for a set of paths in a graph is constructed, we can get the number of paths
by computing the number of 1-paths in the ZDD. Here is a simple depth-first algorithm,
which takes the root node of the ZDD as its argument:

CountZddOnePathsDF(p)
1: if p is the 0-terminal return 0;
2: if p is the 1-terminal return 1;
3: if 〈p,k〉 is found in the result table return k;
4: p0← 0-child of p;
5: p1← 1-child of p;
6: k← CountZddOnePathsDF(p0)+CountZddOnePathsDF(p1);
7: add 〈p,k〉 into the result table;
8: return k.

This algorithm uses the result table for avoiding repeated computation on the same node.
Useless table entries should be deleted on the fly in order to improve memory efficiency.
It is important especially when we are dealing with very large ZDDs, because we need to
compute “bignum” k’s for all ZDD nodes that can occupy huge memory. For example,
the number grows up to 48 digits in the computation for G15,15, and up to 107 digits for
G22,22.

Here is another algorithm to get the number of 1-paths in ZDD P, which is based on
breadth-first search:

CountZddOnePathsBF(P)
1: let r be the root node of ZDD P;
2: add 〈r,1〉 into the result table;
3: let Pi be a set of nodes at index i ∈ {1, . . . ,n+1} in P;
4: initialize the result table;
5: for i = 1 to n do
6: for each p ∈ Pi do
7: find 〈p,k〉 in the result table and delete the entry;
8: for each c ∈ {0,1} do
9: q← c-child of p;

10: if 〈q, l〉 is found in the result table then
11: replace the entry with 〈q, l + k〉;
12: else
13: add 〈q,k〉 into the result table;
14: end if
15: end for
16: end for
17: end for
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18: let t1 ∈ Pn+1 be the 1-terminal node;
19: find 〈t1,k〉 in the result table;
20: return k.

In the breadth-first algorithm, simple management of the result table realizes good mem-
ory efficiency; we can simply delete the table entry 〈p,k〉 for the current node p as soon
as bignum k is propagated to its child nodes.

4.2 Computing the Number of Paths without Constructing ZDDs

In the previous section, we have described a two-step method to compute the number of
paths in a graph, which constructs a ZDD as an intermediate result. Now we combine the
two steps in order to further improve memory efficiency. We use a breadth-first algorithm
and compute the number of paths from the top to the bottom. The key idea is to delete
useless DAG nodes on the fly as well as bignums. In this algorithm, node p has two fields:
p.state for the mate table, and p.value for the bignum that keeps an intermediate result
instead of the result table. The algorithm is summarized as follows:

CountPathsInGraph(S)
1: Pi← /0 for i = 1, . . . ,n+1;
2: let r be a new node;
3: 〈i,r.state〉 ← S.getRoot();
4: r.value← 1;
5: Pi←{r};
6: for i = 1 to n do
7: for each p ∈ Pi do
8: for each c ∈ {0,1} do
9: let q be a new node;

10: 〈 j,q.state〉 ← S.getChild(〈i, p.state〉 ,c);
11: if we already have node q′ ∈ Pj such that q′.state = q.state then
12: delete q;
13: q′.value← q′.value+ p.value;
14: else
15: Pj← Pj ∪{q};
16: q.value← p.value;
17: end if
18: end for
19: delete p;
20: end for
21: end for
22: let t1 ∈ Pn+1 be the 1-terminal node;
23: return t1.value;

Storage requirement for this algorithm is O(am) where a is the memory usage for each
node and m is the maximum number of the nodes that become alive during the computa-
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Figure 6: Vertex order of Gα,β

tion. When S is a recursive specification of SIMPATH’s configurations, m'max1≤i≤n |Pi|
and it is much less than the number of nodes in the entire DAG structure (∑1≤i≤n |Pi|).

5 Experimental Results

We have implemented the two methods in C++; one is the two-step method that constructs
a ZDD as an intermediate result, the other is the direct method that does not construct the
entire DAG structure. They are single-threaded programs using large memory space. In
early evaluation of them, we found that memory access has a significant impact on CPU
time. Data storage for DAG nodes often becomes much larger than the last level cache
memory of the CPU and the algorithm searches an equivalent node repeatedly among all
of them, which implies repeated access to the main memory of the CPU. Fine tuning of
memory access have made our software several times faster.

All experiments are performed on 2.67GHz Intel Xeon E7-8837 CPU with 1TB mem-
ory, running 64-bit SUSE Linux Enterprise Server 11. We experimented with square
grid graphs Gα,β as benchmark examples. The vertex order is illustrated in Figure 6
and the edge order (ZDD variable order) is defined lexicographically with the vertex or-
der: {vi,v j} ≤ {vi′ ,v j′} if and only if vi < vi′ or (vi = vi′ and v j ≤ v j′) where vi ≤ v j and
vi′ ≤ v j′ . The terminal vertices of paths are v1 and vαβ in all experiments.

Comparison of CPU time and memory usage between two methods is summarized
in Table 1. We can confirm that the direct method is faster than the two-step method and
requires orders of magnitude less memory. In both methods, CPU time and memory usage
is tripled when the graph becomes the next larger size. It will take about 10 days and 700
gigabytes of memory to get the result for G23,23 using the direct method.

Table 2 shows the exact number of paths in Gn+1,n+1 for 1 ≤ n ≤ 21. It is consistent
with “Number of nonintersecting (or self-avoiding) rook paths joining opposite corners of
an n×n grid” listed in [8] except that it was not known for n≥ 20. Note that the prior art
that computed the result for n = 19 is an algorithm designed for square grid graphs [9],
while SIMPATH is an algorithm for arbitrary graphs.
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Table 1: Comparison between two methods
Two-step method Direct method

Graph #path Time (sec) Mem (MB) Time (sec) Mem (MB)
G10,10 4.10E+019 0.1 13 0.1 1
G11,11 1.57E+024 0.4 41 0.3 3
G12,12 1.82E+029 1.5 131 1.0 6
G13,13 6.45E+034 4.9 422 3.2 13
G14,14 6.95E+040 18.7 1354 11.7 37
G15,15 2.27E+047 82.4 4320 52.4 111
G16,16 2.27E+054 306.6 13705 206.0 351
G17,17 6.87E+061 1032.4 43319 701.9 958
G18,18 6.34E+069 3379.0 136473 2326.0 3018
G19,19 1.78E+078 12639.4 428310 7607.1 7514
G20,20 1.52E+087 >1TB 28279.2 27394
G21,21 3.96E+096 >1TB 91944.1 74504
G22,22 3.14E+106 >1TB 284117.0 216871

Table 2: The number of paths between opposite corners of Gn+1,n+1
n #path
1 2
2 12
3 184
4 8512
5 1262816
6 575780564
7 789360053252
8 3266598486981642
9 41044208702632496804

10 1568758030464750013214100
11 182413291514248049241470885236
12 64528039343270018963357185158482118
13 69450664761521361664274701548907358996488
14 227449714676812739631826459327989863387613323440
15 2266745568862672746374567396713098934866324885408319028
16 68745445609149931587631563132489232824587945968099457285419306
17 6344814611237963971310297540795524400449443986866480693646369387855336
18 1782112840842065129893384946652325275167838065704767655931452474605826692782532
19 1523344971704879993080742810319229690899454255323294555776029866737355060592877569255844
20 3962892199823037560207299517133362502106339705739463771515237113377010682364035706704472064940398
21 31374751050137102720420538137382214513103312193698723653061351991346433379389385793965576992246021316463868
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6 Conclusions

We have developed efficient software to compute the number of paths in a graph based on
Knuth’s SIMPATH algorithm, and have confirmed that it is a state-of-the-art technique.

We have experimented with grid graphs and have succeeded in computing the number
of paths in larger graphs, which had not been computed so far. It shows a potential of the
frontier-based search framework, since it was achieved by only a simple modification of
the existing algorithm on the framework. The algorithm is abstracted using the recursive
specification that encapsulates details of mate table operations in SIMPATH, which can be
replaced for solving other graph enumeration problems, such as cycles and Hamiltonian
paths.
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